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The Yangtze River Delta region contributes nearly 16% of the national carbon

emissions and is the key area for carbon emission reduction in China. Accurately

grasping the spatial evolution characteristics of carbon emissions and the

interaction between counties and regions is of great practical significance

for precise and collaborative carbon reduction. This study firstly explores the

spatial layout and dynamic evolution characteristics of county carbon emissions

in the Yangtze River Delta region from 2000 to 2018 by using spatial statistical

analysis, secondly identifies the influencing factors of county carbon emissions

(CAR) in the Yangtze River Delta region from dynamic and static dimensions

respectively by using static and dynamic Spatial Dubin Model, and finally judges

the spatial spillover effects of each factor. We find that county carbon emissions

are more complex and more diverse in non-synchronous state compared to

provinces and cities. The high carbon areas in the Yangtze River Delta region are

concentrated in Shanghai and its neighboring cities, as well as industrial

counties under the jurisdiction of other sub-core cities, which are

continuously clustered towards the center. We have made some theoretical

discussions on the results of the spillover effects of various factors on carbon

emissions, and concluded that economic of scale (ECO) and industrial structure

(IND) have a “polarization effect”, population size (POP) is consistent with the

Malthusian view, technological advance (TEC) has a “cumulative effect”, and

environmental quality (ENV) The “pollution paradise effect” is mitigated. Finally,

we believe that the main unit of precise carbon reduction can take the form of

“city-county” combination, and the government should implement

differentiated and coordinated carbon reduction policies.
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1 Introduction

“Silent Spring” by Rachel Carson in 1962 awakened people

around the world to environmental awareness. Since the 1980s,

with the establishment of the Intergovernmental Panel on

Climate Change (IPCC) and the signing of the United

Nations Framework Convention on Climate Change

(UNFCCC), the Kyoto Protocol, the Copenhagen Accord, the

Paris Agreement and other conventions and agreements, the

increase in carbon dioxide emissions triggered global climate

change has become a focal issue of concern for countries and

organizations around the world. According to Energy and

Climate Intelligence Unit (ECIU), by 2022, 123 countries and

organizations have taken some practical actions to reduce carbon

emissions, among which 15 countries and organizations have

enacted legislation, 32 countries (including China) have issued

policy documents, 19 countries have issued statements and

commitments, and the rest are in Proposals and discussions

are underway1. China attaches great importance to

environmental issues in the process of rapid economic

development, especially after the 11th Five-Year Plan called

for the establishment of a “resource-saving and environment-

friendly society”, the promulgation and implementation of a

series of carbon emission reduction policies have made

outstanding contributions to carbon emission reduction. In

September, China made a commitment to “strive to peak its

carbon dioxide emissions by 2030 and achieve carbon neutrality

(30·60 target) by 2060″ at the general debate of the 75th session of
the UN General Assembly. However, China is still facing

challenges such as a large carbon emission base, regional

differences, and the need to coordinate with regional

economic and social aspects (Qin and Xie, 2011) Therefore, in

order to successfully achieve the “30·60 target”, China needs to

grasp the spatial evolution characteristics of carbon emissions

and the interaction between regions and counties, and formulate

carbon reduction strategies in a differentiated manner.

The academic research on regional carbon emissions has a

progressive logic of “basic measurement—analysis of current

situation and change patterns—study of mechanisms and

effects—sectoral and regional issues”. Firstly, the basic

research on carbon emissions—the measurement and

evaluation of carbon emissions and carbon efficiency—is

based on the extended Kaya equation and the epsilon-based

model (Ma et al., 2019; He and Chen, 2017)With the

development of remote sensing technology, the use of

nighttime light data to produce regional carbon emission

maps has gradually become another important way to

measure regional carbon emissions (Rayner et al., 2010). On

the basis of measuring carbon emissions, some scholars began to

investigate the current situation and change pattern of carbon

emissions, mainly spatial analysis and spatio-temporal evolution

related research (Roberto, 2007; Wang et al., 2019; Li et al., 2021).

Some scholars have done some predictive studies on this basis,

such as judging when regional carbon emissions will reach their

peak (Zhang F. et al., 2021) and the future trend of carbon

emissions in industries (Sharliza and Hashim, 2011), etc. In this

process, some scholars also pay attention to the development of

carbon emission prediction models, and methods such as

G-Cubed model (Mckibbin et al., 2007) and Markov transfer

matrix (Huang and Wen, 2019) are recognized for their

application in this field. To further understand the change

mechanism of carbon emissions, some scholars began to

explore the influencing factors of carbon emissions, and the

studies involved the influencing factors mainly include economic

growth, population size, industrial structure, gross national

income, environmental quality, technological progress, and

urbanization level (Xu et al., 2014; Wang et al., 2017; Shi

et al., 2019; Meng et al., 2018; Li et al., 2011), and some

studies further analyzed the spatial spillover effects of the

influencing factors on carbon emissions (Xin et al., 2018;

Gong et al., 2022). Theoretical studies are the basis of

practical studies, and some scholars focus on the strong

industry characteristics of carbon emissions, so they have

gradually launched studies on carbon emissions from

transportation (Xie et al., 2017; Zhu et al., 2020; Dujmovic

et al., 2022), agriculture (Ali et al., 2022; Huang and Gao,

2022), aviation (Han et al., 2022), construction (Du et al.,

2021; Du et al., 2022), logistics (Zhang Y. et al., 2021), and

tourism. Further, related scholars have incorporated the topic of

carbon reduction into the analysis of specific regional issues in

order to improve the practical application value, and the carbon

emission problems of some special regions have been widely

studied, such as river basins (Sun et al., 2021; Wang et al., 2021),

large cities (Qian et al., 2022), industrial cities (Zhang C. et al.,

2021), urban agglomerations (Cui et al., 2020), metropolitan

areas (Benjamin and Marilyn, 2009; Thomas, 2013), rural areas

(Zhang et al., 2014), ports (Gian et al., 2020), etc.

Throughout the current academic research on regional

carbon emissions, there are still some issues that need in-

depth consideration: ①There are limitations in the analysis of

the spatial characteristics of regional carbon emissions, existing

studies often pay attention to the static layout of regional carbon

emissions, but ignore the dynamic evolution of carbon emissions,

isolate the organic link between the analysis of carbon emission

impact factors and the spatial and temporal evolution

characteristics, and it is difficult to grasp the spatial carbon

emissions between regions in a scientific and comprehensive

manner. It is difficult to grasp the spatial correlation of carbon

emissions between regions in a scientific and comprehensive way.

