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Seagrass beds are important submerged coastal habitats that support

nearshore communities. Ruppia maritima (widgeon grass) is a

widespread seagrass species that undergoes dramatic changes in

morphology at the onset of reproduction. The goal of this study was to

compare fish assemblages associated with reproductive and non-

reproductive R. maritima, recognizing the morphological change

undergone by the plant when flowering. During the peak reproductive

season in August and September 2021, R. maritima meadows at the

northern extent of the Chandeleur Islands, Louisiana were sampled to

describe the spatial distribution and morphology of reproductive plants

and investigate habitat use by fish assemblages. We assessed spatial trends

in R. maritima presence and occurrence of reproductive plants and

evaluated differences in shoot morphology. We calculated total fish

density, Shannon diversity, and species richness to describe fish

assemblages in reproductive and non-reproductive meadows.

Additionally, general additive models were used to predict drivers of fish

assemblage metrics. Results indicate that R. maritima was distributed along

the entire length of the sampled area, but reproductive plants were only

located in the central, protected portion of the island. Reproductive plants

were more morphologically complex with longer shoots, greater surface

area, and more leaves, but this did not impact fish assemblages. Rather, fish

abundance was related to R. maritima biomass. This study provides

information on patterns and drivers of habitat use by fish in R. maritima-

dominated ecosystems that can be used to inform management and

restoration.
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Introduction

Seagrasses are submerged angiosperms that inhabit marine

environments, and include over 60 species across 13 genera

(Hartog and Kuo, 2006). The majority of seagrass genera

occur at temperate and tropical latitudes in the northern and

southern hemispheres (Hartog and Kuo, 2006), and species’

distributions are determined by taxon-specific light, nutrient,

salinity, temperature, pH, and substrate requirements

(Hemminga and Duarte, 2000; Hartog and Kuo, 2006;

McKenzie et al., 2016). Seagrasses may exhibit changes in

geographical range or localized abundance as a result of

changes in underlying abiotic parameter baselines (Cho et al.,

2009; Fourqurean et al., 2003; Johnson et al., 2003).

Seagrass expansion can occur through asexual or sexual

processes. Clonal propagation (asexual reproduction) through

fragmentation or rhizome extension is considered the primary

mechanism for meadow formation and maintenance (Olesen

et al., 2004); however, seagrasses also have the capacity for sexual

reproduction, with species being either monecious (i.e., both

male and female organs on a single plant; e.g., Ruppia maritima)

or dioecious (i.e., separate male and female plants; e.g., Thalassia

testudinum) (Hartog and Kuo, 2006). Whereas some species

produce seeds that germinate on the shoot (e.g., T. testudinum),

the majority of seagrasses (42 species) produce seeds that can

remain dormant for extended periods of time and create seed

reserves in the sediment that provide a buffer against disturbance

(Darnell et al., 2021); in highly disturbed environments, dormant

seeds can be essential to the recolonization process (Olesen et al.,

2004; Orth et al., 2006).

Seagrass beds support faunal communities that are highly

diverse and productive (Castillo-Rivera et al., 2002) and include

valuable recreationally and commercially fished species (Bertelli

and Unsworth, 2014; Nordlund et al., 2018). Seagrasses provide

shelter from predators for small cryptic species and serve as

productive feeding grounds (Heck et al., 2003; Vaslet et al., 2012;

Nordlund et al., 2018). Animals often rely on seagrass habitats for

particular life stages, most importantly as nursery habitat for

juveniles. McDevitt-Irwin et al. (2016) conducted a meta-analysis

of 51 studies and found that seagrasses tended to support greater

abundances of juveniles with higher survival rates compared to

marsh, reef, mangrove, and other benthic habitats. Juveniles of

many species utilize the abundant food and resources within

seagrasses to achieve faster growth rates prior to moving to more

competitive adult habitats (McDevitt-Irwin et al., 2016).

Many drivers of fish assemblages have been identified and

include local environmental conditions as well as the species and

morphology of the seagrasses present, and at a broader scale,

climate patterns. Distinct fish assemblages among seagrass

species can be linked to differences in plant morphology

(Rotherham and West, 2002; Nakaoka, 2005; Kiggins et al.,

2019). Morphological characteristics (e.g., leaf number and

length and shoot density) create microhabitats that may be

favored by certain species because of the food, shelter, and/or

other ecological benefits provided. Hyndes et al. (1996), for

example, reported that whiting species (Sillaginidae) in

southwestern Australia showed preference for Zostera

spp. Because the less dense canopy allows for easier

movement when compared to the other local seagrasses

Posidonia australis and P. sinuosa. More recently, Belgrad

et al. (2021) reported that abundances of several nekton

species were influenced by both shoot density and canopy

height of turtlegrass (T. testudinum) (Belgrad et al., 2021).

