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Urban land-use scene classification from high-resolution remote-sensing imagery

at high quality and accuracy is of paramount interest for urban planning,

government policy-making and urban change detection. In recent years, urban

land-use classification has become an ongoing task in areas addressable primarily

by remote sensing, and numerous deep learning algorithms have achieved high

performance on this task. However, both dataset and methodology problems still

exist in the current approaches. Previous studies have relied on limited data

sources, resulting in saturated classification results, and they have difficulty

achieving comprehensive classification results. The previous methods based on

convolutional neural networks (CNNs) focused primarily on model architecture

rather than on the hyperparameters. Therefore, to achieve more accurate

classification results, in this study, we constructed a new large dataset for urban

land-use scene classification. More than thirty thousand remote sensing scene

images were collected to create a dataset with balanced class samples that

includes both higher intra-class variations and smaller inter-class dissimilarities

than do the previously available public datasets. Then, we analysed two possible

strategies for exploiting the capabilities of three existing popular CNNs on our

datasets: full training and fine tuning. For each strategy, three types of learning rate

decay were applied: fixed, exponential and polynomial. The experimental results

indicate that fine tuning tends to be the best-performing strategy, and using

ResNet-V1-50 and polynomial learning rate decay achieves the best results for the

urban land-use scene classification task.
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1 Introduction

Urban land-use classification provides information important in urban planning,

government policy-making and monitoring of urbanization. Recent developments in

computers and remote sensing technology have made substantial progress, resulting in

readily available high-quality and high-resolution remote sensing image data that can
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function as critical sources for land-use classification (Zhang and

Zhu, 2011; Qi et al., 2015; Song et al., 2017; Tong et al., 2018).

Generally, land-use classification can be divided into single land-

cover, category-based, or single object-based classification

schemes (Palsson et al., 2012; Ursani et al., 2012; Santos et al.,

2013) as well as land-use scene-based classification (Yang and

Newsam, 2010). Although scene classification is a more

complicated task than classification schemes based on

individual categories or objects, it has the advantages of being

able to differentiate given land-use scene images into predefined

semantically meaningful categories and providing advanced

interpretations of remote sensing images. To realize the above

advantages, scholars have focused on land-use scene based

classification, which is of primary interest in remote-sensing

applications such as land resource management, urban

development and planning, Earth observation and nature

conservation (Yang and Newsam, 2010; Othman et al., 2016;

Marmanis et al., 2016; Zhao W. et al., 2017). However, land-use

scene categories are, to a large extent, affected by human and

social activities. A given land-use scene often covers multiple

land-cover classes or ground objects (Zhao L. J. et al., 2017) that

carry much potentially useful information. Furthermore, manual

classification is not practical and applicable in most cases because

people have difficulties in describing the detailed features and

providing effective and efficient classifications. Land-use scene

classification, especially automated classification, is still a

challenge in high-resolution remote sensing images (Weng

et al., 2017).

Extensive efforts have beenmade to develop automated land-

use classification methods. Initially, most research works

developed visual feature descriptors based on pixels or objects

to extract low-level local image features such as colour

histograms (Swain and Ballard, 1991), texture descriptors

(Haralick et al., 1973; Jain et al., 1997; Ojala et al., 2000), the

GIST descriptor (Oliva and Torralba, 2001), scale-invariant

feature transform (SIFT) (Lowe, 2004) and the histogram of

oriented gradients (HOG) (Dalal, 2005). Although the above

low-level visual feature descriptors have achieved good scene

classification performance to some degree, they capture only a

single type of feature, such as colour, texture, shape, spatial or

spectral information, and no single feature can represent the

complete content of an entire scene containing multiple features.

To effectively represent the semantic information of complex

high-resolution remote sensing scenes (HRSS), many researchers

have developed high-order statistical patterns by coding low-

level local feature descriptors to capture scene semantics; these

are called mid-level features (Shao et al., 2013; Zhao et al., 2013;

Negrel et al., 2014; Zhao et al., 2014; Weng et al., 2018). For

example, the Bag of Visual Words (BoVW) was the state-of-the-

art for many years in computer vision (Yang and Newsam, 2010).