1 Data from People’s Daily Overseas Edition report, “The New Mission of
Yangtze River Delta Integration,” https://m.gmw.cn/baijia/2020-08/
24/34112450.html, 2020-08-24/2022-07-15. GDP data based on
Adjustments were made to the 2018 statistical yearbooks of the
relevant regions.
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②Most of the studies are conducted at the provincial level or in a

certain region as a whole, and there are few reports at the local

and municipal levels (Song et al., 2015; Yu et al., 2020), while it is

rare to sink the study to the county level, where the characteristics

of carbon emissions and economic development are more

complex and more diverse than those of provinces and cities

due to the great differences in geographical conditions and

development stages. ③Most studies only reveal the linear

relationship between carbon emissions and socio-economic

factors, but ignore the important influence of spatial factors,

especially the lack of exploration of the dynamic spatial.

In 2018, the Yangtze River Delta region contributed about

24% of China’s GDP with nearly 4% of China’s land area, but also

emitted 1.7 billion tons of CO2, about 16% of the total. The

region is one of the most serious carbon emission regions in

China, and also bears an important responsibility to reduce

carbon emissions. In view of this, this paper takes

190 counties in the Yangtze River Delta region as the research

object, and uses descriptive statistics and spatial analysis methods

such as Jenks natural breaks method, the geographic center of

gravity method, the standard deviation ellipse method, and

kernel density estimation to explore the multi-scale spatial

layout and dynamic evolution characteristics of carbon

emissions in the Yangtze River Delta during 2000–2018,

identify the influencing factors of carbon emissions from both

dynamic and static perspectives through the static and dynamic

Spatial Dubin Model (SDM), and determine the influence of

each. Finally, the results are discussed and policy

recommendations are proposed, with a view to providing

references for regional carbon emission spatial studies and

carbon emission reduction policies in the Yangtze River Delta

region influence effect.

2 Materials and methods

2.1 Study area

The study area of this paper is the Yangtze River Delta region,

which is located in the lower reaches of the Yangtze River in

eastern China, bordering the Yellow Sea and the East China Sea,

and is one of the most economically developed, densely

populated, and innovative regions in China.

The administrative divisions of China are, from top to bottom,

the country, province (including municipalities directly under the

central government such as Shanghai, etc.), city (a general city,

consisting of several counties), county (including municipal

districts, county-level cities, ordinary counties, etc.), town (an

FIGURE 1
Distribution of the Yangtze River Delta region at four spatial scales: national, provincial, municipal and county. Note: Taizhou is Taizhou City,
Jiangsu Province, and Taizhou1 is Taizhou City, Zhejiang Province.
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administrative unit forming a county), and village. The Yangtze River

Delta region consists of Shanghai as a whole and some cities in

Zhejiang, Jiangsu, andAnhui provinces, including 26 cities (including

Shanghai), and 190 counties (districts) in the 26 cities are used as the

basic research units in this paper (Figure 1).

2.2 Methods

2.2.1 Methods related to spatial statistical
analysis

Based on the Arcmap 10.5 platform, the spatial pattern evolution

of carbon emissions in the counties of the Yangtze River Delta is

visualized by using the jenks natural breaks method with stratified

coloring; The spatial distribution direction of carbon emission

distribution is measured by the standard deviation ellipse method.

The global Moran’s I index was used to determine whether carbon

emissions in the Yangtze River Delta counties are spatially

autocorrelated.2

2.2.2.1 Standard deviation ellipse method

If βi is the weight characterized by carbon emissions, xj,yj denote

the relative coordinates of the center of gravity (xi,yi) of the factor

distribution, respectively, and n is the total number of factors, then

the angleαbetween carbon emissions in the Yangtze River Delta

counties in the spatially orthogonal north direction clockwise and the

long axis of the standard deviation ellipse can be expressed as:

tan α � (∑n
i�1β

2
i x

2
j −∑n

i�1β
2
i y

2
j) +

�������������������������������(∑n
i�1β

2
i x

2
j −∑n

i�1β
2
i y

2
j)2 + 4∑n

i�1β
2
i x

2
jy

2
j

√
2∑n

i�1β
2
i xjyj

(1)

2.2.2.2 Kernel Density Analysis

Kernel density analysis is a common analysis method in

economic geography, and its results can better reflect the state of

carbon emissions clustering in geographic space with the

following equation.

f(x) � 1nhΣk(a-Aih)ni � 1 (2)
where f(x) is the kernel density estimate of carbon emissions; h is the

bandwidth, h > 0; k[(a-Ai)/h] denotes the kernel function; and (a-Ai)

is the distance from the valuation point a to the event Ai.

2.2.2.3 Spatial autocorrelation method

The spatially autocorrelated Global Moran’s I can be

expressed as3:

I � n

∑n
i�1∑n

j�1wi,j
· ∑n

i�1∑n
j�1wi,jzizj

∑n
i�1z

2
i

(3)

where zi is the deviation of carbon emissions of county i from its

average value (xi-average(X)), wij is the spatial weight between

county i and j, and n is the total number of 190 counties. the

range of Moran’s I is [−1, 1], and the larger the absolute value of

Moran’s I is, the greater the spatial correlation of carbon emissions

between counties. The larger the absolute value of Moran’s I, the

greater the spatial correlation of carbon emissions between counties,

where positive values indicate positive correlation and negative

values indicate negative correlation. The standardized statistical

value ZI can test whether the spatial autocorrelation of carbon

emissions among counties in the Yangtze River Delta region is

significant, and the formula is as follows:

ZI � I − E[I]����
V[I]√ (4)

where E [I] = −1/(n-1) is the theoretical expectation; V [I] = E [I]

- E [I]2 is the theoretical variance; and E [I] is the theoretical first-

order moment of origin.When the significance is 0.01, the critical

value of Z score is ±2.58 (<−2.58 or >2.58, the same below); when

the significance is 0.05, the critical value of Z score is ±1.96, and

when the significance is 0.1, the critical value of Z score is ±1.65.

When the Z value is greater than the absolute value of the critical

value, it means that the carbon emissions between counties are

correlated, where the positive value is the spatial positive

correlation. The positive values are spatially positive

correlation, i.e., “high-high agglomeration” and “low-low

agglomeration”, and the negative values are spatially negative

correlation, i.e. “high-low agglomeration”. When the Z value is

less than the absolute value of the critical value, it indicates that

the spatial correlation is not significant and is randomly

distributed4.

2.2.2 Spatial econometric model
The commonly used spatial models are Spatial Dubin Model

(SDM), Spatial Lag Model (SLM), spatial error model (SEM), etc.

The Spatial Lag Model mainly considers the spatial correlation of

the dependent variable, while the spatial error model focuses on

the spatial influence of the random disturbance term, both of

which are special forms of the Spatial DubinModel. In this paper,

the Spatial DubinModel is chosen after a series of tests (Figure 2),

and in addition to the dependent variable carbon emissions

(CAR), other control variables need to be included in the

model, the factors may also be economic size (ECO),

population size (POP), industrial structure (IND),

2 The data of carbon emissions in the Yangtze River Delta and its ratio to
the total carbon emissions in China were obtained based on the
EDGAR database.