Ruppia maritima is a widely distributed seagrass with a broad

tolerance to environmental conditions that allows it to thrive in

waters ranging from fresh to hypersaline in both the northern

and southern hemispheres from tropical to temperate latitudes

(Orth and Moore, 1988; Reyes and Merino, 1991). Ruppia

maritima is an early successional species that is often the first

species to colonize an area following a disturbance event (Cho

et al., 2009). This is due to high rates of shoot turnover and the

species’ reliance on sexual reproduction that creates a persistent

seed bank buried in the sediment (Kilminster et al., 2015). In

some areas, R. maritima is perennial, whereas in other areas,

plants are predominantly annual (Malea et al., 2004). Ruppia

maritima is monecious, having both male and female

reproductive structures on a single plant, and when

reproductive, the morphology of R. maritima shoots change

dramatically; whereas non-reproductive R. maritima shoots

have several narrow (1–2 mm) leaves ranging from 5 to 20 cm

in length (Kantrud, 1997; Hartog and Kuo, 2006), reproductive

shoots branch extensively and can reach a length of 2.5 m

(Hartog and Kuo, 2006) (Figure 1).

Ruppia maritima plants at temperate latitudes undergo one

annual reproductive cycle, typically in the summer months

(Bigley and Harrison, 1986), while those found in more

tropical regions usually complete two reproductive cycles

(Pulich, 1985; Orth & Moore, 1988). Cho and Poirrier (2005)

reported that R. maritima in Lake Pontchartrain, LA, flowers in

spring (March to May) and again in late summer/early fall

(August to October). The change in plant growth form with

the onset of reproduction increases structural complexity and has

the potential to impact its use as habitat, as the reproductive

shoots may indirectly provide increased opportunities for food

and shelter through the creation of additional microhabitats.

Ruppia maritima is a known habitat for fish, and Kanouse et al.

(2006) reported fish densities ranging from 10 to 102 individuals

per meter square in R. maritima-dominated brackish ponds in

Louisiana. It is critical to understand patterns in the distribution

of reproductive plants as a predictor of the habitat value of R.

maritima, especially in areas experiencing changes in seagrass

distribution and shifts in species composition.

The Chandeleur Islands, LA, United States, a chain of barrier

islands in the northern Gulf of Mexico, represent an area of

shifting seagrass species distribution and composition. The

islands are suffering chronic land loss due to a lack of
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sediment input, hurricane damage, and rising sea levels (Moore

et al., 2014). Additionally, the Deepwater Horizon oil spill in

2010 impacted sediment and vegetation along the islands with

both showing increased levels of total polycyclic aromatic

hydrocarbons, the long-term impacts of which are unknown

(Kenworthy et al., 2017). The back barrier shelf to the west of the

Chandeleur Islands is protected from wave action which allows

for the proliferation of extensive seagrass meadows (Ellinwood,

2008). There are five species of seagrass that grow along the

leeward protected side of the islands: R. maritima, shoal grass

(Halodule wrightii), turtlegrass, manatee grass (Syringodium

filiforme), and star grass (Halophila engelmannii). Ruppia

maritima, shoal grass, and turtlegrass are the three most

abundant species along the islands, with manatee grass and

star grass much less abundant (Kenworthy et al., 2017).

Seagrass meadows at the Chandeleur Islands represent the

only mixed meadows of these five species along 1,000 km of

coastline from Perdido Key, Florida to the Texas Coastal Bend,

United States (Darnell et al., 2017). Seagrass cover has decreased

along the island chain from 15,758 acres in 1969 to only

2,614 acres in 2011 (Pham et al., 2014; Handley and

Lockwood, 2020). The observed decline is linked to a

reduction of shallow protected areas through the combined

processes of changes in island geomorphology and storm-

related land loss (Darnell et al., 2017). For example, in the

aftermath of Hurricane Katrina, the Chandeleur Islands lost

approximately 70% of their land mass and 20% of the

seagrass cover (Bethel and Martinez, 2008). In the wake of

these disturbances, there has also been an observed shift in

seagrass species composition, with increase in cover of R.

maritima and decrease in cover of other species such as

turtlegrass (Kenworthy et al., 2017). Large seed banks and

rapid growth are characteristics that allow R. maritima to

thrive after large disturbances and outcompete other seagrass

species (Poirrier and Handley, 2007; Cho et al., 2009). As

disturbances increase in frequency, as projected with impacts

of climate change (Collins et al., 2019), it is likely that R.

maritima will continue to increase in cover at the Chandeleur

Islands, with unknown impacts to the seagrass-associated

communities.

