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In order to solve the inefficient use of multi-source heterogeneous data

information cross fusion and the low accuracy of prediction of landslide

displacement, the current research proposed a new prediction model

combining variable selection, sparrow search algorithm, and deep extreme

learning machine. A cement mine in Fengxiang, Shaanxi Province, was studied

as a case. The study first identified the variables related to landslide

displacement of rock slope, and removed redundant variables by using

Pearson correlation and gray correlation analysis. To avoid the impacts of

random input weights and random thresholds in the DELM model, the SSA

algorithm is used to optimize the model’s parameters, which can generate the

optimal parameter combinations. The results showed an enhanced

generalization ability of the model by removal of redundant variables by

Pearson correlation and gray correlation analysis, and higher accuracy in the

prediction of landside displacement of rock slope by SSA-DELM compared to

other traditional machine learning algorithms. The current study is significant in

the literature on rock slope disaster analysis.
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Introduction

In the construction of mountain housing, transportation, mining, water conservancy

and hydropower projects, rock slope stability problems are inevitably encountered (Li

et al., 2019; Du et al., 2022; Yi et al., 2022; Zhao et al., 2022). Rock slope stability problems

can cause geological disasters such as rock loosening, relaxation cracking, creeping,

landslides and rock fall (Liu et al., 2020; Meng et al., 2021; Xu et al., 2022). Therefore,

monitoring and early warning are pivotal in preventing rock slope disasters. In rock slope

disaster monitoring and early warning, the research is often conducted on static indicators

(such as deformation, stress, etc.)or environmental indicators (such as groundwater,
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rainfall, etc.) (Du et al., 2019), among which displacement is an

intuitive and reliable monitoring quantity under the influence of

internal and external environment. The scientific analysis of

displacement data and the establishment of real-time

prediction models are essential research contents in large-scale

engineering safety monitoring.

In order to obtain accurate, comprehensive, and real-time

information on landslide deformation, it is necessary to monitor

both surface and subsurface deformation, as well as triggering

factors and related environmental factors, so multiple means of

landslide monitoring must be used simultaneously to achieve

effective monitoring results (Zhang et al., 2020). Nowadays, the

techniques applied in mainstream rock slope monitoring include

synthetic aperture radar (Pieraccini et al., 2006; Atzeni et al.,

2015; Qin et al., 2020), microseismic monitoring (Salvoni and

Dight., 2016; Xu et al., 2016; Ma et al., 2017; Chen et al., 2022),

GNSS displacement monitoring (Lian et al., 2020; Šegina et al.,

2020; Yan et al., 2022), etc. These monitoring techniques mainly

focus on the surface and deep deformation of rock slopes, and

some scholars also combine environmental quantity indicators

for monitoring and research, such as Pang (Pang, 2019) proposed

an automated monitoring system, which contains GPS

monitoring station, rain gauge, crack gauge, rain gauge,

groundwater level gauge and other sensors to monitor the

slope in real-time, which can respond to the slope

deformation parts in time with a broader perspective to

ensure the safety of high-risk slopes and their surroundings;

Liu et al. (Liu et al., 2022) combined slope deformation

monitoring data, displacement monitoring data, inclination

monitoring data, groundwater level monitoring data, rainfall

monitoring data and other multi-source data, based on

machine learning method to monitor abnormal events of

monitoring data to provide support for disaster early warning;

Peng et al. (Peng et al., 2014) combined multiple sensor

monitoring data and multiple mechanical parameters to

update soil or rock model parameters, slope safety coefficients

and damage efficiency using Markov chain Monte Carlo

simulation, which made the assessment more reliable; Li et al.

(Li et al., 2021) combined field experiments and blasting

vibration monitoring to systematically study the three-

dimensional dynamic stability of adjacent high slopes after

blasting vibration, providing technical support and theoretical

guidance for mine blasting and improving mine stability.

The use of multiple sensors to monitor slopes can obtain a

large amount of multi-source heterogeneous data, which have

specific correlation, randomness, and ambiguity (Wang et al.,

2020). How to fully use these multi-source heterogeneous data is

the focus of scholars’ attention and the problems that have been

needed. Over the past few years, the multi-source data fusion

method has been increasingly favored by some experts and

scholars in the field of slope research, and it has begun to be

gradually applied in engineering. Some scholars have used multi-

source data fusion technology for the prediction and stability

analysis of slope safety factor (Sakellariou and Ferentinou., 2005;

Liu et al., 2014.; Jiang et al., 2022), and some scholars at home and

abroad have used multi-source heterogeneous data fusion

technology for risk warning and analysis of landslides to study

the characteristic mechanism and dynamics evolution law of the

deformation and damage process of landslides (Du et al., 2020;

Zhang et al., 2020; Li et al., 2021). In recent years, multi-source

data fusion techniques have been more successfully applied to

landslide displacement prediction. Liu et al. (Liu et al., 2020)

introduced two concepts, trend sequence and sensitivity, to

quantitatively characterize landslide displacement caused by

external factors and internal landslide state, respectively, and

proposed a nonlinear model for landslide displacement

prediction by fusing trend sequence and sensitivity state;

Wang et al. (Wang et al., 2021) used Pearson correlation

coefficient, and mutual information were used to screen

environmental factors and deep learning was used to predict

landslide displacements; Duan et al. (Duan et al., 2017) used

comprehensive landslide monitoring data to extract the most

relevant factors affecting landslide deformation and used an

autoregressive integrated movement model for prediction.

Wang and Zhang (Wang et al., 2022; Zhang et al., 2022)

considered the hydrodynamic effects affecting landslides, used

a variational modal decomposition method to decompose the

cumulative displacement into the trend, periodic and stochastic

terms, and used different deep learning methods to make

predictions for three Different deep learning methods are used

to predict the three different displacement subterms.

Scholars have rarely considered the relationship between the

dependent variables in the prediction of landslide displacement

using multi-source heterogeneous data of slopes, which can lead

to overfitting and low prediction accuracy in the prediction.

Nowadays, the mainstream methods of variable selection mainly

include correlation analysis (Guo et al., 2022), mutual

information (Li, 2021), and lasso (Jin et al., 2021). However,

these methods are relatively single, and it is difficult to select the

appropriate number of variables when screening the variables,

and too few input variables will lead to lower prediction accuracy.

On the other hand, too many input variables will result in

redundant variables and increase the model running time.