3 The formula is quoted from the technical platform of the official
ArcMap website.https://desktop.arcgis.com/en/arcmap/latest/tools/
spatial-statistics-toolbox/h-global-morans-i-additional-math.htm.

4 The classification criteria for the Z-score threshold are quoted from
the technical platform of the official ArcMap website:https://desktop.
arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/what-
is-a-z-score-what-is-a-p-value.htm.

Frontiers in Environmental Science frontiersin.org04

Wei et al. 10.3389/fenvs.2022.977198

https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/h-global-morans-i-additional-math.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/h-global-morans-i-additional-math.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/what-is-a-z-score-what-is-a-p-value.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/what-is-a-z-score-what-is-a-p-value.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/what-is-a-z-score-what-is-a-p-value.htm
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.977198


environmental quality (ENV), technological progress (TEC), etc.,

with the formula (Vega and Paul, 2015).

InCARjt � ρ∑N

V�1WjvInCARjt + θ1InECOjt + θ2InPOPjt + θ3InENVjt + θ4INDjt+
θ5TECjt + β1∑J

v�1,v ≠ j
WjvInECOjt + β2∑J

v�1,v ≠ j
WjvInPOPjt + β3∑J

v�1,v ≠ j
WjvInENVjt+

β4∑J

v�1,v ≠ j
WjvINDjt + β5∑J

v�1,v ≠ j
WjvTECjt + μj + vi + εit

(5)

εjt � λ∑N

v�1,v ≠ j
Wjvεvtζ it (6)

In the equation, ρ and λ denote the spatial autoregressive

coefficients and spatial error coefficients, respectively; μj and vj
denote the area and time effects, respectively; Wjv is the spatial

weight matrix; εit is the random disturbance term.When ρ≠0, β =
0, λ = 0, it is the SLMmodel; when ρ = 0, β = 0, λ≠0, it is the SEM
model; when ρ≠0, β≠0, λ = 0, it is the SDM model. Considering

the possible “time inertia” of regional carbon emissions, the

carbon emissions of the previous period are included in the

model to form a dynamic Spatial Dubin Model:

InCARjt � τInCARj,t−1 + ρ∑N

V�1WjvInCARjt + θ1InECOjt + θ2InPOPjt + θ3InENVjt+
θ4INDjt + θ5TECjt + β1∑J

v�1,v ≠ 1
WjvInECOjt + β2∑J

v�1,v ≠ 1
WjvInPOPjt+

β3∑J

v�1,v ≠ 1
WjvInENVjt + β4∑J

v�1,v ≠ 1
WjvINDjt + β5∑J

v�1,v ≠ 1
WjvInTECjt + +μj + vi + εit

(7)

εjt � λ∑N

v�1,v ≠ j
Wjvεvtζ it (8)

In the equation, CARj,t-1 denotes the carbon emission of the

jth region in period t-1, and τ denotes the elasticity coefficient of
CAR with a lag of one period.

2.3 Data source

Due to the top-down energy statistics model in China, no

official statistics on carbon emissions are available for the

time being. The carbon emission data in this paper are

obtained from the Emissions Database for Global

Atmospheric Research (EDGAR, https://edgar.jrc.ec.

europa.eu/), which is jointly maintained by the European

Commission Joint Research Center (JRC) and the

Netherlands Environmental Assessment Agency (PBL),

and is equivalent to the International Energy Agency

database (IEA), the U.S. Information Administration

database (EIA). It is widely used by scholars around the

world (Crippa et al., 2019; Wang and Cai, 2017; Minx et al.,

FIGURE 2
Spatial econometric model selection process.
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2021). We obtained the global 0.1 × 0.1 carbon emission grid

data inventory from EDGAR for each year, and the latitude

and longitude coordinates are indicated by the lower left

corner of each grid. Based on the ArcGIS operation platform,

we used the county-level administrative map of the Yangtze

River Delta region [review number GS (2019)1822] as the

base map, cropped the global grid data, counted the number

of grids within each county in the Yangtze River Delta region

and the carbon emission values represented by the

coordinates, and finally obtained the carbon emission

values of each county in the Yangtze River Delta region.

Statistically, the total number of grids in the Yangtze River

Delta region exceeds 2000 each year, with an average of about

11 grids per county-wide, and this data accuracy is widely

used in county-level studies with good results (Zhou et al., 2014).

Drawing on the existing research results on the factors

influencing regional carbon emissions, this paper selects five

factors, namely, Economic of Scale (ECO), Population Size (POP),

Industrial Structure (IND), Environmental Quality (ENV), and

Technical Advance (TEC) were selected to study the influencing

factors of carbon emissions in the counties of the Yangtze River Delta
[12–16]. Among them, economic scale is characterized by regional real

GDP; population scale is regional resident population; industrial

structure is the proportion of secondary industry output value;

environmental quality is the quality of PM2.5 in regional air each

year; and technical advance is characterized by carbon emission

intensity, which is the quality of carbon dioxide produced per

10,000 Yuan of GDP. data of GDP, regional resident population,

and secondary industry output value are obtained from “ the

2000–2018 China County Statistical Yearbook” and “National

Economic and Social Development Statistical Bulletin” of each

district and county, and the missing data in some years were

obtained by interpolation; the quality data of PM2.5 in regional

air were obtained from the Atmospheric Composition Analysis

Group (Atmospheric Composition Analysis Group) of Dalhousie

University, Canada; the carbon emission intensity data were obtained

from the ratio of carbon emissions of each county and district The

carbon intensity data were calculated from the ratio of carbon

emissions to GDP of each county. In order to reduce

heteroskedasticity and eliminate the influence of the variables, the

values of CAR, POP, ECO and ENV were standardized by natural

logarithm in the calculation process (Table 1).

3 Results

3.1 Spatial distribution characteristics of
carbon emissions

3.1.1 Characteristics of overall carbon emission
changes

The carbon emissions and carbon emission change rates

of four provinces in the Yangtze River Delta region, Shanghai,

Jiangsu, Zhejiang and Anhui, were statistically analyzed

during 2000–2018 (Figure 3). During the inspection

period, carbon emissions in the Yangtze River Delta region

as a whole showed an upward trend. Although the total

carbon emissions fluctuated around 1.6 billion tons after

2011, the “inflection point” for carbon emissions reduction

has not yet appeared. In terms of the growth rate of carbon

emissions, the growth rate of carbon emissions in the Yangtze

River Delta region has been declining since 2003 when it

reached 17%.