The goal of this study was to understand the distribution of R.

maritima, describe the morphology of reproductive plants at the

Chandeleur Islands, and quantify the impacts of reproductive

and non-reproductive R. maritima on habitat association by

fishes. Specific objectives are as follows:

Objective 1: Evaluate reproductive R. maritima plant

homogeneity across the Chandeleur Islands.

Objective 2: Compare fish assemblages between reproductive

and non-reproductive R. maritima.

Methods

Study area

The Chandeluer Island chain stretches 72 km, with the

northern end located 35 km south of Biloxi, MS and the

southern end lying in an arch 25 km northeast of Venice, LA

(Poirrier and Handley, 2007). Much of the land mass of the

Chandeleur Islands is in the northern islands, with North

Chandeleur Island being the northernmost and largest island

(Figure 2).

FIGURE 1
Comparison of non-reproductive and reproductive R. maritima shoots (A) reproductive R. maritima and (B) non-reproductive R. maritima.
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Objective 1: Evaluate reproductive R.
maritima plant homogeneity across the
Chandeleur Islands

To describe the distribution and morphology of reproductive

and non-reproductive R. maritima at the Chandeleur Islands,

LA, R. maritima was surveyed across its extent at the islands

during late summer (August/September) 2021. Prior to sampling,

sites with historic presence of reproductive and non-reproductive

R. maritima were identified using seagrass monitoring data

collected in previous years (K. Darnell, unpublished data). A

total of 27 sites were chosen where R. maritima previously

occurred, while ensuring sites were distributed across the

entire area of seagrass occurrence at the Chandeleur Islands.

At each sampling site, a YSI handheld meter (Pro 2030; YSI

Inc.) was used to measure bottom salinity, dissolved oxygen, and

temperature; water depth was measured using a pole marked in

5 cm increments; and light irradiance at the surface and at depth

was measured using two four-π (spherical quantum) sensors and

a data logger (LI-1500, LI-Cor.). Light attenuation coefficients

(kd) were calculated using the following equation:

kd � −[ln(Iz/I0)]/0.58

where Iz is irradiance at depth, I0 is irradiance at the surface, and

0.58 represents the vertical distance (m) between the sensors.

At each site, percent cover of each seagrass species and bare

sediment were quantified in three quadrats (50-cm × 50-cm).

Additionally, the percent cover of reproductive and non-

reproductive R. maritima was quantified. One seagrass core

(9.5-cm diameter × 15-cm depth) was collected within R.

maritima in each quadrat. Quadrats were only sampled at

sites with seagrass present and cores were only collected from

quadrats with seagrass cover. Cores were placed in plastic bags

and transported to the Gulf Coast Research Lab (GCRL),

United States where they were frozen until processing. Five

reproductive and five non-reproductive plants were retained

from the site for image analysis, with care taken to collect all

aboveground (leaf and flower) and belowground (root and

rhizome) tissue for each plant.

Seagrass cores were rinsed over a 500-μm sieve and plants

were separated by species. The number of shoots of each species

was counted, but only R. maritima plants were retained. The

number of shoots, the reproductive status of each shoot, and the

number of branching nodes per plant were recorded. Epiphytes

were removed from leaves by gently scraping both sides of each

leaf with a razor blade; epiphytes were then placed in a drying

oven for 48 h at 60°C before being weighed to obtain a dry weight.

Shoots were classified as reproductive or non-reproductive and

separated. Reproductive shoots were defined as those with

branching leaves and/or the presence of inflorescences. The

aboveground and belowground tissues were separated, and the

aboveground and belowground tissues for each shoot type

(reproductive or non-reproductive) were grouped and placed

in a drying oven for 48 h at 60°C, after which they were weighed

to obtain a dry weight. Dried biomass was used to calculate a

core-level root to shoot ratio (RSR), which is a useful proxy for

FIGURE 2
Map of the northern Gulf of Mexico with the North Chandeleur Island, LA study site bounded by the red box (Google Maps, 2021).
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plant condition and productivity, with higher values indicating

greater biomass and energy in belowground structures

(Hitchcock et al., 2017). Measurements from the 9-cm

diameter core were then extrapolated to obtain bed

characteristics per square meter.

Digital images (600 dpi) were taken of the handpicked plants

using a flatbed scanner (Epson WF-3640). Prior to scanning,

epiphytes were removed from each shoot and the aboveground

and belowground tissues were separated. The aboveground

biomass was scanned to produce a JPEG format image. Total

leaf area was calculated using ImageJ (Version 1.53) with a

threshold processing procedure (Easlon and Bloom, 2014).