More recently, a number of improved feature descriptors have

also been proposed, including Fisher vector coding (Perronnin

et al., 2010), spatial pyramid matching (SPM) (Lazebnik et al.,

2006), probabilistic latent semantic analysis (pLSA) (Bosch and

Zisserman, 2006), which are typical feature descriptors.

Undeniably, mid-level feature descriptors have improved land-

use classification performance because they consider multiple

features. Nevertheless, scene classification generally considers

multiple features of multiple objects. Meanwhile, the

resolution improvements in HRSS also capture factors such as

noise, light and clouds, which interfere with the image quality

and result in a large number of abnormal spectral values. For

situations such as “the same thing with different spectra” and

“foreign matter sharing the same spectrum”, mid-level feature

descriptors still have some deficiencies when used to classify

complex land-use scenes.

Recently, deep learning methods have surpassed the

abovementioned methods and gained a powerful ability to

learn feature representations from images automatically. Deep

learning methods provide computational models composed of

multiple processing layers that learn data representations at

multiple levels of abstraction (Lecun et al., 2015). Thus, deep

learning methods can extract both more abstract and more

discriminative features, and they are highly suitable for land-

use scene classification problems because one scene class may

cover multiple land-cover classes or ground objects. Because deep

learning methods can extract high-level features, they can solve

the problems of “the same thing with different spectra” and “the

foreign matter sharing the same spectrum”. Therefore, this article

adopts deep learning technology to classify land use. The

convolutional neural networks (CNNs) are a type popular

deep learning model that can learn robust and more

discriminative features (LeCun et al., 2010). A CNN is an

effective new artificial neural network method that integrates

deep learning technology. The weights in convolutional neural

networks are trained by a backpropagation (BP) algorithm.

Recently, CNNs have been applied to remote sensing image

classification and achieved good results (Scott et al., 2017;

Cheng et al., 2018a; Cheng et al., 2018b; Weng et al., 2018;

Zhou et al., 2019).

Deep learning methods usually require a large number of

annotated training samples. To overcome the lack of massive

labelled remote sensing image datasets, researchers use two

techniques in conjunction with CNNs: data augmentation and

transfer learning with fine tuning. Data augmentation is

conducted to generate additional and more diversified data

samples by performing certain transformations on the original

data (Yu et al., 2017). Researchers have introduced many data

augmentation methods to expand the limited amount of raw data

and achieve improved performance on scene classification tasks

(Perez and Wang, 2017; Scott et al., 2017; Yu et al., 2017).

Transfer learning is conducted to extract the knowledge from

one or more source tasks and then apply the learned knowledge

to a target task (Pan and Yang, 2010). For remote sensing land-

use classification, researchers train the networks on a natural

image dataset (usually the ImageNet challenge dataset) and then
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fine-tune the pre-trained networks on a remote sensing image

dataset. This approach can avoid overfitting problems, reduce

model convergence time and achieve better performances

(Penatti et al., 2015; Hu et al., 2016; Marmanis et al., 2016).

However, most studies have focused on existing public datasets,

and their results are already saturated, making further research

using the same source material useless. In addition, the existing

studies typically use older convolutional neural networks. Newer

convolutional neural networks have been greatly improved

regarding efficiency and accuracy but have not yet been

utilized for urban land-use scene classification tasks.

Moreover, the choices of convolutional neural network

parameter values have considerable effects on the results, but

have rarely been considered.

Given the above, the objectives of this research are ternary.

First, methodologically, in this study, we construct a new large-

scale remote sensing scene image dataset by collecting sample

images from WorldView. This dataset is, to our knowledge, the

largest available of its type. Moreover, the images have balanced

class samples, providing the research community with a more

useful resource for evaluating and advancing the state-of-the-art

algorithms for aerial image analysis. Second, empirically, we

evaluate a set of representative remote sensing scene image

classification approaches under various experimental protocols

on our new dataset. The results can serve as baselines for future

works. Finally—and practically—this article has identified the

CNN models that achieve state-of-the-art performances and are

applicable to engineering applications.