In the past, scholars did not consider the redundancy among

the dependent variables when using multi-source heterogeneous

data of slopes for landslide displacement prediction, leading to

overfitting and low prediction accuracy. To this end, this paper

proposes a method of variable selection by combining Pearson

correlation and gray correlation analysis. The Pearson

correlation analysis is used to calculate the correlation

coefficients of each variable factor, judging whether there are

uncorrelated or redundant relationships among them. Then the

model combines the correlation coefficients between variables

and displacement to eliminate redundant variables. Finally, the

sparrow search algorithm optimized by the depth limit learning

machine is utilized to predict displacement, which provides a
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reference for the subsequent displacement change and reduces

the occurrence of slope disaster.

Principles of algorithms

Pearson correlation analysis

Karl Pearson introduced the Pearson correlation coefficient

(PCC) in the 1880s. The correlation coefficient determines

whether each input variable is closely correlated with each

other, and if two variables are highly correlated with each

other, they belong to duplicate features and can be removed

to achieve de-duplication or dimensionality reduction (Lin et al.,

2019). The Pearson correlation coefficient is then expressed as

follows:

r � ∑N
i�1(xi − �x)(yi − �y)∑N

i�1(xi − �x)2∑N
i�1(yi − �y)2 (1)

Where r is the Pearson correlation coefficient; xi is the different

value corresponding to the variable x; is the average of the

variables x;yi is the different value corresponding to the

variable y; is the average of the variables y; Nis the number

of variables. The value range of the correlation coefficient is

[-1.1]. When |r|>0, it is a positive correlation; conversely, it is a
negative one. The magnitude of the absolute value of the

corresponding Pearson correlation coefficient between two

variables determines the strength of the relationship between

the two variables, and the specific range of values and their

representative meanings are shown in Table 1.

Gray relational analysis

Gray relational analysis theory, an essential part of gray

system theory, is a multifactor statistical analysis theory that

describes the strength, magnitude, and order among factors in

terms of gray correlation degree based on sample data of each

factor. Gray correlation is essentially a comparison of how close

the geometric shapes of the data curves are. The closer the

geometry, the closer the trend of change and the greater the

correlation (Liu et al., 2012). The analysis steps are as follows:

Step1. Identify the mother series and characteristic series.

Generally, the dependent variable is determined as the mother

series, and the independent variable is determined as the

characteristic series. In this paper, the landslide displacement

is determined as the mother series, and the landslide impact

factor is determined as the characteristic series.

Step2. Undimensionalize the data. The dimensionless

processing is typically done by initialization, homogenization,

and normalization, and this paper uses normalization for the

dimensionless processing of data. The calculation formula of

normalization is then expressed as follows:

Xnorm � X −Xmin

X max −Xmin
(2)

Where Xis the raw data; Xmax, Xmin are respectively the

maximum and minimum values of the data.

Step3. Solve for the gray relational coefficient value between the

parent sequence and the feature sequence. The relational coefficient

represents the degree of correlation between the feature series and

themother series in the corresponding dimension, and the larger the

number, the stronger the correlation. The calculation formula of the

correlation coefficient is then expressed as follows:

ξe(k) �
min

e
min

k
|x0(k) − xe(k)| + ρmax

e
max

k
|x0(k) − xe(k)|

|x0(k) − xe(k)| + ρmax
e

max
k

|x0(k) − xe(k)|
(3)

Where ξe(k) is the value of correlation coefficients of feature

sequence xe to feature sequence x0 on the kth indicator.

Step4. Calculate the correlation between the mother sequence

and the feature sequence. Larger correlation degree proves that

the corresponding feature sequence has more influence on the

mother sequence. The calculation formula of correlation degree

is then expressed as follows:

Where n is the sample size; rε is the correlation degree of

feature sequence, and the indicator weight.

re � 1
n
∑n
k�1

ωkξe(k) (4)

Sparrow search algorithm

The Sparrow Search Algorithm (SSA) is a relatively novel

algorithm inspired by the foraging and anti-predatory behaviors

of sparrows (Xue and Shen., 2020), which has the advantages of

TABLE 1 The value range of |r|and its meaning.

The value range of
|r|

The meaning of |r|

[0.0.2] Extremely low correlation

[0.2.0.4] Low correlation

[0.4.0.6] Moderate correlation

[0.6.0.8] High correlation

[0.8.1] Extremely high correlation
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merit-seeking solid ability, fast convergence, and robustness. The

bionic principle is as follows:

When sparrows search for food, they need to divide the

whole sparrow population into three categories according to their

different divisions of labor: producers searching for food, joiners

grabbing food of their kind, and vigilantes finding enemies.

Producers are generally the highest energy sparrows in the

whole population because they need to search for food and

guide the direction of the population. In continuous iteration,

producers and joiners can transform each other, but the

proportion of the two species in the whole population will not

change in the transformation process. In the bionic experiment,

the sparrow population and fitness values need to be initialized

first, and the sparrow population and fitness value initialization

expressions are then expressed as follows:

X �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 / x1,d

x2,1 x2,2 . . . x2,d

..

. ..
. ..

.

xn,1 xn,2 / xn,d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

Fx �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f([x1, 1 x1, 2/x1, d])
f([x2, 1 x2, 2/x2, d])
..
...
...
.

f([xn, 1 xn, 2/xn, d])

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Where n is the number of sparrows; d is the dimension of the

variable to be optimized, which is the number of independent

parameters; xn,dis the value of the nth sparrow in the dth

dimension.

After determining the location and fitness value of each

sparrow, the initial fitness value of each sparrow needs to be

sorted, the sparrows with the better fitness value will be identified

as the producer. The producer can be given priority to obtain

food when food is found and guide the whole group to the

direction of food. The producer will continue to search for food

in different places elsewhere, the location will keep changing, and

the movement rules will also change when the enemy is

encountered, at the moment, the producer location update

rules are then expressed as follows:

xt+1
i,j �

⎧⎪⎪⎨⎪⎪⎩ xt
i,j exp( − i

αitermax
), if R2 < ST

xt
i,j + QL, if R2 ≥ ST

(7)

Where t is the current number of iterations;

j ∈ {1, 2, 3,/, d};xt
i,jis the value of the ith dimension of the

jth sparrow at the tth iteration; α ∈(0, 1], is a random

number; itermax is the maximum number of iterations;

R2 ∈ [0, 1], is the alarm value; ST ∈ [0, 1], is the safety

threshold; Q is a random number that follows a normal

distribution; L is a matrix of order 1 × d(all elements are 1).

When R2 < ST, it means that there are no natural predators in the

area, which means that the area is safe and the producer will

continue to expand its foraging range; when R2 > ST, it means

that the producer has found a predator and warned other

sparrows that all sparrows need to leave the area for a safe area.