Additionally, total shoot length and the number of branching

nodes were calculated from the image. Total leaf surface area,

number of branching nodes, and shoot length were used to

quantify overall plant complexity. Each individual shoot’s

epiphyte, and aboveground and belowground biomass were

dried separately in a drying oven for at least 48 h at 60°C,

after which they were weighed to obtain dry weights. This

information was used to calculate an individual plant RSR.

Sampling sites were mapped using QGIS (version 3.18.1) to

display the spatial distribution of R. maritima along the

Chandeleur Islands. Sites with reproductive R. maritima were

also mapped to show the spatial distribution of reproductive

plants. Each map was then evaluated for qualitative trends such

as spatial clustering. The mean and standard error were

calculated for abiotic parameters across all sites to characterize

the distribution of site conditions across the study area.

Several metrics were selected to compare plant morphology

between reproductive and non-reproductive shoots and included

surface area, shoot length, leaf number, and RSR. Metrics were

compared using unpaired two-sample t-tests (α = 0.05). Prior to

testing each metric, the data were evaluated for violations of the

parametric testing assumptions. If assumptions were violated the

sample was bootstrapped with resampling and the test statistic

calculated. This was repeated for 10,000 permutations and the

reported test statistic was represented by the mean of

bootstrapped test statistic distribution (R version 4.1.3).

Objective 2: Compare fish assemblages
between reproductive and non-
reproductive R. maritima

Fish were sampled at the Chandeleur Islands during a 6-day

period from September 6–11, 2021, at the height of the R. maritima

reproductive season in this area. This sampling time frame captures

the greatest contrast in plant complexity between reproductive and

non-reproductive plants. Fish were sampled using a throw trap at

22 sites along the island/Throw trapping provides a targeted

approach to sampling patchy habitat that is not possible with

other gears such as a benthic sled or trawl which cover larger

areas (Jordan et al., 1997; Camp et al., 2011). The throw trap

consisted of a 1-m × 1-m × 0.6-m high aluminum frame. Nylon

mesh (3.175 mm) was sewn onto the frame sides as well as extended

above the frame and attached to floats to extend the trap height to

1.5 m. Sampling was conducted in R. maritima patches across a

range of reproductive plant coverage. Patches with desired

characteristics (e.g., target cover of reproductive and non-

reproductive plants) were identified from those sampled in the

survey for plant distribution andmorphology andmarkedwith PVC

poles prior to sampling. Sampling depth was limited to <1.5-m due

to the height of the throw trap, and sites were separated by at least

15-m tominimize effects of disturbance. Thirty sites were selected to

span a range of reproductive cover values.

After trap deployment, all vegetation within the throw trap

was removed and retained for processing. A bar seine was used to

remove organisms from within the trap. The bar seine (90-cm

wide × 50-cm high) consisted of a PVC frame with handles and

3.175-mm mesh stretched between the handles. The pattern for

seining organisms was modeled from Shakeri et al. (2020) and

involved three sweeps from each side of the trap, with sweeps

continuing until three consecutive sweeps yielded no additional

fish. Collected fish were placed into plastic bags and stored on ice

until returned to GCRL, where they were frozen until processing.

Seagrass collected from the throw trap was returned to GCRL

and sorted for nekton, then the plant biomass was spun for 90 s

using an industrial-sized salad spinner to remove excess water

and sorted and weighed by species to obtain a species-specific wet

weight (g). Individual seagrass species wet weights were then

combined to get a total wet weight. Finally, a random subset of

reproductive and non-reproductive R. maritima plants (at least

3 reproductive and 3 non-reproductive plants per throw trap

sample) were imaged and dried as described above to quantify

total leaf area and biomass.

Fish were identified to species using taxonomic keys and the

number of individuals of each species was counted. All individuals

were measured for standard length (SL, mm) (except for Dwarf

Seahorses, which were only measured for total length), total length

(TL, mm), and weighed. Fish assemblages were compared across

sites using density, Shannon diversity, and species richness. Density

was calculated as the number of individuals per square meter.

Shannon diversity (H’) was calculated using standard methods

(Freeman et al., 1984), and species richness was calculated as the

number of unique species.

General Additive Models (GAM) were formulated to evaluate

drivers of fish assemblage metrics (Shannon diversity, species

richness, and density) with three potential predictor variables:

water depth (cm), biomass of vegetation recovered from throw

trap (g), and the proportion of reproductive R. maritima in the

throw trap. Prior to running the GAMs, the predictor variables were

plotted against each other to identify any significant relationships.