The remainder of this article is organized as follows: Section 2

describes the construction of the original and training datasets.

Section 3 describes the proposed framework and method. Section

4 presents the experiments and an analysis of the results. We

conclude this research and propose future work directions in

Section 5.

2 Datasets and data augmentation

To deliver highly accurate classification results, CNNs require

sufficiently large datasets annotated with appropriate labels (Yu et al.,

2017). Some publicly available high-resolution remote sensing image

datasets exist, such as the UCMerced Land Use dataset (UCM), the

WHU-RS19 dataset, the RSSCN7 dataset and the Aerial Image

Dataset (AID). UCM, which is available from the United States

Geological Survey (USGS) National Map, is a popular dataset (Yang

and Newsam, 2010) that is widely used in academia. (Penatti et al.,

2015; Nogueira et al., 2016; Scott et al., 2017; Cheng et al., 2018c). The

WHU-RS19 dataset (Xia et al., 2010) is also popular and was

collected from Google Earth. Compared with the UCM, WHU-

RS is more complicated; it contains greater variations in illumination,

scale, resolution, viewpoint and viewpoint-dependent appearance in

some categories. The RSSCN7 dataset is also collected from Google

Earth; it contains 2,800 aerial scene images labelled into 7 typical

scene categories. The last dataset is AID (Xia et al., 2016), which is a

large-scale dataset for aerial scene classification. It contains

10,000 annotated aerial images with a fixed resolution of 600 ×

600 pixels arranged in 30 classes. The number of samples per class

varies considerably, from 220 to 420. Because the samples are

multisource and contain various pixel resolutions, this dataset is

challenging for scene classification. These datasets have been widely

used for remote sensing image scene classification tasks (Marmanis

et al., 2016; Nogueira et al., 2016; Scott et al., 2017;Weng et al., 2018).

Detailed information for the datasets is listed in Table 1.

Despite the many publicly available remote sensing datasets,

each dataset has its particular advantages and some drawbacks

still exist, including low intra-class variations and large inter-

class dissimilarities. With the exception of AID, all the datasets

have single data sources. However, due to different imaging

conditions during acquisition, such as the altitude and

direction of the sensor, different weather conditions or

illumination, scenes may appear in different orientations,

directions, sizes and so on. Single data sources tend to cause

smaller changes within classes. In actual remote sensing image

classification situations, the differences between different scenes

are generally small, and the existing datasets do not reflect the

differences between classes, which is not in line with the actual

image classification situation. In addition to the data source,

there are two more problems with existing datasets. The first

problem is imbalanced samples. The AID dataset has relatively

high intra-class variations and small inter-class dissimilarities;

however, it contains imbalanced class samples, which potentially

have severe negative impacts on the overall scene classification

performances by CNNs (Hensman and Masko, 2015). The

second problem is that the existing datasets have small scales.

The total number of images and the number of images per class

are relatively small; these datasets are not comparable to the

much larger traditional image datasets such as CIFAR-10

(Torralba et al., 2008), MNIST (Lecun, 1998) and ImageNet

(Krizhevsky et al., 2012), as shown in Table 2.

In view of the above disadvantages, in this study, we constructed

a new remote sensing scene image dataset for land-use classification.

The samples are collected from remote sensing images acquired in

different years. The dataset includes scene classes with small inter-

class dissimilarities, such as farm land and green land; thus, it has

higher intra-class variations and smaller inter-class dissimilarities

than do the previously existing datasets. To address imbalance and

small-sample problems, data augmentation was applied to

increase both the number of classes among underrepresented

images and the total number of samples, as illustrated by the

flowchart in Figure 1.