For the joiners, the producers are monitored at all times, and

if the producers find food, the joiners will immediately be aware

of it and quickly fly to the food source to grab the food with the

producer. At this time, the joiners’ position update rule is then

expressed as follows:

xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Qexp(xt
worst − xt

i,j

t2
), i> n

2

xt+1
p +

∣∣∣∣∣xt
i,j − xt+1

p

∣∣∣∣∣A+L, else other

(8)

Where xp is the best position occupied by the producer;

xworst is the global worst position; A is the matrix of order

1 × d, each element is randomly 1 or -1;A+ � AT(AAT)−1;
When i> n

2, it means that the less adaptive first joiner fails to

grab food and needs to change its position to get food in other

areas.

Alerters are randomly generated in the entire population,

usually 10–20% of the entire population. The initial position is

then randomly generated, with the rule is then expressed as

follows:

xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt
best + β

∣∣∣∣∣xt
i,j − xt

best

∣∣∣∣∣, if fi>fg

xt
i,j +K( ∣∣∣∣∣xt

i,j − xt
worst

∣∣∣∣∣(fi − fw) + ε
), if fi � fg

(9)

Wherefi is the current sparrow adaptation value;fg is the global

best adaptation value;fw is the global worst adaptation value; β is

the step control function, which is a normally distributed random

number withmean 0 and variance 1;K is the direction of sparrow

movement; ε is the minimum constant, avoiding zero

denominator; xbest is the global best position; xworst is the

global worst position. When fi >fg, it means that the

vigilantes are located at the edge of the whole population and

will fly to the safe area when scouting for enemies;Whenfi � fg,

it means that the vigilantes in the centre of the population are

aware of the danger and will fly to the other sparrows to avoid the

danger.

Deep Extreme Learning Machine

An extreme learning machine is a single hidden layer

feedforward neural network (Sulandri et al., 2021). Unlike the

traditional gradient-based feedforward neural network

algorithm, the input weights and thresholds of the hidden

layer of the extreme learning machine network are randomly

generated in the training process. Therefore, only the generalized

inverse matrix theory can be used to calculate the output weights

to complete the learning. Therefore, ELM network has the

advantages of fast learning speed and strong generalization

ability. However, because ELM is a single hidden layer
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structure, it cannot capture the effective features of the data in the

case of high data, and high dimensionality of data. So more

scholars use DELM (Tuerxun et al., 2021), which is a derivative

algorithm of ELM.

Deep Extreme Learning Machine (DELM) is an ELM

derivative algorithm that improves the network’s

representational capability by superimposing an Extreme

Learning Machine-Autoencoder (ELM-AE) to construct a

multilayer network structure. When the ELM is confronted

with input and output variables with an excessive amount of

input data and high dimensionality, it solves the problem that

an extreme learning machine with only one hidden layer

cannot capture the effective features of the data (Sulandri

et al., 2021). DELM is a combination of an extreme learning

machine and an autoencoder, which constitutes an extreme

learning machine-autoencoder, and the ELM-AE structure is

shown in Figure 1.

ELM-AE is a general approximator characterized by enabling

the output of the network to be the same as the input and the

input parameters of the hidden layer to be orthogonal after

random generation. The output of ELM-AE can be then as

follows:

xj � ∑L
i�1
βiG(ai, bi, xj), ai ∈ Rm, βi ∈ Rm, j � 1, 2,/, N, aTa � I, bTb � 1

(10)

Where a is the matrix composed of ai , and b is the vector

composed of bi. The output weights of the hidden layer are then

expressed as follows:

β � (I
C
+HTH)−1

HTX (11)

Where X � [X1, X2, X3,/XN] is the input data.
Because of its feature representation capability, ELM-AE

is used as the basic unit of the deep extreme learning machine

DELM. Like traditional deep learning algorithms, DELM also

uses a layer-by-layer greedy training method to train the

network, and the input weights of each hidden layer of

DELM are initialized using ELM-AE to perform

hierarchical unsupervised training, but unlike traditional

deep learning algorithms, DELM does not need reverse

fine-tuning process. The structure of DELM is shown in

Figure 2.

Assuming that the model has N hidden layers, the first

output weight matrix β1 is obtained from the input data X

according to ELM-AE theory and then the feature vector of the

hidden layer H1. The output weight matrix βN of N layers and

the feature vectorsHN of the hidden layers can be obtained. As

shown in Figure 3, the DELM first uses multiple ELM-AEs for

unsupervised pre-training and then uses the output weights of

each ELM-AE to initialize the whole DELM. During the ELM-

AE training process, the input layer weights and thresholds are

randomly generated orthogonal randommatrices; meanwhile,

the ELM-AE unsupervised training process uses the least

squares method to update the parameters. However, in this

process, only the output layer weight parameters are updated,

while the input layer weights and thresholds are fixed, which

will result in the prediction accuracy of the DELM being

affected by the random input weights and random

thresholds of each ELM-AE. Therefore, it is necessary to

optimize these two parameters.

Establishment of SSA-DELM predictmodel

Multiple ELM-AEs stack DELM, and the input weights and

random thresholds in ELM-AEs are randomly generated, leading

to random variables in the DELM model and unstable results. So

these two parameters are iteratively optimized by the SSA

algorithm, giving the whole model high prediction accuracy

FIGURE 1
ELM-AE network structure diagram.
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and fast convergence, which can well ensure the stability of the

results. The optimization process and flow chart (Zeng et al.,

2021) are then as follows.

1) Initialize the SSA algorithm parameters. Set the maximum

number of training iterations, the number of sparrow

populations, the alert threshold, the proportion of

discoverers, and the proportion of alerters.

2) Calculate the initial fitness value of the sparrow population.

Then, the sparrows with the current best and worst fitness

values are selected along with their locations.

3) The positions of predators, joiners, and vigilantes are

continuously updated according to Eqs 7–9.

4) After updating the positions, calculate the optimal and worst

fitness values of the whole population and their positions,

determine whether the maximum number of iterations is

satisfied or the stopping condition is met, and if the condition

is fulfilled, output the optimal value, otherwise, return to

step 2).

5) The obtained results are input into the DELM model to

calculate the input values and thresholds of the optimal

hidden layer.

Landslide displacement modeling
based on PCC-GRA-SSA-DELM

There are various manifestations of rock slope

deformation, and landslide displacement is one of them. In

this paper, we will combine actual engineering cases and

literature, collect multiple sensor data and multiple

environmental factors affecting rock slope displacement as

the input parameters of SSA-DELM prediction model, and

take displacement as the output parameters of the model.