Biomass of vegetation recovered from throw trap and the

proportion of reproductive R. maritima in the throw trap were

found to co-vary with a positive relationship. AIC scores were

compared between models with biomass of vegetation recovered
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from throw trap and the proportion of reproductiveR.maritima in

the throw trap, and the final GAM formulations only included

biomass of vegetation recovered from throw trap and depth as

predictor variables. Poisson distributions were used to model

species richness and density, while a Gaussian distribution was

used for modeling Shannon diversity.

Results

Objective 1: Evaluate reproductive R.
maritima plant homogeneity across the
Chandeleur Islands

Across the 27 sites sampled between August 5 and

3 September 2021, mean (±SE) depth was 97.2 ± 7.60 cm,

mean salinity was 18.97 ± 0.67 ppt, mean temperature was

30.8 ± 0.44°C, mean dissolved oxygen was 7.82 ± 0.52 mg/L,

and mean light attenuation coefficient was 1.08 ± 0.06 m−1.

Abiotic parameters were within the known ranges for seagrass

meadows at the Chandeleur Islands (Darnell et al., 2017; Hayes,

2021).

FIGURE 3
Presence of reproductive R. maritima at the Chandeleur
Islands, LA during August and September 2021. White symbols
indicate sampling stations with reproductive R. maritima present,
while red symbols indicate stations where only non-
reproductive R. maritima was present. Black symbols indicate
stations where R. maritima was completely absent.

TABLE 1 Mean (±SE) morphological metrics for individual
reproductive and non-reproductive hand-collected R. maritima
plants. Values with “*” indicate that the value is significantly greater
(p < 0.05) than the compared value.

Plant metric Reproductive Non-reproductive

Shoot Length (mm) 229.37 ± 8.83 * 150.72 ± 7.04

Total Surface Area (mm2) 1,507.92 ± 126.06* 310.36 ± 21.65

Root-Shoot Ratio 0.192 ± 0.025 1.033 ± 0.078 *

Leaf Number 25.04 ± 1.84 * 3.125 ± 0.09

FIGURE 4
Sites sampled for fish assemblages within R. maritima during
September 2021. Each white circle represents a general sampling
area, with the number inside thewhite circle indicating the number
of samples taken in that area.
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Of the sites sampled, 24 (88.9%) had R. maritima present,

and 17 of the sites (63.0%) had reproductive plants (Figure 3).

Among 72 quadrats sampled across the 27 sites, mean (±SE)

percent cover of non-reproductive R. maritima was 44.5 ±

3.5%, mean percent cover of reproductive R. maritima 21.5 ±

3.2%, and mean canopy height was 216.8 ± 6.3 mm. Sites with

reproductive plants were primarily located near the latitudinal

center of the islands, with sites near the northern and southern

limits of the islands dominated by non-reproductive plants

(Figure 3).

A total of 65 cores were collected across the sites with R.

maritima present. Mean (±SE) overall shoot density was 3,866.71

± 293.01 shoots per m2, mean non-reproductive R. maritima

shoot density was 3,449.39 ± 268.69 shoots per m2, mean

reproductive R. maritima shoot density was 804.15 ± 174.32

shoots per m2, and mean core RSR was 1.097 ± 0.111. Within the

cores, the density of non-reproductive shoots was more than four

times greater than the density of reproductive shoots (t = 8.2589,

p < 0.05). Out of the 65 cores, only 19 cores had measurable

epiphyte cover (0.068 ± 0.041 g for all cores combined). Mean

epiphyte biomass for cores with only non-reproductive shoots

(n = 10) was 0.098 ± 0.075 g and epiphyte biomass for cores

containing both non-reproductive and reproductive shoots (n =

9) was 0.035 ± 0.026 g.

A total of 74 reproductive and 112 non-reproductive plants were

hand-collected to assess differences in plant morphology.

Reproductive plants had significantly longer leaves (t = 7.054,

p < 0.05), greater total surface area (t = 11.509, p < 0.05), and a

greater number of leaves (t = 15.005, p < 0.05), while non-

reproductive plants had a higher RSR (t = 10.440, p < 0.05),

indicating a larger contribution of belowground biomass (Table 1).

Objective 2: Compare fish assemblages
between reproductive and non-
reproductive R. maritima

A total of 22 sites were sampled to investigate habitat use by

fishes. Sites were predominant located near the center of the island

chain where most reproductive R. maritima plants were observed

(Figure 4). Mean (±SE) depth was 71.6 ± 2.8 cm, salinity was 19.46 ±

0.37 ppt, temperature was 28.81 ± 8.64°C, and dissolved oxygen was

8.15 ± 0.02 mg/L. Mean (±SE) total percent cover of seagrass was

69.1 ± 2.9%, percent cover of non-reproductive R. maritima was

38.9 ± 5.2%, percent cover of reproductive R. maritima was 30.2 ±

4.3% and totalR.maritimawet biomass was 371.58 ± 27.61 g perm2.