The study area is the Guangming New District, Shenzhen,

Guangdong Province China, as shown in Figure 2. Shenzhen is

located in the southern coastal area of Guangdong province, and it is

an important special economic zone inChina. Due to its geographical

advantages and level of support by relevant national policies and

departments, Shenzhen has become an influential international
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metropolis in China. The New District is located in the northwest of

Shenzhen and was founded in August 2007. Its development zones

and administrative system are different than those of the third

development zone because they were more recently instituted.

Additionally, the New District’s surface area includes more diverse

land cover types, including water, agricultural land, urban buildings,

vegetation, bare land and new city street communities. During the

urban development process, the land cover types of new areas in

Guangming are prone to frequent changes.

The original image dataset contains a large set of satellite images

collected for land law enforcement and supervision (Li et al., 2011;

Zhao J. et al., 2017). Land law enforcement and supervision is an

approach for which the government uses satellite remote sensing

technology to monitor land use over a certain period of time to

determine the legality of land use (Wang and Wang, 2010). The

image database used in this article contains satellite remote sensing

image data of various batches since the law enforcement work began

in 2008. All the images have high spatial resolution, and since 2010,

all the images have a spatial resolution of 0.5 m. After researching all

batches of images, WorldView three-band image data were selected

with a resolution of 0.5 m acquired between the years of 2013 and

2016, as shown in Table 3.

Each CNN input image has specific resolution requirements;

most models use inputs of 224 × 224 pixels. Therefore, 224 ×

224 images were cropped from the original images to use as

training samples. For surface cover classification, the 2005 Chinese

CH/T 1012–2005 land cover map of digital products was referenced

based on geographic information; this is a standard surface-coverage

level classification for cultivated land, forest land, garden land,

grassland, water area, built up area, unused land and wetland. Due

to the integration of the bright new district in the city and countryside,

consisting of city land, garden land, grassland and wetland, we

combined the classes woodland, garden, grassland and wetland

into a single green land class and divided the built up area class

into two classes: buildings and roads. Golf course and tennis court

classes were also added to match the ground features in the images.

Consequently, our training samples are divided into eight categories:

bare ground, buildings, farmland, green land, roads, water, golf course

and tennis court, as shown in Figure 3.

According to Hensman andMasko ( 2015), imbalanced training

samples will directly affect the final training effect of the model.

When samples are selected, the areas covered by different features are

not necessarily identical. Therefore, after extracting samples from the

image, the data should be enhanced to ensure that the features of

types with small sample sizes are well represented. The sample set can

be augmented using processes such as rotation, translation and

cropping. As shown in the figure, random data enhancement was

performed on the sample data using nine enhancement methods:

rotations by 30°, 90°, 180° and 270°, mirroring, brightness, contrast,

scaling and mirrored 90° rotation. After the enhancements, the

number of samples reached 4,000 for each class. We used 70% of

samples (i.e., 22,400 samples) as the training dataset and the

remaining 30% (i.e., 9,600 samples) as the verification dataset. It

is worth noting that the data augmentation operations, including

flips, translations and rotations, do not change the essential features

of remote sensing imagery, such as the scene topologies and spectral

characteristics, that are essential for consistent scene classification (Yu

et al., 2017).

Notably, because the images were acquired by the same

remote sensing satellite at different times, the samples were

collected in multiple phases. Thus, after data augmentation,

not only was the sample size of the dataset increased but also

the samples’ holistic spatial layouts and orientations were

diversified subject to topological preservation, the intra-class

variations were enhanced and overfitting was avoided.

Compared with open datasets, our dataset is larger and

includes higher intra-class variations, smaller inter-class

dissimilarities and balanced class samples.

3 Framework of the proposed
method

The flowchart of the model proposed in this study is

illustrated in Figure 4. The purpose of our study was to

determine the architecture with the best performance for

TABLE 1 The mainstream public remote sensing image datasets.

Datasets Classes per class Resolution Size Source

UCM dataset 21 100 256 × 256 2,100 Aerial scene images

WHU-RS19 19 50 600 × 600 950 Google Earth

RSSCN7 7 400 400 × 400 2,800 Google Earth

AID 30 220–420 600 × 600 10,000 Multisource

TABLE 2 Traditional image datasets.