At the provincial level, Jiangsu Province has the largest

carbon emissions, which have reached 569 million tons in

2018, accounting for 33% of the total amount of the Yangtze

River Delta; Shanghai’s carbon emissions have shown an

obvious growth trend, increasing from 135 million tons to

548 million tons from 2000–2018, accounting for 27%–32%

of the carbon emissions of the Yangtze River Delta; Zhejiang

Province and Anhui Province have relatively less urban

carbon emissions. The conclusions of the carbon

emission data at the provincial level are similar to the

findings of Gao and Li et al. This indicates to some

extent that the dataset we used is credible (Gao et al.,

2014; Li et al., 2022). In terms of carbon emission growth

rate, Jiangsu Province’s carbon emission growth rate

fluctuated sharply between 2006 and 2013, peaking at

24% in 2007 and dropping to a low of -14% in 2012;

Shanghai’s carbon emission growth rate was higher than

the overall carbon emission growth rate of the Yangtze

River Delta between 2003 and 2009, and was comparable

to the overall carbon emission growth rate of the Yangtze

River Delta after 2010; Anhui Province and Zhejiang

Province had a similar decreasing trend. After 2013, the

carbon emission growth rates of all four provincial units in

the Yangtze River Delta converged to about 3%. At the

municipal level, the carbon emissions of all 25 cities in the

Yangtze River Delta (excluding Shanghai) showed an

overall increasing trend during 2000–2018, with Suzhou,

Wuxi, and Nanjing entering the 100 million ton range in

2008, 2008, and 2011, respectively (Figure 4). The average

annual growth rate of the 25 cities is maintained between

4.29% and 7.36%, and most of the cities have positive

growth in carbon emissions in most of the period, but

after 2007, some cities have negative growth in carbon

emissions.

3.1.2 Spatial distribution characteristics of
county carbon emissions

The spatial distribution characteristics of carbon

emissions in counties are more complex than those in

provinces and cities due to the great differences in

geographical conditions and development stages, and the

diversity of non-synchronous states is stronger. Based on the

natural breakpoint method, the carbon emissions of
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190 counties in the Yangtze River Delta region are divided

into seven levels (I-VII) from low to high, and according to

Figure 5, it can be seen that the carbon emissions in the

Yangtze River Delta region show obvious spatial non-

equilibrium characteristics, with the trend of radiation

spreading inland with Shanghai as the center. Regional-

wide carbon emissions were low in 2000, with 81% of

counties emitting less than 4.01 million tons of carbon,

and the only counties (districts) with more than 15

million tons were Shanghai’s Minhang District and

Pudong New District. With the rapid development of

industrial economy and the rapid increase of energy

consumption in the Yangtze River Delta region, the

difference in absolute carbon emissions between regions

has increased, and the carbon emission pattern of the

counties in the Yangtze River Delta has shown a trend of

radiating and spreading from the high-carbon area of

Shanghai to the inland low-carbon area. From 2000 to

2010, the proportion of counties whose carbon emissions

are higher than 4.01 million tons expanded from 19% to 32%,

and the number of counties with carbon emissions over

15 million tons increased rapidly from 2 to 24, among

them, Wuxi Binhu District and Shanghai Minhang District

emitted more than 100 million tons of carbon. As of 2018, the

proportion of counties with carbon emissions higher than

4.01 million tons reached 37%, and the number of districts

(county) exceeding 15 million tons expanded to 32.

Specifically, the carbon emissions of Shanghai’s county

units have significant high-value characteristics, and most

of the other medium- and high-value areas are located in the

neighboring cities of Shanghai (Du et al., 2017), such as the

industrially developed counties and districts under the

jurisdiction of Suzhou (Wuzhong District, Gusu District,

Zhangjiagang City, Changshu City), Wuxi (Jiangyin City,

TABLE 1 Descriptive statistics of data.

Variables Mean StdDev Min Max Median Sample size

CAR(104 tons) 633.041 2082.172 3.298 37435.633 187.287 3610

POP(104) 57.395 38.958 7.012 523.105 50.656 3610

ECO(108 yuan) 363.340 454.983 2.400 6401.00 211.720 3610

ENV (μg/m3) 48.297 32.594 0.951 171.823 44.720 3610

TEC (Tons/104 yuan) 2.621 5.371 0.013 96.958 0.987 3610

IND(%) 48.612 14.281 5.149 84.032 50.637 3610

FIGURE 3
Trends in the evolution of carbon emissions in the Yangtze River Delta, 2000–2018.
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Yixing City), Changzhou (Wujin District), Jiaxing (Haiyan

County, Pinghu City), and other sub-core cities, as well as the

industrially developed counties (districts), such as Nanjing

(Jianye District, Jiangning District, Liuhe District, Qixia

District), Ningbo (Yinzhou District, Haishu District,

Beilun District), Hefei (Shushan District, Chaohu City),

Hangzhou (Fuyang District), etc., which is similar to the

results of Li et al. (2022). The vast number of ordinary

districts (county) in the middle and fringe of the Yangtze

River Delta region generally have carbon emissions of less

than 4.01 million tons, which is currently the area with lower

carbon emissions.

FIGURE 4
Trends in carbon emissions in 26 cities in the Yangtze River Delta region, 2000–2018.

FIGURE 5
Carbon emission evolution trend of 190 counties (district) in the Yangtze River Delta region, 2000–2018.
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3.2 Dynamic evolution of the distribution
of carbon emissions in counties

3.2.1 Directional change and center of gravity
shift in the distribution of carbon emissions in
counties

Using the standard deviation ellipse and the geographic

center of gravity method, three characteristic time points were

selected in 2000, 2010, and 2018 to calculate the directional

change and center shift trajectory of carbon emissions in the

Yangtze River Delta region (Figure 6). The standard deviation

ellipse of carbon emissions in the Yangtze River Delta region

from 2000 to 2018 was mainly located in the central-eastern part

of the Yangtze River Delta, showing a “northwest-southeast”

spatial distribution pattern. From the ellipse area ratio, the ellipse

area gradually shrinks during the sample inspection period, and

the ellipse area in 2018 is 8% smaller than that in 2000, which

indicates that there is a trend of space aggregation of carbon

emissions in the Yangtze River Delta region. From the turning

angle θ, the turning angle shows a gradual decrease, but the

change is small, which indicates that the direction of carbon

emission dispersion in the Yangtze River Delta is relatively stable.

Looking at the position of the ellipse, it shifts eastward in

2018 compared to 2000, indicating that carbon emissions are

growing faster in the eastern part of the Yangtze River Delta than

in other regions. From the elliptical semi-axis, the length of the

long semi-axis shrinks from 188.76 Km in 2000 to 183.67 Km in

2018, and the length of the short semi-axis shrinks from 136.09 to

128.49 Km, which shows that the carbon emissions of county

units in the Yangtze River Delta show a centripetal clustering

feature.