Across all sites, a total of 224 individual fish were collected

across 15 species. Mean (±SE) fish density was 10.2 ± 1.7 per m2,

FIGURE 5
Fish density per meter square plotted against the proportion of R. maritima cover that was reproductive. Triangles indicate sites that were
majority non reproductive cover while circles are those with majority reproductive cover.
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species richness was 3.4 ± 0.2, and Shannon diversity was 0.97 ±

0.07. Fish density showed no relationship with the proportion of

reproductive R. maritima (Figure 5). The five most abundant

species accounted for 86.6% of all individuals collected and

included Darter Goby (n = 107), Blackcheek Tonguefish (n =

33), Gulf Pipefish (n = 23), Rough Silverside (n = 20), and Code

Goby (n = 11). Mean weights, total lengths, and standard lengths

for all species are listed in Table 2.

Three GAMs were formulated to identify potential drivers of

the fish assemblage metrics of density, species richness, and

Shannon diversity. The first model with total number of fish

as the response variable identified the wet biomass R. maritima of

vegetation recovered from throw trap (χ2 = 4.506, p < 0.05) as the

only significant predictor variable with a positive relationship

(Table 3A), and the second and third models identified no

significant predictor variables for species richness and

Shannon diversity (Tables 3B, C).

Discussion

This study described the spatial distribution of reproductive

R. maritima across the Chandeleur Islands and compared

seagrass-associated fish assemblages between reproductive and

non-reproductive plants. We conducted extensive seagrass

surveys along the length of the Chandeleur Islands and used

throw trapping to describe habitat associations by fish, and found

that reproductive and non-reproductive plants displayed distinct

morphologies, but the morphology of reproductive plants did not

significantly impact species richness or Shannon diversity. The

more robust measurement of total wet biomass of R. maritima

recovered from the throw trap, however, was related to fish

density, with more fish associated with greater plant biomass.

Ruppia maritma occurred along the entire distribution of

seagrass at North Chandeleur Island. Given the robustness of R.

maritima to environmental stress, the absence of the species at only

TABLE 2 Count and mean (±SE) morphological metrics for fish collected, NA values indicate data not collected or not applicable for metric.

Common name Scientific name Count Standard length
(mm)

Total length
(mm)

Individual wet
weight (g)

Darter Goby Ctenogobius boleosoma 107 24.05 ± 0.66 30.81 ± 0.76 0.29 ± 0.02

Blackcheek Tonguefish Symphurus plagiusa 33 32.21 ± 1.5 34.03 ± 1 0.38 ± 0.03

Gulf Pipefish Syngnathus scovelli 23 62.3 ± 4.4 64.96 ± 4.59 0.25 ± 0.05

Rough Silverside Membras martinica 20 46.7 ± 0.93 57.5 ± 1.21 1.43 ± 0.1

Code Goby Gobiosoma robustum 11 23.45 ± 1.48 28.64 ± 1.81 0.33 ± 0.05

Pinfish Lagodon rhomboides 7 72.29 ± 8.59 90.71 ± 11.49 14.3 ± 3.35

Chain Pipefish Syngnathus louisianae 6 70 ± 7.45 73 ± 7.93 0.30 ± 0.11

Scaled Sardine Harengula jaguana 5 47.4 ± 1.17 59.6 ± 1.29 2.26 ± 0.19

Speckled Seatrout Cynoscion nebulosus 4 38.75 ± 4.64 47.75 ± 6.02 1.14 ± 0.33

Atlantic Threadfin Opisthonema oglinum 2 46.5 ± 3.5 56 ± 4 1.79 ± 0.31

Dwarf Seahorse Hippocampus zosterae 2 NA 18.5 ± 0.5 0.03 ± 0.02

Bay Anchovy Anchoa mitchilli 1 30 37 0.27

Freckled Blenny Hypsoblennius ionthas 1 25 28 0.12

Gulf Killifish Fundulus grandis 1 19 24 0.14

Silver Perch Bairdiella chrysoura 1 70 86 7.29

TABLE 3 General additive model outputs for models with dependent variables A) fish density, B) species richness, and C) Shannon diversity. Values
with “*” indicate a significant relationship (p < 0.05) with the predictor variable.