Datasets Classes per class Resolution Size

CIFAR-10 10 6,000 32 × 32 60,000

MNIST 10 7,000 28 × 28 70,000

ImageNet 1,000 1,300 range 13,000,000

Frontiers in Environmental Science frontiersin.org04

Qiu et al. 10.3389/fenvs.2022.981486

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.981486


the Guangming New District imagery. This study used three

steps to obtain the model. 1) Via data sampling and data

augmentation, a large dataset was constructed with higher

intra-class variations and smaller inter-class dissimilarities

and separated it into training and validation sub-datasets; 2)

Three convolutional neural networks were trained

(Inception-V3, ResNet and Inception-ResNet) using the

constructed datasets via two strategies and compared three

different learning rates under iterative backpropagation based

on the loss calculated in a softmax layer. 3) The results were

analysed and compared to obtain the optimal deep learning

model.

FIGURE 1
The dataset construction process.
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3.1 Strategies for exploiting ConvNets

3.1.1 Fully trained networks
The strategy to train the networks from scratch (the initial

network parameters were random) is the first to be thought. We

were able to use this approach because the constructed dataset is

sufficiently large to allow the CNNs to converge. There are two main

advantages to using a fully trained network: 1) the extractors can be

tuned specifically for the dataset, which results in generating more

accurate features, and 2) we gain full control of the network

(Nogueira et al., 2016). However, fully training a network can

easily lead to overfitting, and convergence cannot be confirmed.

Therefore, the networks must be fine-tuned to improve the outcome.

3.1.2 Fine-tuned network
When a new dataset is reasonably large—but not large

enough to fully train a new network—overfitting and a lack of

convergence can occur, as presented above. Fine-tuning is a good

option for extracting maximum effectiveness from pre-trained

CNNs (trained on large image datasets such as ImageNet), and

the workflow of the fine-tuned network is illustrated in Figure 5.

There are two options for fine-tuning networks that fit our

conditions. The first involves replacing only the last layer of

the pretrained network with a softmax layer related to our

problem. Because the final softmax layer of a network

pretrained on ImageNet includes 1,000 classes, we changed it

to eight classes to reflect our classification task. Then, the entire

network was trained on our constructed datasets using cross-

validation to improve network training. Cross-validation is a

recommended method when the training dataset is similar to the

dataset on which the network was pretrained and has a lack of

samples. Then, after replacing the last layer, fine-tuning was

conducted with only some high-level layers of the network and

the weights of the first few layers were fixed. Because the first few

layers contain low-level features such as shapes, colours, textures,

etc., we want to preserve them. This approach is recommended

when the training dataset is dissimilar to the pretrained dataset

and lacks samples. After this test, for the remainder of this paper,

we adopted the first approach because our dataset is similar to

ImageNet.

FIGURE 2
The study area map.

TABLE 3 Experimental image sample metadata.

Number Satellite Time Resolution (m) Number of
bands

Spectrum Coordinate system

000000 WorldView-2 2013–4 0.5 3 450–690 Local

000001 WorldView-2 2014–4 0.5 3 450–690 Local

000002 WorldView-2 2015–4 0.5 3 450–690 Local

000003 WorldView-2 2016–4 0.5 3 450–690 Local
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3.2 CNNs

CNNs consist of a number of convolutional and pooling

layers and a fully connected layer (FCL) that functions as the

classifier. AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and

Zisserman, 2014), GoogleNet (Inception-V1) (Szegedy et al.,

2015), Inception-V3 (Szegedy et al., 2016), ResNet (He et al.,

2016) and Inception-ResNet (Szegedy et al., 2017) are famous

CNN architectures that have recently established themselves as

the best-performing methods for computer vision tasks.