Since the redundancy among the factors will reduce the

accuracy of the prediction model, this paper uses Person

correlation analysis to calculate the correlation coefficients

of the influencing factors. It then uses gray correlation analysis

to calculate the correlation between the influencing factors

and the landslide displacements to eliminate redundant and

uncorrelated variables between them. The screened out in the

prediction model, the rock slope displacement prediction

model based on the PCC-GRA-SSA-DELM model is

established based on four steps: data collection, data

processing, variable selection, and result prediction. In this

case, the obtained results are more accurate. The calculation

process (as shown in Figure 4) is as follows:

1) Data collection. Multiple data sources are collected from the

slope monitoring system, including displacement data,

meteorological data, mechanics-related data, etc.

2) Normalizing the experimental data. Normalization limits the

preprocessed data to a certain range eliminates the

undesirable effects caused by odd sample data and

performs inverse normalization after the model output

results.

3) Variable selection. The correlation coefficients of the

influencing factors were firstly calculated by using Person

correlation analysis to judge the redundancy degree among

the factors, and then the correlation degree between the

influencing factors and landslide displacement was

calculated by using gray correlation analysis, and the

redundant variables and unrelated variables among them

were eliminated by comprehensive comparison.

FIGURE 2
DELM structure diagram.
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4) Result prediction. The samples are applied in the trained SSA-

DELM model, the predicted values are output, and the

feasibility and accuracy of the results are analyzed and

verified.

5) Evaluation metrics. In this paper, the mean absolute error

(MAE), and the mean square error (RMSE) are taken as the

evaluation indexes of the model and calculated as follows:

XMAE � 1
N

∑N
i�1

∣∣∣∣ŷi − yi

∣∣∣∣ (12)

XRMSE �

������������
1
N

∑N
i�1

∣∣∣∣ŷi − yi

∣∣∣∣2√√
(13)

Where N is the number of samples predicted; yi is the actual

value of displacement; ŷi is the predicted value of displacement.

Numerical calculation and analysis

Introduction of case projects

A cement mine in Fengxiang District is located in Fengxiang

District, Baoji City, Shaanxi Province, China, at latitude

34°32′43″-34°32′54″N and longitude 107°30′26″-107°30′57″E.
The quarry slope is mainly composed of the Devonian

medium-thick laminated hard tuff rock group, with tangential

slope and reverse slope, which is more favorable to the stability of

the slope, with good stability of the slope in general, and not easy

to produce large-scale landslide, collapse and other geological

disasters. On the other hand, the structure of the upper residual

slope and weathered, broken layer is loose, with poor stability,

which is prone to small-scale collapse and landslide geological

disasters under rainfall and vibration.

FIGURE 3
SSA-DELM flow chart.
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FIGURE 4
PCC-GRA-SSA-DELM model prediction flow chart.

FIGURE 5
Mine location diagram and monitoring point layout chart.
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When the mine started to be mined, the relevant

management department continuously monitored the slope

deformation, mainly including GNSS surface displacement,

stress meter, pore water pressure meter, etc. The location map

of GNSS surface displacement monitoring points is shown in

Figure 5, which includes two base stations (JZ01 and JZ02)

and 14 observation stations. This paper selects three

monitoring points CZ14, CZ11 and CZ09 in base station

JZ02 located in the west section of the mine. These three

monitoring points are located at the slope’s top, middle and

foot in the west section of the mine, representing the

deformation characteristics and trends of the front, middle

and back of the slope.

The stability of rock slope is influenced by a variety of

factors, which are mainly divided into four categories:

engineering geology, geometric conditions, hydro-

meteorology, and applied loads (as shown in Figure 6).

Among them, rainfall is one of the critical factors affecting

landslide deformation, and the changes in accumulated

displacement of landslides and single-day precipitation

during the monitoring period are shown in Figure 7.

Temperature is one of the main factors affecting the

mechanical properties of rocks (Li et al., 2022), and

Weathering is the effect of changing the physical properties

and chemical composition of rocks under atmospheric

conditions. When other factors work together to a certain

extent, it is very easy to cause slope instability, such as

landslides, cave-ins, and other geological disasters, and

rainfall, atmospheric radiation, temperature, and

temperature difference are the main reasons affecting the

weathering of rock slope. By geological survey of the mine

site as well as its surrounding geology and literature query, the

mine is divided into two segments, the left side of the western

FIGURE 6
Diagram of influence factors of slope and landslide displacement.

FIGURE 7
The changes of accumulated displacement of landslide and
single-day precipitation during the monitoring period.
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section is close to the Heng Shui River, and there is a tributary

inflow, the size of the runoff from the Heng Shui River also

affects the height of the groundwater level in the mine area, the

rise and fall of the groundwater level cause the slope

geotechnical body to produce deformation, slippage,

collapse instability and other adverse geological

FIGURE 8
Correlation coefficient of three monitoring points influence factor (A) CZ09, (B) CZ11, (C) CZ14.
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phenomena, the groundwater level monitoring is mainly by

means of pore water pressure sensors and stress gauges.

Considering the above and the lag of some environmental

impact factors on rock slope, the factors selected in this paper

are daily rainfall (mm), accumulated rainfall (mm), daily

average temperature (°C), daily temperature difference (°C),

stress (Kpa), pore water pressure (Kpa), runoff (km), wind

speed (m/s), among which the data of six factors such as

rainfall, temperature, runoff and wind speed come from the

meteorological monitoring station in Fengxiang District, Baoji

City, Shaanxi Province. The stress and pore water pressure

data comes from the measurement data of mine monitoring

points.

Influencing factors selection

Pearson correlation analysis was performed on the eight

influencing factors, and their correlation coefficients were

calculated (Figure 8). Taking the correlation analysis of

impact factors of the monitoring point CZ11 as an example,

The correlation coefficients between cumulative rainfall and pore

water pressure, temperature and stress were 0.815, -884 and

0.658, respectively, while the correlation coefficients between

runoff and pore water pressure were, 0.680 and between

temperature and stress were -0.764, respectively. It shows a

very high degree of correlation with a close relationship. In

summarizing, all eight influence factors have a certain

correlation with each other, which proves that there is

redundancy among the data, and if the prediction is directly

fused, the prediction performance of the prediction model will be

affected to some extent. Therefore, this section calculated the

correlation between each influence factor and landslide

displacement using gray correlation analysis combined with

the actual data from the experiment. The main influence

factors were derived as the input variables of the prediction

model (as shown in Table 2).