3.2.2 Dynamic evolution of the distribution of
carbon emissions in counties

The kernel density of carbon emissions in the Yangtze River

Delta counties as a whole and at each level was analyzed, and the

FIGURE 6
Transfer path of carbon emissions in the Yangtze River Delta.
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results are shown in Figure 7, where Figure 7A analyzes the area

of 190 districts (counties) in the Yangtze River Delta, Figures

7B–F corresponds to carbon emission level I–V areas

respectively, and Figure 7G shows carbon emission level VI

and VII areas (Carbon emission level VII only has one

district, Minhang District, Shanghai, which cannot be

analyzed as a separate kernel density, and VI and VII areas

are analyzed together). On the whole, the Knernel curves in

Figures 7A–G have some common features, the curves keep

shifting to the right, with a large shift from 2000–2010 and a

small shift from 2010–2018, which indicates that the overall

carbon emissions of the Yangtze River Delta counties and the

carbon emissions of the counties in all levels of the region are

increasing, and the growth rate of carbon emissions from

2000–2010 is faster and from 2010–2018, the growth rate of

carbon emissions growth rate slowed down.

At the same time, there are some differences in the

characteristics of carbon emission changes in each type of

regions. As can be seen from Figure 7A, the peak of the

Knernel curve keeps decreasing and there is a phenomenon of

right tail dragging, which indicates that the overall carbon

emission gap between counties in the Yangtze River Delta

region is widening. The peak of the Knernel curve in

Figure 7B is comparable and the flatness of the curve varies

less, reflecting that the carbon emission gap between counties in

the lowest carbon emission level I region remains stable. The

Knernel curves in Figure 7C and Figure 7D have similar

characteristics, the peaks increase year by year, and the shape

of the curve is “inverted U″ in 2000, and evolves to “double-peak”
in 2010 and 2018, reflecting that the carbon emission gap

between Class II and Class III areas However, after 2010, the

carbon emissions of districts and counties began to polarize,

while the curve in Figure 7D is wider and flatter than that in

Figure 7C, indicating that the difference in carbon emissions

between districts and counties is greater in Class III than in Class

II. The Knernel curve in Figure 7E shows an obvious lengthening

of the right tail in 2010, which shows that the carbon emission

gap between districts and counties in Class IV regions expanded

rapidly between 2000 and 2010, and then narrowed rapidly

between 2010 and 2018. The Knernel curve in Figure 7F

shows the characteristics of “high-narrow-low-wide-high-

narrow” peaks and changes in curve shape, reflecting that the

degree of carbon emission difference between districts and

counties in level V regions has been increasing from 2000 to

2010, and decreasing from 2010 to 2018. The peak of the Knernel

curve in Figure 7G is increasing, and the right tail is lengthening

in all years, which indicates that the carbon emission difference

between districts and counties in Class VI and Class VII areas is

expanding, and the “Matthew effect” is significant.

3.3 Influencing factors of carbon
emissions in counties and their spatial
spillover effects

3.3.1 Spatial autocorrelation test of carbon
emissions in counties

The global spatial autocorrelation test was conducted on the

carbon emissions of counties in the Yangtze River Delta region.

In Table 2, w1 is the geographic adjacency matrix, w2 is the

inverse distance spatial weight matrix, and w3 is the economic

distance matrix, and it can be seen that the mean values of carbon

emissions for the three weight matrices during 2000–2018 passed

the significance test, with the geographic adjacency matrix and

FIGURE 7
Results of kernel density analysis of carbon emissions in the Yangtze River Delta counties as a whole and at each level.
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geographic distance matrix passing the 1% significance test in

each year. From the Moran index of carbon emission

agglomeration level, the degree of agglomeration under the

three spatial matrices, although fluctuating in individual years,

is in an overall weakening trend, and overall the geographic

adjacency matrix (0.076–0.108) > economic distance matrix

(0.033–0.061) > inverse distance spatial weight matrix

(0.011–0.019), and all three spatial matrices show spatial

positive correlation. It can be seen that the carbon emissions

in the counties of the Yangtze River Delta during the period

under investigation have an overall dynamic of high-value

counties being adjacent to one or more high-value counties

(short geographical and economic distance), while low-value

counties are adjacent to other low-value counties (short

geographical and economic distance), so it is necessary to

consider spatial effects in the study of carbon emissions in the

counties of the Yangtze River Delta. The geographic adjacency

matrix Moran index and significance test combined performed

the best, and the subsequent study was analyzed mainly with the

geographic adjacency weight matrix.

3.3.2 Measurement of carbon emission
influencing factors in counties

From the previous analysis, it is clear that there is a spatial

autocorrelation effect of carbon emissions in the counties of the

Yangtze River Delta, so is there some correlation between county

carbon emissions and other variables? This paper then proceeds to

verify the correlation through a spatial econometric model. Firstly,

the mixed-sample ordinary least squares (OLS) estimation of the

panel data model (column 2 in Table 3) is performed without

considering the spatial effect. The results show that the coefficients of

lnECO, lnPOP, lnENV, and TEC are significantly positive, and the

coefficients of IND are significantly negative. It can be tentatively

concluded that carbon emissions in the Yangtze River Delta counties

are positively correlated with lnECO, lnPOP, lnENV, and TEC, and

negatively correlated with IND.

Neglecting spatial effects may cause the estimation results to

differ significantly from the actual situation. To further test the

existence of spatial effects, the LM test is done based on the

residuals of the fixed-effects panel data model. From Table 4, it

can be seen that the LM test passes the significance test for all

statistics except Robust LM spatial error (p-value = 0), indicating

that the original hypothesis of using a non-spatial fixed-effects

model is rejected and a spatial econometric model is selected. To

determine the specific form of the spatial econometric model, the

LR test likelihood ratio was used to determine whether the SDM

was better than the SLM and SEM, and the results showed that

the original hypothesis was rejected (p-value = 0), indicating that

the spatial SDM would not degenerate into the SLM and SEM,

and the SDM model in a more generalized form than the SAR

and SEM models was selected for the study. The Hausman test

was then used to determine whether the SDM was estimated

using the fixed-effect or random-effect estimation method, andT
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the results showed that the original hypothesis of using the

random-effect model was rejected (p-value≤ 0.03), so the

fixed-effect SDM was used for estimation in this paper. The

Wald test was applied to judge the fitness of the model, indicating

that the spatial lag term of the variables should be considered, so

the Wald test was further performed considering the spatial lag

term, and the results rejected the original hypothesis, indicating

that the SDM under fixed effects is the best choice for estimating

the spatial panel model (p-value = 0).