3.2.1 Inception-V3
Inception-V3 is a modified version of Inception-V1

(GoogLeNet). In researching and developing convolutional

neural networks, scholars hope that increasing the depth (or

width) of the network will obtain higher precision; however, this

approach can encounter problems: 1) when there are too many

parameters and insufficient training data, an overfitting situation

will appear; 2) when the network is too complicated, the number

of calculations becomes too large, making it difficult to apply; and

3) when the gradient gradually disappears in deeper networks,

increasing the difficulty of further optimizing the network. Based

on these problems, the Google brain team designed the Inception

model, which attempts to introduce sparsity and replace fully

connected layers with sparse ones, even within the convolutions

(Szegedy et al., 2015). The Inception model draws on the idea of a

“network in network” (Lin et al., 2014) and uses different

convolution kernel sizes to obtain receptive fields of different

sizes and finally extract multi-scale features. Inception-V1

reduced the number of network parameters, allowing the

FIGURE 3
Example images for each class.
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FIGURE 4
Flowchart of the model.

FIGURE 5
Workflow diagram of the fine-tuned network.
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network to be deeper and wider, and this architecture won the

ILSVRC-2014 competition (Russakovsky et al., 2015).

Inception-V3 introduced the idea of factorization into

smaller convolutions (Szegedy et al., 2016) by splitting large

two-dimensional convolutions into two smaller one-dimensional

convolutions. On one hand, this approach saves many

parameters, accelerates the calculation and reduces overfitting.

On the other hand, it adds an extended nonlinear layer that

improves model expressivity, thereby further enhancing its

classification effect.

3.2.2 ResNet
The residual neural network (ResNet) (He et al., 2016) won

the championship at the 2015 ILSVRC classification

competition. This network reached 152 layers. As the

network deepens, a gradient degradation problem will occur;

that is, the accuracy first rises, then it reaches saturation.

Finally, as the depth continues to increase, a decrease in

accuracy occurs. This is not an overfitting problem because

the error increases on both the training and test sets. He

designed the ResNet structure to solve this problem by using

a “shortcut connection” connection. Assuming that the input of

a certain neural network is x, the expected output is h(x). If we

directly pass x to the output as the initial result, then the goal we

need to learn at this moment is f(x) = h(x)-x, This concept

forms the residual units of ResNet, as shown in Figure 6—that

is, the learning goal of ResNet becomes the difference between

the output and the input h(x)-x: in other words, the residual.

ResNet solves the gradient degradation problem caused by

deepening a network, achieves extremely high precision and

has a wide range of applications in classification, segmentation

and recognition tasks.

3.2.3 Inception-ResNet-V2
Inception-ResNet-V2 combined the network structures of

ResNet and Inception to further enhance the accuracy of image

classification.

3.3 Learning rate

Gradient descent is a parameter optimization algorithm

widely used to minimize the error of deep convolutional

neural network models. The gradient is reduced over multiple

iterations by minimizing a cost function at each step to estimate

the model parameters. The cost function is

ωj � ωj − λzF(ωj)/zωj (1)

where ωj is the model’s parameter (loss), zF(ωj)/zωj isωj’s first

derivative, λ is the learning rate.

To improve the performance of the gradient descent method,

it is necessary to set an appropriate learning rate. When the

learning rate is too small, the network loss will be very slow, and

when the learning rate is too large, the parameter updates will be

very large. These problems cause the network to either converge

to a local minimum or the loss directly begins to increase, as

shown in Figure 7.

The learning rate selection strategy changes constantly

during the network training process. Initially, the parameters

are relatively random; therefore, a relatively large learning rate is

appropriate to cause the loss to fall faster. However, after training

for a while, the parameter updates should have smaller

amplitudes; therefore, the learning rate is generally attenuated.

The attenuation method is generally fixed, exponential, or

polynomial. The corresponding formula is as follows, where

FIGURE 6
ResNet structure.

FIGURE 7
The influence of learning rate decay type on loss value.
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base_lr is the initial learning rate, R is a real constant, iter is the

current number of iterations and max_iter is the maximum

number of iterations.

(1) Fixed : LR(t) � base lr

(2) Exponential : LR(t) � base lr × Riter

(3) Polynomial : LR(t) � base lr × (1 − iter/max iter)R.