Taking monitoring point CZ11 as an example for analysis,

combining Pearson correlation analysis and gray relational

analysis for variable selection. Among the eight influencing

factors, the top three correlations with landslide cumulative

displacement are cumulative rainfall, stress, and pore water

pressure, which are 0.973, 0.957, and 0.926, respectively.

However, the correlation coefficients of cumulative rainfall

and pore water pressure and stress are relatively large and

strongly correlated. The two indicators of pore water pressure

and stress are excluded, and the remaining six influencing factors

are selected as input variables. Similarly, In monitoring points

CZ09 and CZ14, the gray correlation between cumulative

displacement and influence factors is greater for cumulative

rainfall, stress, and temperature difference. However, since the

correlation coefficients between cumulative rainfall and stress

and temperature are higher, the two variables of stress and

temperature are excluded, and the remaining six variables are

retained as input variables.

Landslide displacement prediction

In the present study, the actual monitoring data of the

Fengxiang cement mine from 25 August 2021, to

30 November 2021, are used as the experimental data, and

there are 98 sets of valid data in total. As the slope has

different responses to external influences at different locations,

three sensors at different locations of the same slope will be

selected for this experiment. The surface displacement data from

TABLE 2 The correlation between the influence factors of the three monitoring points and the displacement.

Monitoring
points

Cumulative
rainfall

Runoff
volume

Porewater
pressure

Stress Temperature Wind
power

Temperature
difference

Daily
rainfall

CZ09 0.971 0.889 0.911 0.917 0.856 0.907 0.918 0.831

CZ11 0.973 0.894 0.926 0.957 0.864 0.914 0.923 0.832

CZ14 0.958 0.886 0.912 0.922 0.861 0.909 0.921 0.829

TABLE 3 Error analysis table of 3 monitoring points.

Predictive model CZ09 CZ11 CZ14

MAE RMSE MAE RMSE MAE RMSE

PCC-GRA-SSA-DELM 1.3 1.75 1.06 1.44 1.19 1.68
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each sensor will be predicted, the first 70 sets of data from

each sensor will be selected as the training sample set, and

the last 28 monitoring data will be used as the prediction

sample set.

The parameters of the SSA-DELM method were set as follows:

the population size of sparrows was 100; the proportion of

discoverers was 0.7, and the proportion of vigilantes was 0.2; the

hidden layer of the DELMmodel was set to 4 layers, the number of

nodes in each implicit layer was set to 10, and themaximumnumber

of iterations was 100; the excitation function was selected as sigmoid,

and the excitation function was able to achieve nonlinear

transformation in the feature space, and the SSA algorithm to

optimize the implied layers and input thresholds of DELM. The

convergence speed is shown in Figure 9, and it can be seen that the

SSA-DELM model converges within 100 iterations, and the fitness

values can all be maintained at about 1.2 × 10−3, indicating that the

model converges quickly and has high prediction accuracy. The

influence factors screened in the above section are used as input

parameters and the accumulated displacement as output

parameters.

As shown in Table 3, the displacement prediction errors

at three different locations are relatively small by using the

PCC-GRA-SSA-DELM prediction model, among which, the

smallest RMSE and MAE is monitoring point CZ11 with

RMSE of 1.44. From the plots (b) and (c) in Figure 10, it can

be seen that the predicted displacement trends of monitoring

point CZ11 and monitoring point CZ14 are the same as the

actual displacement trends. Basically, the larger errors are in

the first five groups of the test set. Besides, their actual values

of them are lager than the predicted values. Accidental loads

or human activities during the mining can cause this

phenomenon. Monitoring point CZ09 has the largest

RMSE and MAE, and the points with larger errors are

basically located in the second half of the test set, which is

attributed to the fact that monitoring point CZ09 is located at

the foot of the slope, and the accidental displacements

FIGURE 9
Data convergence speed graph for different measurement points, (A) CZ09, (B) CZ11, (C) CZ14.

FIGURE 10
Comparison of predicted and actual values of three monitoring points, (A) CZ09, (B) CZ11, (C) CZ14.
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generated by mining activities and vehicle transportation will

affect the accuracy of displacement prediction. In conclusion,

the overall effect of the PCC-GRA-SSA-DELM prediction

model is excellent and can be applied to the actual landslide

displacement prediction.

Comparison verification

In order to verify the supremacy of the proposed model in

this paper, a support vector machine (SVM), extreme

learning machine (ELM), deep extreme learning machine

(DELM), and SSA-DElM were built in Matlab to conduct

comparison experiments with this paper’s model PCC-GRA-

SSA-DELM (referred to as PGSD in the table) respectively.

The prediction results of three different location sensors are

shown in Table 4, among which the robustness of the ELM

model is lowest.

The comparison experiments use MAE and RMSE as

evaluation indicators, where the smaller the two values are,

the better their prediction. Among them, ELM has the lowest

prediction accuracy compared with the other two derived

algorithms, DELM and SSA-DELM. DELM has more ELM-

AEs than ELM, which increases the stability and merit-

seeking ability of the model. However, during the ELM-AE

training process, the input layer weights and thresholds are

randomly generated orthogonal random matrices in the

DELM model. The ELM-AE unsupervised training process

uses least squares to update the parameters. Only the output

layer weights parameters are updated, while the input layer

weights and thresholds are fixed. That means the prediction

accuracy of DELM is affected by the random input weights

and random thresholds of each ELM-AE. But the SSA can

solve this problem. Therefore, SSA-DELM has the highest

prediction accuracy. The PGSD model proposed in this paper

reduces the dimensionality of input variables, removes

strongly correlated variables, enhances of the relationship

between input and output variables, avoids overfitting, and

improves the overall model prediction accuracy. Compared

to SSA-DELM, the results showed the accuracy by the PGSD

model increased by 2.86, 60.8, and 51.59% at three different

measurement points, respectively.

Conclusion

The present work combined variable selection and sparrow

search algorithm-deep extreme learning machine algorithm to

predict landslide displacement. The results were validated using

monitoring data for a cement mine in Baoji City. The main

findings of the study are summarized as follows:

1) The advantage of the variable selection is that it can remove

redundancy between multi-variables and eliminate

multicollinearity problems. The Pearson correlation

analysis method identified the correlation coefficients

between each variable. The magnitude of the correlation

coefficients can be used to identify the redundancy between

the variables. By combining with gray correlation analysis,

the correlation between each input variable and the

displacement can be calculated to eliminate the

redundant variables and improve the accuracy of the

prediction model.

2) The paper selected the locations of monitoring points at

different locations of the same mine slope for the study.