The SDM (column 3 in Table 3) shows that the values of

lnPOP and TEC are 0.813 and 0.003, respectively, which are

greater than 0 and significant, indicating that population size and

technological progress can promote the change of carbon

emissions in the region, and the value of IND is less than

0 and significant illustrates that industrial structure has a

suppressive effect on the change of carbon emissions in the

region; the value of W×lnECO is 0.053, indicating that economic

scale has a promotional effect on the growth of carbon emissions

in neighboring regions,; the values of W×lnPOP andW×IND are

less than 0 and significant, suggesting that population size and

industrial structure have a suppressive effect on the growth of

carbon emissions in neighboring regions. The static SDM is

expanded into dynamic SDM (columns 4–6 in Table 3) to further

improve the explanatory power of the model, where ρ is not

significant in dyn_SDM_dlag (2), so the analysis is mainly

conducted for dyn_SDM_dlag (1) and dyn_SDM_dlag (3). It

can be seen that the values of lnPOP and TEC are greater than

0 and significant, and W×lnPOP is less than 0 and significant,

which means that the population size and technological progress

in the lagged period have a positive impact on the local carbon

emissions, while the population size in the lagged period will have

a negative impact on the carbon emissions in the neighboring

areas. Comparing the static SDM and dynamic SDM, the results

of both have similarity, which indicates that the conclusions have

good stability. Meanwhile, comparing the results of the non-

spatial panel data model (second column of Table 3) and the

dynamic SDMmodel results (Table 3, columns 4 and 6), it can be

found that the direct effect of each indicator of the non-spatial

panel data model is significantly larger than that of the dynamic

SDM, indicating that the direct effect may be overestimated if the

spatial spillover effect is not taken into account, so it is necessary

to decompose the effect of the dynamic SDM.

TABLE 3 Estimation results of OLS model and SDM model.

Variables OLS SDM dyn_SDM_dlag (1) dyn_SDM_dlag (2) dyn_SDM_dlag (3)

lnCAR(-1) 0.905*** 0.907***

lnECO 0.618*** 0.002 0.009 0.014 0.008

lnPOP 0.533*** 0.813*** 0.123*** 0.864*** 0.117***

lnENV 0.187*** −0.120 0.049 −0.098 0.056

IND −0.013** −0.001** 0.001 −0.000 0.000

TEC 0.125*** 0.003*** 0.003*** 0.005*** 0.003***

W×ln CAR(-1) 0.171*** −0.528**

W×lnECO 0.053*** −0.002 0.017 0.004

W×lnPOP −0.323*** −0.136*** −0.439*** −0.109**

W×lnENV 0.145 −0.022 0.124 −0.031

W×IND −0.001* −0.001 −0.000 −0.000

W×TEC −0.02 −0.001 −0.003* −0.001

ρ 0.131*** 0.596*** 0.040 0.086***

Sigma2_e 0.012*** 0.004*** 0.126*** 0.004***

R-squared 0.614 0.718 0.953 0.817 0.952

Log-likelihood 2856.440 3833.280 −3308.341 3925.198

Obs 3610 3610 3420 3420 3420

***, **, * means significance at the level of 1%, 5%, and 10%,respectively.The table dyn_SDM_dlag(1), dyn_SDM_dlag(2), and dyn_SDM_dlag(3) indicate the addition of time lag term

(tau*y_it-1), time-space lag term (psi*W*y_it-1), time lag term, and time-space lag term (tau*y_it-1 + psi*W*y_it-1), respectively.

TABLE 4 Model test results.

Test Statistic p-Value

LM spatial lag 47.730 0.000

LM spatial error 31.938 0.000

Robust LM spatial lag 17.616 0.000

Robust LM spatial error 1.824 0.177

Hausman test (ind) 18.400 0.003

Hausman test (time) 2883.730 0.000

LR test (ind nested in both) 798.170 0.000

LR test (time nested in both) 14411.150 0.000

Wald test Wx 41.480 0.000

Wald testnl Wx 33.660 0.000
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3.3.3 Spatial spillover effects of various factors
on carbon emissions in the counties

As shown in Table 5, the direct effects of population size

(lnPOP) are all positive, while the short-term-indirect

[dyn_SDM_dlag (1)_SR] effects are all negative, indicating

that population size has a significant promoting effect on

carbon emissions in the region, while it has a significant

inhibiting effect on carbon emissions in neighboring regions

under the short-term effects. Economic scale (lnECO) and

industrial structure (IND) are significant only in the static

SDM effect decomposition, indicating that they have an

impact on carbon emissions only in the current period,

among which the indirect and total effects of economic scale

have a significant positive effect, and the direct, indirect and total

effects of industrial structure have a negative effect. The direct

effect of technological progress (TEC) is positive, indicating that

it has a significant promotion effect on local carbon emissions,

but the spillover effect is not significant. The environmental

quality (lnENV) characterized by PM2.5 has a negative direct

effect and a positive indirect effect in static SDM, and a positive

direct effect and a negative indirect effect in dynamic SDM, but

these results are all not significant.

4 Discussion and policy
recommendations

4.1 Discussion of spatial layout, dynamic
evolutionary results

Previous studies have generally concluded that carbon

emissions in the Yangtze River Delta region have been

growing, with high carbon emission areas concentrated in

core cities in Shanghai, Jiangsu, and other provinces (Song

et al., 2015; Liu et al., 2019). The results of this study are

similar to these findings, but analyze the carbon emission

patterns and dynamic evolution characteristics of the Yangtze

River Delta region at the county scale in more detail. We find that

although the overall carbon emissions in the Yangtze River Delta

region have stabilized at around 1.6 billion tons since 2011, the

differences in carbon emissions between counties have been

increasing, and carbon emissions have a general trend of

spreading to the inland areas, with Shanghai and Suzhou as

the center. And high carbon emission areas are mainly

concentrated in industrially developed districts and its

adjoining districts and counties under the jurisdiction of large

cities and the gap in carbon emissions between districts and

counties is expanding. This is a very important issue. Along with

economic development and population agglomeration, energy

demand is also rising, and the carbon emissions of counties with

developed industrial economies are gradually increasing, and the

“core-edge” structure of carbon emissions in the Yangtze River

Delta counties is becoming more and more prominent.

Therefore, the low-carbon development of industrialized

counties is becoming more and more important for the

achievement of the overall emission reduction target and the

green transformation of the surrounding counties in the Yangtze

River Delta (Wang et al., 2021). This will provide new policy

insights5 for regional precise carbon reduction and collaborative

carbon reduction. At present, most of the carbon reduction

targets in China are set at the provincial or municipal level,

which is not only conducive to macro control and coordination

TABLE 5 Estimates of the decomposition of the outcome effects of the Dubin model.