4 Experiments and analysis

In this study, we utilized TensorFlow (Abadi, 2016) as our

deep learning framework. TensorFlow is a fully open-source

framework that supports clear and easy deep architecture

implementations. TensorFlow was originally developed by

researchers and engineers at the Google Brain Group (part of

the Google Machine Intelligence Research Institute) for machine

learning and deep neural network research, but the system’s

versatility makes it highly suitable for other calculation fields.

Three famous deep convolutional neural network models

were selected that have the best performances on traditional

image classification tasks (Inception-V3, ResNet-V1-50 and

Inception-ResNet-V2) and two strategies were applied to

better exploit these existing CNNs: 1) fully training a network

from scratch and 2) fine-tuned CNNs.

4.1 Experimental protocol

In our experiment, the datasets are divided randomly into

two non-overlapping sets: 70% of the samples with 2,800 images

per class were adopted as training sets, and 30% of the samples

with 1,200 images per class were used as validation sets. The

original image sizes were 224 × 224; thus, before using them as

training input for the classification stage, all the images were

resized to 299 × 299 for the Inception-V3 and Inception-ResNet-

V2 models to comply with the standardized input dimensions of

these CNN models, which were initially determined by their

authors. When fine-tuning, we use the CNN models pre-trained

on the ILSVRC 2012 dataset (Russakovsky et al., 2015). When

fine-tuning or fully training a network, we preserve the original

authors’ parameters: the initial learning rate is set to 0.01 and is

then varied between fixed, exponential decay and polynomial

decay. In the experiments, the batch size (the number of images

processed by CNN simultaneously) is set to 32, and the number

of iterations is 105,000 (200 epochs).

To compare the classification quantitatively, we compute

commonly used measures including the loss function, overall

accuracy (OA) and confusion matrix. The loss function reflects

the proximity of the predicted images to the real images. Cross

entropy is a loss function widely used in classification problems

that describes the distance between two probability distributions.

The smaller the cross entropy is, the closer the two images are.

OA is defined as the number of correctly predicted images

divided by the total number of predicted images. The

confusion matrix summarizes the machine learning

classification model predicted results and the ground truth of

a dataset in the form of a matrix in accordance with the category

classification model. In the confusion matrix, each column

represents a predicted class, and each row represents the

ground truth. The value in each column indicates the real

data forecasts for the number of classes. Thus, each item xij in

the matrix computes the proportion of images that were

predicted to be the ith type but truly belong to the jth type.

The confusion matrix has the following purposes: 1) it can be

used to observe the performance of the model in each category

and to observe the accuracy and recall rate of the model

corresponding to each category; 2) it can be used to observe

which categories are difficult to distinguish (for example, how

many of category A are classified into category B), to provide

targeted design features and to make the categories more

distinguishable. All the experiments were performed on

computer equipped with a 64-bit Intel i7-6700K CPU @

4.0 GHz, 32 GB of RAM, and a GeForce GTX1070 GPU with

4 GB of memory, running under CUDA version 8.0. The

operating system was Ubuntu 16.04 LTS.

4.2 Experimental Results

In this section, we compare the performances of the two

different strategies to exploit the existing ConvNets: full training

and fine tuning.

Figure 8 shows a comparison of the strategies in terms of loss

value. These line charts show that the loss values vary with the

epoch. Each chart refers to a training strategy, and the different

lines indicate different learning rate decay types.

From the figure, we can see the convergence in this

experiment. Most of the training is convergent. The following

conclusions were reached. 1) Fine-tuning is faster than full

training. In full training, the loss reaches a low value at

approximately the 16th epoch and starts to level off at the

30th epoch. The fine-tuning approach reached a low value in

the sixth epoch. 2) Fine tuning achieves a smaller loss value than

does full training. In full training, the loss generally exceeds 1,

while in fine-tuning, it generally remains below 1. Moreover, it

usually oscillates slightly (by approximately 0.5). This result

shows that the fine-tuning error is smaller. 3) Comparing the

different CNNs, the fine-tuned ResNet model is optimal, with a

loss below 0.5. 4) Comparing the different learning rates, the

expentional and polynomial decay types are easier to converge.