As a result, the correlation coefficients between landslide

displacements and impact factors are different for different

monitoring points, and the redundant and redundant

variables to be eliminated are also different.

3) The PCC-GRA-SSA-DELM prediction model has a high

predictive effect, and the overall effectiveness of fitting on

three different monitoring points is strong, which can meet

the demands of practical mine monitoring and early

warning.

4) Compared with ELM, DELM and SVM traditional prediction

algorithms, the PCC-GRA-SSA-DELM prediction model

proposed in the research has higher prediction accuracy

and prediction efficiency in rock slope landslide

displacement prediction. Therefore, it is more suitable for

the prediction of rock slope displacement.

TABLE 4 Comparison of errors of different prediction models.

Predictive model CZ09 CZ11 CZ14

MAE RMSE MAE RMSE MAE RMSE

PGSD 1.3 1.75 1.06 1.44 1.19 1.68

SSA-DELM 1.57 1.80 3.26 3.68 2.95 3.47

ELM 7.25 11.33 7.21 8.65 6.94 9.28

SVM 12.25 15.3 8.46 9.55 2.98 4.19

DELM 7.26 7.86 5.98 6.43 5.47 6.24
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In sum, the PCC-GRA-SSA-DELM fusion model proposed

in this paper enriches the literature on the reliability of rock slope

landslide monitoring and warning. The current research also has

limits because the errors in original data caused by arbitrary

factors, such as mining work, and human activities, are not

considered. Therefore, future works can further focus on

predicting periodic and trend term displacement by using the

signal decomposition method to further enhance accuracy and

reliability.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

SJ provided the ideas and framework for this study, including

the methods and theories in the paper; HL, conducted the

experiments and wrote this paper; ML, CL, and SZ, performed

the preliminary reading of the first draft and gave critical comments;

JL, assisted in the data processing and data analysis of this paper; PL,

provided the test site and raw data, including the geographic location

map of the mine, sensor data, etc. for this paper.

Funding

This work was supported by the research project of National

Natural Science Foundation of China: Disaster identification and

early warning of complex slope in open pit mine based on data

knowledge hybrid drive (52104146); And the research project of

Shaanxi Natural Science Foundation: Research on driverless

vehicle road collaborative intelligent control system in open

pit mine integrating 5G Technology (2021JQ-509); And

Shaanxi Social Science Foundation: Research on

intelligent comprehensive perception and disaster emergency

decision-making of National Central Cities Based on big data

(2020R005).

Conflict of interest

Author SJ was employed by the company Xi’an U-MINE

Intelligent Mining Research Institute Co Ltd, Author ML was

employed by the company Sinosteel Mining Development Co

Ltd, and Author PL was employed by the company Jidong

Cement Tongchuan Ltd.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenvs.2022.

982069/full#supplementary-material

References

Atzeni, C., Barla, M., Pieraccini, M., and Antolini, F (2015). Early warning
monitoring of natural and engineered slopes with ground-based synthetic-aperture
radar. Rock Mech. Rock Eng. 48, 235–246. doi:10.1007/s00603-014-0554-4

Chen, J., Zhu, C., Du, J. S., Pu, Y. Y., Pan, P. Z., Bai, J. B., et al. (2022). A
quantitative pre-warning for coal burst hazard in a deep coal mine based on the
spatio-temporal forecast of microseismic events. Process Saf. Environ. Prot. 159,
110. doi:10.1016/j.psep.2022.01.082

Du, Y., Li, H., Chicas, S. D., and Huo, L. C. (2022). Progress and perspectives of
geotechnical anchor bolts on slope engineering in China. Front. Environ. Sci. 10.
doi:10.3389/fenvs.2022.928064

Du, Y., Xie, M., and Jia, J. (2020). Stepped settlement: A possible mechanism for
translational landslides. Catena 187, 104365. doi:10.1016/j.catena.2019.104365

Du, Y., Xie, M. W., Jiang, Y. J., Liu, W. N., Liu, R. C., and Liu, Q. Q. (2019).
Research progress on dynamic monitoring index for early warning of rock collapse
[J]. Chin. J. Eng. 41 (04), 427–435. doi:10.13374/j.issn2095-9389.2019.04.002

Duan, G. H., Niu, R. Q., Peng, L., and Fu, Jie. (2017). A landslide displacement
prediction research based on optimizationparameter ARIMA model under the

inducing factors[J]. Geomatics Inf. Sci. Wuhan Univ. 42 (04), 531–536. doi:10.
13203/j.whugis20140913

Guo, Y. K., Zhang, S. A., Wang, J. J., Zhang, Q., and Xie, X. F. (2022). Feature variable
selection combinedwith SVM for hyperspectral inversion of cultivated soilHg content[J].
Eng. Surv. Mapp. 31 (01), 17–23. doi:10.19349/j.cnki.issn1006-7949.2022.01.003

Jiang, S., Li, J. Y., Zhang, S., Gu, Q. H., Lu, C. W., and Liu, H. S. (2022). Landslide risk
predictionbyusingGBRTalgorithm:Applicationof artificial intelligence indisaster prevention
of energy mining. Process Saf. Environ. Prot. 166, 386. doi:10.1016/j.psep.2022.08.043

Jin, X. Z., Liu, Y., Yu, J., Wang, J. F., and Qie, Y. J. (2021). Prediction of outlet
SO2 concentration based on variable selection and EMD-LSTM network[J]. Proc.
CSEE 41 (24), 8475–8484. doi:10.13334/j.0258-8013.pcsee.202589

Li, B., Zhou, K., Ye, J., and Sha, P. (2019). Application of a probabilistic method
based on neutrosophic number in rock slope stability assessment. Appl. Sci. (Basel).
9, 2309. doi:10.3390/app9112309

Li, H. W., Zhao, S. B., and Li, Z. (2021). Design and implementation of landslide
early warning system based on multi-source monitoring data[J]. Sci-Tech Dev.
Enterp. 2021 (12), 38–40. doi:10.3969/j.issn.1674-0688.2021.12.014

Frontiers in Environmental Science frontiersin.org14

Jiang et al. 10.3389/fenvs.2022.982069

https://www.frontiersin.org/articles/10.3389/fenvs.2022.982069/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.982069/full#supplementary-material
https://doi.org/10.1007/s00603-014-0554-4
https://doi.org/10.1016/j.psep.2022.01.082
https://doi.org/10.3389/fenvs.2022.928064
https://doi.org/10.1016/j.catena.2019.104365
https://doi.org/10.13374/j.issn2095-9389.2019.04.002
https://doi.org/10.13203/j.whugis20140913
https://doi.org/10.13203/j.whugis20140913
https://doi.org/10.19349/j.cnki.issn1006-7949.2022.01.003
https://doi.org/10.1016/j.psep.2022.08.043
https://doi.org/10.13334/j.0258-8013.pcsee.202589
https://doi.org/10.3390/app9112309
https://doi.org/10.3969/j.issn.1674-0688.2021.12.014
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.982069