Effect Model lnECO lnPOP lnENV IND TEC

Direct Sta SDM 0.003 0.804*** −0.117 −0.001** 0.003***
dyn_SDM_dlag (1)_SR 0.009 0.125*** 0.050 0.000 0.003***
dyn_SDM_dlag (1)_LR 0.107 1.208*** 0.570 0.000 0.030**
dyn_SDM_dlag (3)_SR 0.008 0.114*** 0.059 0.000 0.003***
dyn_SDM_dlag (3)_LR 0.099 1.196*** 0.639 0.001 0.028***

Indirect Sta SDM 0.060*** −0.239*** 0.149 −0.001* −0.002
dyn_SDM_dlag (1)_SR −0.001 −0.140*** −0.020 0.000 −0.001
dyn_SDM_dlag (1)_LR −0.027 −0.420 −0.594 0.005 −0.037
dyn_SDM_dlag (3)_SR 0.004 −0.103** −0.032 −0.000 −0.001
dyn_SDM_dlag (3)_LR 0.101 −1.051 −0.167 −0.001 −0.003

Total Sta SDM 0.063*** 0.565*** 0.032 −0.001** 0.002
dyn_SDM_dlag (1)_SR 0.008 −0.015 0.030 0.000 0.002
dyn_SDM_dlag (1)_LR 0.080 0.788 −0.024 0.005 −0.008
dyn_SDM_dlag (3)_SR 0.013 0.011 0.027 −0.000 0.002
dyn_SDM_dlag (3)_LR 0.200 0.146 −0.004 −0.000 0.025

***, **, * means significance at the level of 1%, 5%, and 10%,respectively. LR, is the long-term effect and SR, is the short-term effect. The Direct effect and the Indirect effect are added to the

Total effect.

5 Thirty-two Chinese provinces and municipalities have explicitly taken
new actions tomeet the “30 · 60” carbon peaking and carbon neutrality
goals. Source: China Energy News. http://www.cnenergynews.cn/
csny/2021/03/10/detail_2021031092773.html, 2021-03-10/2022-
07-17.
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among regions at a higher level, but also has obvious

disadvantages, the responsibilities and tasks are not clear to

the regions (Song et al., 2021). Although the above

disadvantages can be overcome if counties are used as the

main unit for precise carbon reduction, the large number of

counties and the complexity of the situation will face many

difficulties in the approval of responsibilities and task

allocation. In fact, the main unit of precise carbon reduction

in the Yangtze River Delta region can be a combination of “city-

county”, and the main unit can be at the city level because of the

low carbon emissions in the peripheral areas of the Yangtze River

Delta region. The high carbon emission districts and counties are

mainly concentrated in Shanghai (Minhang District, Pudong

New Area, Baoshan District, Songjiang District), Suzhou

(Wuzhong District, Gusu District, Zhangjiagang City,

Changshu City), Wuxi (Jiangyin City, Yixing City),

Changzhou (Wujin District), Jiaxing (Haiyan County, Pinghu

City), Nanjing (Jianye District, Jiangning District, Liuhe District,

Qixia District), Ningbo (Yinzhou District, Haishu District,

Beilun District), Hefei (Shushan District, Chaohu City),

Hangzhou (Fuyang District), etc., (Figure 5), and precise

carbon reduction can be mainly by districts (Wang et al., 2017).

4.2 Discussion of the results of spatial
spillover effects

The Yangtze River Delta is an important industrial base in

China. In the context of green and low-carbon development, the

Yangtze River Delta region needs to grasp the good relationship

between carbon emissions and regional population, economy,

technological progress and industrial structure by identifying the

influencing factors and effect laws of carbon emissions, and

formulate more specific and effective regional carbon emission

reduction policies. Analyzing the influence mechanism of carbon

emission of various factors and their spatial effects will be of great

significance to the socio-economic development and carbon

emission decoupling in the Yangtze River Delta region.

Similar results were obtained in previous studies at the

provincial level and city level, where scholars used population

size, industrial structure, technological progress, and economic

size as independent variables of carbon emissions (Jiang et al.,

2017; Feng et al., 2018; Ren et al., 2019). Based on the county level

in the Yangtze River Delta region, this study found some new

findings at the level of spatial dynamics analysis, and also

extended the mechanistic explanation of spillover effects. The

direct effect of population size on carbon emissions is positive,

and this effect is consistent with the Malthusian theory (Knapp

and Mookerjee, 1996): the Yangtze River Delta region is one of

the most densely populated regions in China, and the large

population size implies high social demand, while industrial

enterprises in the Yangtze River Delta region are dense, and

industrial products are radiated nationwide and even overseas.

The expansion of production to meet the growing demand will

inevitably increase the consumption of energy and resources,

resulting in increased carbon emissions. At the same time, the

reason why population growth has a suppressive effect on carbon

emissions in neighboring regions in the short term is that, on the

one hand, the results of production expansion caused by

population concentration are radiated to neighboring regions,

and in the case of regional supply and demand equilibrium, the

expansion of production scale in one region leads to the

reduction of production scale in neighboring regions, which

in turn leads to the reduction of carbon emissions, i.e., there

is industrial competition in the Yangtze River Delta region; on

the other hand, it is because Population flow follows the first law

of geography, the population inflow area has a siphoning effect

on the population of neighboring areas, and the reduction of

population in neighboring areas leads to the reduction of carbon

emissions (Li et al., 2022).

Local economic growth at the county scale in the Yangtze

River Delta has a catalytic effect on carbon emissions in

neighboring regions; the increase in the share of secondary

industry in the region has a weak effect on carbon emissions

in the region, but has a suppressive effect on carbon emissions in

neighboring regions. This effect of economic scale and industrial

structure can be explained by the “polarization effect” (Myrdal,

1957), and although the Yangtze River Delta region is an

economically and industrially dense region in China, there is

still a large gap between its internal economic level and industrial

structure. The economically developed regions are vigorously

developing tertiary industries, while the economically relatively

underdeveloped regions become the acceptance sites of the

transferred industries from the developed regions. These

transferred industries are often energy-consuming industries

with high carbon emissions, so the expansion of the economic

scale in the region will lead to the increase of carbon emissions in

the neighboring regions, and the decrease of the share of

secondary industries in the region will also lead to the

increase of carbon emissions in the neighboring regions (Li

et al., 2022). The direct effect of technological progress on

carbon emissions is significant, and the spillover effect is not

significant, indicating that reducing energy consumption per unit

of GDP is an important way to curb local carbon emissions.