Variable EDF χ2 p

A) Depth (cm) 1 1.88 0.161

Wet biomass (g) of R. maritima recovered from throw trap 1 6.992 0.008*

B) Depth (cm) 1 0.021 0.885

Wet biomass (g) of R. maritima recovered from throw trap 1 0.287 0.592

C) Depth (cm) 1 0.008 0.931

Wet biomass (g) of R. maritima recovered from throw trap 1.227 0.117 0.759
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three of the sampled sites is likely linked to localized physical

disturbance (e.g., wave action). The only other species present at

the stations sampled was turtlegrass (Thalassia testudinum).

Turtlegrass is a climax species that requires relatively stable

environmental conditions and low levels of physical disturbance

(Hartog and Kuo, 2006). Turtlegrass occurred in centralized

portions of North Chandeleur Island that likely represent areas

with relatively more stable environmental and physical conditions

than the northern and southern tips of the island.

Similar to turtlegrass, reproductive R. maritima plants were

primarily restricted to the center of the island’s back shelf. The

complex reproductive shoots have reduced structural tissue and

rely on support from the surrounding water (Kantrud, 1997),

making them susceptible to physical disturbances such as wave

action. The central portion of the island represents an area with

increased sheltering from wind driven wave action that

dominates the system (Moore et al., 2014). The most northern

and southern portions of the islands are characterized by reduced

island elevation and more exposed shallow waters (Kahn, 1986;

Miselis and Plant, 2021). It is possible that R. maritima is

reproductive at the northern and southern tips of North

Chandeleur island, but that shoots cannot sustain the physical

disturbance and are dislodged, suggesting that the environmental

requirements for sexually reproductive R. maritima are stricter

than those of non-reproductive plants (de los Santos et al., 2016;

Koch et al., 2006).

Core samples showed distinct differences between

reproductive and non-reproductive shoot densities, with about

one fourth of the shoots being reproductive. The production of

flowers, fruits, and seeds is energetically costly, and as a result, the

number of plants undergoing reproduction varies across space

and time, which can lead to not all plants undergoing sexual

reproduction (e.g., Bigley and Harrison, 1986; Strazisar et al.,

2015; von Staats et al., 2021).

R. maritima exhibits morphological plasticity across its

range in distribution (Cho et al., 2009; Lopez-Calderon et al.,

2010; Ito et al., 2013; Martínez-Garrido et al., 2017), and the

current study represents the first known description of R.

maritima reproductive shoot morphology at the Chandeleur

Islands. Results from this study of increased surface area,

aboveground biomass and leaf number for reproductive

shoots relative to non-reproductive shoots are consistent

with descriptions for the species (Bigley and Harrison,

1986; Cho and Poirrier, 2005). In this study, the mean

shoot length for reproductive shoots was 229.37 mm, which

is much shorter than the maximum described shoot length of

2.5 m (Hartog and Kuo, 2006). The observed difference may

be genetic, linked to environmental drivers such as salinity,

and/or the presence of physical disturbances that limit

the length of the fragile reproductive stems (Richardson,

1983). While plasticity in reproductive output for R.

maritima is not well understood, studies of other species

report increased reproductive effort for plants in more

physically disturbed environments (Lee et al., 2005; Mishra

and Apte, 2020). Epiphyte cover on seagrasses at the

Chandeleur Islands can be high (Hayes 2021); however,

among the cores collected for this study, less than one

third (29.2%) showed measurable levels of epiphyte cover.

This may be due to the sloughing off of older leaves and/or

rapid growth of plants with the onset of reproductive

plants which may not provide sufficient time for epiphytes

to colonize to a measurable amount.

This study describes potential drivers of habitat use by fish

in reproductive and non-reproductive R. maritima and

suggests that total plant biomass rather than plant

morphology most influences fish density in R. maritima

meadows, despite the distinct morphological differences

between reproductive and non-reproductive plants. These

results indicate that the increase in biomass that occurs at

the onset of reproduction is largely driving the relationship

between fish density and proportion of R. maritima cover that

was reproductive (Figure 5). Similar relationships have been

described for nekton communities of R. maritima in brackish

ponds in Louisiana (Kanouse et al., 2006), but our findings are

contrary to studies with other seagrass species (e.g., Halophila

ovalis, Halophila beccarii, Amphibolis griffithii, Posidonia

sinuosa, Posidonia australis, Zostera capricorni) where

interspecific differences in plant morphology/complexity

have variable impacts on fish assemblages (Rotherham and

West, 2002; Hyndes et al., 2003; Hori et al., 2009). GAMs for

species richness and Shannon diversity showed that no

predictor variables significantly affected richness or

diversity, further suggesting that influence of the

morphology of the reproductive plants is marginal when

compared to the overall influence of seagrass presence for

shaping the fish community. This conclusion aligns with

previous studies investigating relationships between

seagrass presence and biomass and animal abundance,

diversity, and richness (Wyda et al., 2002; Heck et al.,

2003; Strayer et al., 2003).