Li, P. X. (2021). Application of mutual information in feature selection algorithm
[J]. Int. Core J. Eng. 7 (12), 0082. doi:10.6919/ICJE.202112_7(12).0082)

Li, X. S., Li, Q. H., Hu, Y. J., Chen, Q. S., Peng, J., Xie, Y. L., et al. (2021). Study on
three-dimensional dynamic stability of open-pit high slope under blasting vibration
[J]. Lithosphere 2021, 6426550. doi:10.2113/2022/6426550

Li, X. S., Peng, J., Xie, Y. L., Li, Q. H., Zhou, T., Wang, J. W., et al. (2022). Influence of
high-temperature treatment on strength and failure behaviors of a quartz-rich sandstone
under true triaxial condition [J]. Lithosphere 2022, 3086647. doi:10.2113/2022/3086647

Lian, X. G., Li, Z. J., Yuan, H. Y., Hu, H. F., Cai, Y. H., and Liu, X. Y. (2020).
Determination of the stability of high-steep slopes by global navigation satellite
system (GNSS) real-time monitoring in long wall mining. Appl. Sci. 10 (6), 1952.
doi:10.3390/app10061952

Lin, X., Liu, Z. S., Gao, Y., and Wu, B. Y. (2019). Analysis of main controlling
factors of oil production based on machine learning[J]. China CIO News 2019(12),
94–97+99. doi:10.3969/j.issn.1001-2362.2019.12.044

Liu, G., Ye, L. X., Chen, Q. Y., Chen, G. S., and Fan, M. Y. (2022). Abnormal event
detection of city slope monitoring data based on multi-sensor information fusion
[J]. Bull. Geol. Sci. Technol. 41 (02), 13–25. doi:10.19509/j.cnki.dzkq.2022.0060

Liu, W. Y., Men, D. Y., Liang, J. F., andWang, W. Z. (2012). Monthly load forecasting
based on gray relational degree and least squares support vector machine[J]. Power Syst.
Technol. 36 (08), 228–232. doi:10.13335/j.1000-3673.pst.2012.08.036

Liu, Y., Xu, C., Huang, B., Ren, X. W., Liu, C. Q., Hu, B. D., et al. (2020). Landslide
displacement prediction based on multi-source data fusion and sensitivity states.
Eng. Geol. 271, 105608. doi:10.1016/j.enggeo.2020.105608

Liu, Z. B., Shao, J. F., Xu, W. Y., Chen, H. J., and Zhang, Y. (2014). An extreme
learning machine approach for slope stability evaluation and prediction. Nat.
Hazards (Dordr). 73 (2), 787–804. doi:10.1007/s11069-014-1106-7

Liu, Z. X., Han, K. W., Yang, S., and Liu, Y. X. (2020). Fractal evolution
mechanism of rock fracture in undersea metal mining. J. Cent. South Univ. 27,
1320–1333. doi:10.1007/s11771-020-4369-z

Ma, K., Tang, C. A., Liang, Z. Z., Zhuang, D. Y., and Zhang, Q. B. (2017). Stability
analysis and reinforcement evaluation of high-steep rock slope by microseismic
monitoring. Eng. Geol. 218, 22–38. doi:10.1016/j.enggeo.2016.12.020

Meng, Q. X., Wang, J., Tao, Z. G., Ren, D. Z., Zhang, G. C., Li, X. S., et al. (2021)
3D nonlinear analysis of stilling basin in complex fractured dam foundation,
Lithosphere 2021. 2738130. doi:10.2113/2022/2738130

Pang, J. (2019). Application of automatic monitoring system in high-risk slope
monitoring project[J]. Surv. World 2019, 70–73. doi:10.3969/j.issn.1673-7563.2019.02.019

Peng, M., Li, X. Y., Li, D. Q., Jiang, S. H., and Zhang, L. M. (2014). Slope safety
evaluation by integrating multi-source monitoring information. Struct. Saf. 49,
65–74. doi:10.1016/j.strusafe.2013.08.007

Pieraccini, M., Luzi, G., Mecatti, D., Noferini, L., and Atzeni, C. (2006). Ground-
based SAR for short and long termmonitoring of unstable slopes. IEEE 2006, 92–95.
doi:10.1109/EURAD.2006.280281

Qin, H. N., Ma, H., N., and Yu, Z. X. (2020). Analysis method of landslide early
warning and prediction supported by ground-based SAR technology[J]. Geomatics
Inf. Sci. Wuhan Univer-sity 45 (11), 1697–1706. doi:10.13203/j.whugis20200268

Sakellariou, M. G., and Ferentinou, M. D. (2005). A study of slope stability
prediction using neural networks. Geotech. Geol. Eng. (Dordr). 23, 419–445. doi:10.
1007/s10706-004-8680-5

Salvoni, M., and Dight, P. M. (2016). Rock damage assessment in a large unstable
slope frommicroseismic monitoring -MMGCentury mine (Queensland, Australia)
case study. Eng. Geol. 210, 45–56. doi:10.1016/j.enggeo.2016.06.002

Šegina, E., Peterne, l. T., Urbančič, T., Realini, E., Zupan, M., Jez, J., et al. (2020).
Monitoring surface displacement of a deep-seated landslide by a low-cost and near
real-time GNSS system. Remote Sens. 12 (20), 3375. doi:10.3390/rs12203375

Sulandri, S., Basuki, A., and Bachtiar, F. A. (2021). Metode deteksi intrusi
menggunakan algoritme extreme learning machine dengan correlation-based
feature selection. J. Teknol. Inf. Dan. Ilmu Kompute 8 (1), 103–110. doi:10.
25126/jtiik.0813358

Tuerxun, M., Zhao, M. J., Ning, C. B., and Kong, Q. H. (2021). Prediction of diesel
engine exhuast emissions based on deep extreme learning machine[J]. Sci. Technol.
Eng. 21 (36), 15646–15654. doi:10.3969/j.issn.1671-1815.2021.36.046

Wang, L., Xu, H., Shu, B., and Tian, Y. Q. (2021). A multi-source heterogeneous
data fusion method for landslide monitoring with mutual information and IPSO-
lstm neural network[J].Geomatics Inf. Sci. Wuhan Univ. 46 (10), 1478–1488. doi:10.
13203/j.whugis20210131