The effect of the training set reflects only the training data. In this

study, 30% of the samples were used as verification data to verify the

accuracy of the model. Accuracy is the ratio of the correctly classified

samples to the total number of samples for a given validation dataset.

The accuracy of the three models is shown in Figure 9.
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The verification results show that for remote sensing image data,

the initial precision of the trained models is very low; the accuracy

rates of the three types of networks reach only approximately 50%,

indicating that the network convergence is insufficient. After applying

the ImageNet pre-trained model, the three models reach a good

classification accuracy and recall rate, and the accuracy generally

exceeds 70%. Among the models, ResNet-V1-50 has the best training

and verification effect for this image data: when the learning rate was

set to 0.01 and used polynomial decay, its accuracy exceeded 90%.

In addition to OA, confusion matrices were calculated. Figure 10

shows the confusionmatrix when using the best model on the dataset.

The confusion matrix shows that the classification accuracies can

exceed 90% formost scene types. In particular, the buildings, farmland,

water, golf course and tennis court classes reached classification

accuracy rates above 0.94%. The most difficult scene type in our

new dataset was roads, which are easily confused with buildings.

5 Discussion and Conclusion

Improving the accuracy of automatic urban land-use

classification has been an important issue in recent high-

resolution remote sensing literature. Larger, more challenging

datasets are needed, more efficient and more accurate

convolutional neural network frameworks are imperative, and the

relations between a CNNs’ parameters and the classification results

FIGURE 8
Loss values of different training strategies and CNNs.

FIGURE 9
Overall accuracy of different methods.
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should be determined. In this study, we constructed a new large-scale

dataset. To our knowledge, this is the largest dataset currently

available for the scene classification of remote sensing images, and

it has higher intra-class variations and smaller inter-class

dissimilarities than previously available datasets. In addition, we

evaluated two strategies to exploit existing CNNs using different

learning rates on the constructed dataset. The objective was to

understand the best approach that can obtain the greatest benefits

from these state-of-the-art deep learning approaches in situations

and problems that are unsuitable for designing and creating new

CNNs from scratch. We performed experiments to evaluate the

following strategies for exploiting the ConvNets: full training and fine

tuning. The experiments considered three popular and advanced

CNNs: Inception-V3, ResNet-V1-50 and Inception-ResNet-V2. We

used three different learning rate decaymodes: fixed, exponential and

polynomial. The results indicate that fine tuning tends to be the best

strategy across a variety of different situations. Specifically, we

achieved state-of-the-art results with the ResNet-V1-50 model

with a polynomial learning rate decay mode (OA = 90.8%). The

model we proposed is good at classifying bare land, buildings,

farmland, green land and water areas, all of which are useful in

urban remote sensing applications such as urban change detection

and environmental monitoring.

We also believe that our datasets can provide the research

community with a benchmark resource to advance the state-

of-the-art algorithms in urban land-use scene analysis.

Moreover, the model can also be applied to other domains.

However, this study still has some limitations, including the

size and class diversity of the datasets and the comparison of

our dataset to the public datasets. In addition, more

evaluations of the factors affecting the classification effects

of CNNs are needed. At the same time, the method in this

paper did not consider the application scenarios of image

classification of large scale remote sensing images, so it is

necessary to study the remote sensing image classification

methods that take multi-scale features into account. In the

future, we will elaborate and delve into the relevant areas.

First, we plan to publicly release the samples and classes in

our dataset, providing a larger and more challenging urban

remote sensing dataset for researchers. Second, we plan to

compare the existing CNNs using both our dataset and

another public remote sensing dataset. Third, we plan to

evaluate the impact of additional factors on the two strategies

(full training and fine tuning), such as the number of classes

in the dataset, other initialized parameters and the depth of

the CNNs.

FIGURE 10
Confusion matrix obtained by fine-tuning ResNet-V1-50 with a polynomially decayed learning rate.
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