The lack of significant predictors among GAMs for species

richness and Shannon diversity implies that other predictors

are driving the relationships. One possible driver may be prey

availability, which is linked to the function of seagrass as

foraging grounds (K. Heck et al., 2003; Heck et al., 1997).

Invertebrates were collected during the present study but were

found to be outside the size range of those consumed by the

fishes collected. Future studies designed to collect infauna and

smaller invertebrates could help elucidate the relationship

between prey availability and habitat use. Additionally,

other environmental drivers such as salinity (Matheson

et al., 1999), turbidity (Blaber and Blaber, 1980) and the

availability of dissolved nutrients (Deegan et al., 2002) may

impact the distribution of fishes within seagrass habitats due

to physiological requirements of individual species. Although

salinity was measured in the present study, there was little
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variation in the measured values which limited power in

analyses.

The fish collected within R. maritima meadows in this

study were predominately small benthic species with

individuals under 100-mm total length. The majority of

individuals were adults of their respective species, with

notable exceptions being spotted seatrout (Cynoscion

nebulosus) and pinfish (Lagodon rhomboides) which were

primarily young-of-year individuals (FishBase, 2022). The

family Gobiidae made up the majority (52.7%) of all

species collected. Gobiidae are benthic-associated fish and

are known to live within seagrass meadows during all life

stages where they feed on meiofaunal prey and use the

structure provided by seagrasses as shelter from predators

(Carle and Hastings, 1982; Ara et al., 2010). Although adult

pinfish are known to be abundant in seagrass beds at the

Chandeleur Islands (e.g., Hayes 2021), they were collected in

low numbers during this study. This may be due to the life

history characteristics of the species, where adults leave

seagrass beds between May and October to spawn (Faletti

et al., 2019), which could have led to a decrease in abundance

within seagrass beds at the time of this study (September).

Interestingly, the fish collected in this study included no tropical

species. Recent studies have reported the occurrence of tropical

fishes in Chandeleur Islands seagrass meadows, indicating

tropicalization, or a northward movement species to this area

(Fodrie et al., 2010; Hayes, 2021). The previous studies collected

relatively low abundances of tropical species (e.g., Lane Snapper

(Lutjanus synagris) 0.056 per m2 and Gag Grouper (Mycteroperca

microlepis) 0.002 per m2 (Hayes, 2021)), and these were sampled

using trawls and benthic sleds which cover a greater area than the

throw trap. The absence of tropical species in our small-scale (1 m2)

samples suggests that, although they may be present in seagrass

meadows at the Chandeleur Islands, tropical species are not likely

abundant in R. maritima meadows.

One potential limitation of the current study is the throw trap

samplingmethodwhichmay underrepresent the abundance of highly

mobile species (Kushlan, 1981; Freeman et al., 1984) such asmembers

of family Mugilidae. Despite this limitation, throw traps are known to

have high rates of accuracy when describing fish assemblages (Jordan

et al., 1997). Additionally, the removal of all vegetation within the

throw trap contributed to our clearing efficiency, as animals were

recovered from the collected plant material during processing.

Conclusion

R. maritima occurred along the entire latitudinal range of

seagrass distribution at North Chandeleur Island. Despite the

widespread distribution of non-reproductive plants, there was a

tendency for reproductive plants to be located along the central

portion of the island. Where reproductive plants occurred, their

density was lower than that of non-reproductive shoots, but

reproductive shoots had significantly greater shoot lengths,

number of leaves, and surface area. Non-reproductive plants

showed significantly greater RSR, likely due to the substantial

increase in aboveground biomass with the onset of reproduction

for flowering plants. These results of distinct spatial and

morphological characteristics for reproductive R. maritima

plants suggest that the ecosystem functions of R. maritima

may change with the onset of reproduction.

Fish assemblages within R. maritima beds at the Chandeleur

Islands are represented by an abundant group of small benthic

species. Total seagrass biomass was the primary driver of habitat

use, suggesting that future studies to investigate the role of R.

maritima in structuring fish communities in similar study

systems may be better served to focus effort on robust

measures of seagrass complexity (e.g., biomass) rather than

more laborious measures of plant complexity such as cores

and image analyses. Assitionally, future studies designed to

collect infauna and smaller invertebrates could help elucidate

the relationship between prey availability and habitat use.

At the Chandeleur Islands, R. maritima has increased in

cover by colonizing disturbed areas along the islands and

displacing climax species such as T. testudinum. Future

studies should also compare R. maritima to other co-

occurring seagrass species to better understand possible

functional differences for associated fishes.
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