Wang, R. B., Zhang, K., Qi, J., Xu, W. Y., Long, Y., and Huang, H. F. (2022). A
prediction model of hydrodynamic landslide evolution process based on deep
learning supported by monitoring big data. Front. Earth Sci. (Lausanne). 10, 15.
doi:10.3389/feart.2022.829221

Wang, Z. W., Wang, L., Huang, G. W., Han, Q. Q., Xu, F., and Yue, C. (2020).
Research on multi-source heterogeneous data fusion algorithm of landslide
monitoring based on BP neural network [J]. J. Geomechanics 26, 575–582.
doi:10.12090/j.issn.1006-6616.2020.26.04.050

Xu, B., Huang, Q. S., and Qian, Y. D. (2022). Stability trends of Jinpingzi landslide:
Numerical study. Front. Earth Sci. 1465, 940438. doi:10.3389/feart.2022.940438

Xu, N. W., Li, B., Dai, F., Fang, Y. L., and Xu, J. (2016). Stability analysis of
bedding rock slopes during excavation based on microseismic monitoring[J]. Chin.
J. Rock Mech. Eng. 35 (10), 2089–2097. doi:10.13722/j.cnki.jrme.2015.0747

Xue, J., and Shen, B. (2020). A novel swarm intelligence optimization approach:
Sparrow search algorithm. Syst. Sci. Control Eng. 8 (1), 22–34. doi:10.1080/
21642583.2019.1708830

Yan, Y., Xiong, G. L., Zhou, J. J., Wang, R. H., Huang, R. H., Yang, M. W., et al.
(2022). A whole process risk management system for the monitoring and early
warning of slope hazards affecting gas and oil pipelines. Front. Earth Sci.
(Lausanne). 9, 1336. doi:10.3389/feart.2021.812527

Yi, T., Han, X., Weitao, Y., Wenbing, G., Erhu, B., Tingye, Q., et al. (2022). Study
on the overburden failure law of high-intensity mining in gully areas with exposed
bedrock. Front. Earth Sci. 10, 833384. doi:10.3389/feart.2022.833384

Zeng, L., Lei, S. M., Wang, S. S., and Chang, Y. F. (2021). Ultra-short-term wind
power prediction based on OVMD-SSA-DELM-GMmodel[J]. Power Syst. Technol.
45 (12), 4701–4712. doi:10.13335/j.1000-3673.pst.2021.0552

Zhang, L. F., Chen, Z. H., Zhou, T. B., Nian, G., Q., Wang, J., M., and Zhou, Z., H.
(2020). Multi-source information fusion and stablity prediction of slope based on
gradient boosting decision tree[J]. J. China Coal Soc. 45 (S1), 173–180. doi:10.
13225/j.cnki.jccs.2020.0137

Zhang, Y. G., Tang, J., Cheng, Y. M., Huang, L., Guo, F., Yin, X. J., et al. (2022).
Prediction of landslide displacement with dynamic features using intelligent
approaches. Int. J. Min. Sci. Technol. 32, 539–549. doi:10.1016/j.ijmst.2022.02.004

Zhang, Y. H., Wang, Li., Shu, B., Haibo, H., and Long, L. (2020). “Application of
an adaptive weighted estimation fusion algorithm in landslide deformation
monitoring data processing,” in IOP Conference Series:Earth and
Environmental Science, Changchun, China, 21-23 August 2020.

Zhao, M. H., Liu, J. Y., Zhao, H., and Hou, J. C. (2022). Stability analysis of rock
slopes based on MSDP criterion[J]. Chin. J. Rock Mech. Eng. 41 (01), 10–18. doi:10.
13722/j.cnki.jrme.2021.0362

Frontiers in Environmental Science frontiersin.org15

Jiang et al. 10.3389/fenvs.2022.982069

https://doi.org/10.6919/ICJE.202112_7(12).0082
https://doi.org/10.2113/2022/6426550
https://doi.org/10.2113/2022/3086647
https://doi.org/10.3390/app10061952
https://doi.org/10.3969/j.issn.1001-2362.2019.12.044
https://doi.org/10.19509/j.cnki.dzkq.2022.0060
https://doi.org/10.13335/j.1000-3673.pst.2012.08.036
https://doi.org/10.1016/j.enggeo.2020.105608
https://doi.org/10.1007/s11069-014-1106-7
https://doi.org/10.1007/s11771-020-4369-z
https://doi.org/10.1016/j.enggeo.2016.12.020
https://doi.org/10.2113/2022/2738130
https://doi.org/10.3969/j.issn.1673-7563.2019.02.019
https://doi.org/10.1016/j.strusafe.2013.08.007
https://doi.org/10.1109/EURAD.2006.280281
https://doi.org/10.13203/j.whugis20200268
https://doi.org/10.1007/s10706-004-8680-5
https://doi.org/10.1007/s10706-004-8680-5
https://doi.org/10.1016/j.enggeo.2016.06.002
https://doi.org/10.3390/rs12203375
https://doi.org/10.25126/jtiik.0813358
https://doi.org/10.25126/jtiik.0813358
https://doi.org/10.3969/j.issn.1671-1815.2021.36.046
https://doi.org/10.13203/j.whugis20210131
https://doi.org/10.13203/j.whugis20210131
https://doi.org/10.3389/feart.2022.829221
https://doi.org/10.12090/j.issn.1006-6616.2020.26.04.050
https://doi.org/10.3389/feart.2022.940438
https://doi.org/10.13722/j.cnki.jrme.2015.0747
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.3389/feart.2021.812527
https://doi.org/10.3389/feart.2022.833384
https://doi.org/10.13335/j.1000-3673.pst.2021.0552
https://doi.org/10.13225/j.cnki.jccs.2020.0137
https://doi.org/10.13225/j.cnki.jccs.2020.0137
https://doi.org/10.1016/j.ijmst.2022.02.004
https://doi.org/10.13722/j.cnki.jrme.2021.0362
https://doi.org/10.13722/j.cnki.jrme.2021.0362
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.982069

	Rock slope displacement prediction based on multi-source information fusion and SSA-DELM model
	Introduction
	Principles of algorithms
	Pearson correlation analysis
	Gray relational analysis
	Sparrow search algorithm
	Deep Extreme Learning Machine
	Establishment of SSA-DELM predict model

	Landslide displacement modeling based on PCC-GRA-SSA-DELM
	Numerical calculation and analysis
	Introduction of case projects
	Influencing factors selection
	Landslide displacement prediction
	Comparison verification

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