Technological progress has a binary effect on carbon emissions,

on the one hand, as the level of technology improves, energy use

efficiency increases, and thus energy consumption per unit of

GDP decreases; on the other hand, technological progress also

means that production expands and energy consumption

increases (Chen et al., 2020). The Yangtze River Delta region

is one of the strongest regions in China in terms of technological

innovation, and in terms of current results the Yangtze River

Delta region needs to further increase its efforts on clean energy

technological innovation and technology promotion. Meanwhile,

comparing the decomposition results of the direct effects of static

SDM and dynamic SDM, we can find that the elasticity
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coefficients of dynamic long-term SDM are much higher than

those of static SDM and dynamic short-term SDM, which is

consistent with the “cumulative effect” in economic theory. The

introduction of environmental quality does not have a significant

effect on carbon emissions in the region and neighboring areas,

which mitigates the “pollution paradise effect” to a certain extent

(Zhang et al., 2020).

4.3 Policy recommendations

The carbon emissions of counties in the Yangtze River Delta

region have obvious spatial heterogeneity, and we suggest that

the government should implement differentiated and

collaborative carbon reduction policies. Homogeneity is

difficult to cooperate, while differentiation is good for synergy.

First of all, we should distinguish that the two concepts of

differentiation and synergy are not conflicting. Synergization

refers to the coordination of individual cities, districts and

counties within the Yangtze River Delta region to accomplish

the goal of carbon reduction in the Yangtze River Delta region in

a concerted manner. Homogenization, on the other hand,

connotes that there is very little difference in the roles or

responsibilities of individual cities, districts and counties in

the Yangtze River Delta region in terms of carbon emission

reduction. Our emphasis on collaborative carbon emission

reduction should be the collaborative carbon emission

reduction under differentiation, not homogeneous carbon

emission reduction. Therefore, we make some suggestions on

the differentiated emission reduction of regions and counties. For

key regions with high carbon emissions, such as Minhang

District in Shanghai, Pukou District in Nanjing, Jiangyin City

in Wuxi, Wuzhong District in Suzhou, and Hat River District in

Wuhu, which emitted more than 30 million tons of carbon in

2018 (Figure 5), these counties and districts, which are generally

densely populated, economically developed and industrial bases

of core cities (Chen et al., 2020), they should gradually guide the

transformation of energy structure, promote the wide application

of clean energy, reasonably control regional population, and

actively introduce low-carbon advanced technologies by

relying on the stronger economic capacity and scientific and

technological research and development capability of core cities.

In 2018, Shanghai, Suzhou, Nanjing, Ningbo, Wuxi and Wuhu

cities emitted more than 60 million tons of carbon (Figure 4),

which are high carbon emission cities in the Yangtze River Delta

region, but 56% of the districts and counties in these cities did not

reach 10million tons of carbon emissions, especially like Zhenhai

and Xiangshan counties in Ningbo, Nanling and Wuhu counties

in Wuhu, and Gaochun and Yuhuatai districts in Nanjing is less

than 1 million tons, which is a low value area among high carbon

emission cities. For these areas, low-carbon technology research

and development should be increased, and personnel, technology

and financial support should be actively provided to other high-

carbon emission areas to promote the optimal allocation of

personnel, technology and financial resources and other

factors. 75% of the counties in the Yangtze River Delta are

still in Class I-III carbon emissions (Figure 5), and this part of

the region is in the most effective period to take carbon emission

reduction actions. However, considering that it is more difficult

to change the coal-based energy structure on a large scale in the

short term, we should promote industrial optimization and

upgrading, give full play to the advantages of the scale market,

and reduce the cost of carbon emission reduction technology.

When formulating carbon emission reduction policies, the

impact of carbon emission spillover effects on neighboring

counties should be comprehensively considered. First of all,

the Yangtze River Delta region should be treated as an overall

region for the overall planning of carbon emission reduction,

breaking the administrative boundary barriers and

comprehensively considering the actual situation of carbon

emissions, economic level, industrial structure and technology

level among neighboring counties, neighboring cities and

neighboring provinces (Wang et al., 2021), strengthen the

coordination and cooperation among districts and counties,

cities and provinces in carbon emission reduction policies and

technology flow, and promote the Yangtze River Delta regional

integration strategy in the direction of collaborative carbon

emission reduction. Secondly, a number of low-carbon district

and county pilots and key emission reduction district and county

pilots should also be set up, the former mainly for areas with high

emission reduction efficiency to play the role of demonstration

and leadership, and the latter mainly for areas with high carbon

emissions and carbon emission intensity (such as VI and VII

areas in Figure 5), which can be promoted by the relevant

departments of municipal or provincial governments with

emphasis on promoting carbon emission reduction. Thirdly,

relying on the existing foundation of regional integration in

the Yangtze River Delta, we can try to incorporate some of

the districts and counties with better foundation into the

construction of carbon trading market, establish a number of

county-level carbon emission trading platforms, and give full

play to the carbon emission reduction role of the carbon trading

market.

4.4 Shortcomings and prospects

This study also has some limitations. Firstly, the time period

of this study is 2000–2018, and the “pandemic” started to spread

in late 2019, which severely impacted the industrial development

of the Yangtze River Delta region and inevitably had an

important impact on energy consumption and greenhouse gas

emissions, but due to the limitation of data availability, the

carbon emission characteristics of the Yangtze River Delta

counties in recent years are not explored in this paper.

Second, although this paper has narrowed down the research
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unit to county-level administrative districts, the administrative

district boundaries are still not consistent with the spatial

boundaries of carbon emission subjects such as industrial

clusters and factory enterprises, and more accurate physical

boundaries of carbon emissions can be delineated by

fieldwork or satellite identification in the future for more

accurate measurement of the spatial and temporal changes

and spatial effects of carbon emissions. However, the above

problems do not affect the reference significance of this paper

in terms of methodology and conclusions.

5 Conclusion

As stated in the introduction, the Yangtze River Delta region

is a key area for carbon emissions in China. However, the

characteristics of the dynamic evolution and dynamic spatial

effects of carbon emissions in this region are still unclear, which is

not conducive to the coordination of carbon emission reduction

efforts. At the same time, the conclusions obtained for counties

are often very different from provincial and municipal studies

due to the great differences in their geographical conditions and

development stages. In this work, we explored these issues. We

find that county carbon emissions are more complex than

provincial and municipal carbon emissions, and the diversity

of non-synchronous states is stronger. In the relationship

between factors and carbon emission growth, population size,

industrial structure, and technological progress have positive

direct effects, economic size has positive spillover effects, and

population size and industrial structure have negative spillover

effects. We have made some theoretical discussions for these

results. Finally, we believe that the main unit of precise carbon

reduction should be a combination of local cities and key districts

and counties, and the government should implement

differentiated and collaborative carbon reduction policies.
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