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Water quality remains a main reason for the failure of waterbodies to reach

Good Ecological Status (GES) under the European Union Water Framework

Directive (WFD), with phosphorus (P) pollution being a major cause of water

quality failures. Reducing P pollution risk in agricultural catchments is

challenging due to the complexity of biophysical drivers along the source-

mobilisation-delivery-impact continuum. While there is a need for place-

specific interventions, the evidence supporting the likely effectiveness of

mitigation measures and their spatial targeting is uncertain. We developed a

decision-support tool using a Bayesian Belief Network that facilitates system-

level thinking about P pollution and brings together academic and stakeholder

communities to co-construct amodel appropriate to the region of interest. The

expert-based causal model simulates the probability of soluble reactive

phosphorus (SRP) concentration falling into the WFD high/good or

moderate/poor status classifications along with the effectiveness of three

mitigation measures including buffer strips, fertiliser input reduction and

septic tank management. In addition, critical source areas of pollution are

simulated on 100 × 100m raster grids for seven catchments (12–134 km2)

representative of the hydroclimatic and land use intensity gradients in Scotland.

Sensitivity analysis revealed the importance of fertiliser inputs, soil Morgan P,

eroded SRP delivery rate, presence/absence of artificial drainage and soil

erosion for SRP losses from diffuse sources, while the presence/absence of

septic tanks, farmyards and the design size of sewage treatment works were

influential variables related to point sources. Model validation confirmed
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plausible model performance as a “fit for purpose” decision support tool. When

compared to observed water quality data, the expert-based causal model

simulated a plausible probability of GES, with some differences between

study catchments. Reducing fertiliser inputs below optimal agronomic levels

increased the probability of GES by 5%, while management of septic tanks

increased the probability of GES by 8%. Conversely, implementation of riparian

buffers did not have an observable effect on the probability of GES at the

catchment outlet. The main benefit of the approach was the ability to integrate

diverse, and often sparse, information; account for uncertainty and easily

integrate new data and knowledge.

KEYWORDS

water quality, phosphorus pollution risk, Bayesian Belief Networks, risk modelling,
mitigation measures

1 Introduction

Phosphorus (P) pollution remains an important cause of water

quality impairment and eutrophication worldwide (Withers et al.,

2014; Bol et al., 2018). It leads to ecological degradation, biodiversity

loss, economic costs associated with clean-up and risk to human

health through contaminated water supplies (Brownlie and Reay,

2022). Diffuse pollution from agriculture is the second most

important cause of the failure of freshwater bodies to achieve

Good Ecological Status (GES) under the European Water

Framework Directive (WFD) (European Commission, 2000),

while point sources rank fourth (EEA, 2018). Effective mitigation

of diffuse pollution requires targeting of measures along the full

source-mobilisation-delivery-impact continuum (Bieroza et al., 2020,

2021) and includes the need for the identification of critical source

areas where high source risk is intersected with strongly connected

delivery pathways (Reaney et al., 2019). This has led to the

development of models and decision support tools (Drohan et al.,

2019) to inform evidence-based decision making. However, these

tools often struggle to represent the site- and catchment-specific

nature of P loss and the catchment-specific responses to pressures

(Drohan et al., 2019; Glendell et al., 2019; Pohle et al., 2021). In

addition, performance of complex models is often hampered by lack

of observational data for model parameterisation (Jackson-Blake

et al., 2017; Drohan et al., 2019; Fu et al., 2020). A number of

parsimonious decision support tools for the identification of critical

sources areas have been developed (Djodjic and Villa, 2015; Reaney

et al., 2019; Thomas et al., 2021), primarily based on geographic

information systems (GIS) analysis of hydrological and topographic

spatial data. However, presently, these tools do not integrate both

surface and sub-surface pathways along the full source-mobilisation-

delivery-impact continuum (Haygarth et al., 2005) or allow

simulation of the effect of management scenarios on pollution

risk, while accounting for uncertainty in both knowledge and data.

In this study, we tested the ability of Bayesian Belief Networks

(BBNs) to address these limitations. The application of BBNs in

environmental research over the past decade has been increasing

(Forio et al., 2015; Phan et al., 2016; Marcot and Penman, 2019;

Kaikkonen et al., 2020), however there are still many outstanding

challenges, including those associated with discretisation and

spatial integration with GIS (Moe et al., 2020). While integration

of BBNs with GIS has been pursued for discrete networks in the

field of ecosystem services modelling (Celio et al., 2014; Landuyt

et al., 2014; Gonzalez-Redin et al., 2016; Stritih et al., 2020), the

application of spatial BBNs in water quality modelling is limited

(Piffady et al., 2020; Troldborg et al., 2022) and has not been

applied to the probabilistic understanding of P pollution variable

critical source areas to date. Furthermore, the application of

BBNs with purely continuous data (e.g., Jackson-Blake et al.,

2022) as well as hybrid networks that include both continuous

and discrete variables is still scarce (Kaikkonen et al., 2020).

In addition to plausible bio-physical process

representation, models and decision support tools also need

to satisfy the criteria of salience (how relevant information is

to decision making bodies or public), credibility (or trusted

information) and legitimacy (a fair representation of

information from different perspectives) (Cash et al., 2005).

Achieving these criteria requires active involvement of

stakeholders in model co-development to build trust and

maximise the use of all available knowledge (Schuwirth

et al., 2019). Due to their intuitive graphical nature, BBNs

are ideally suited to model co-development with experts and

stakeholders (Pollino and Henderson, 2010). A further

strength of BBNs is the ability to integrate both

quantitative and qualitative information from a range of

sources in a single framework, including data, literature,

other model outputs and subjective probabilities from

experts and stakeholders (Moe et al., 2020; Reichert, 2020),

making them suited to situations where data is sparce and

uncertainty is high. BBNs can represent complex system

interactions (Pearl and Mackenzie, 2018) and include both

epistemic (knowledge) and aleatoric (system) uncertainty

(Sahlin et al., 2021). They are particularly useful for

system-level thinking, revealing possible causal

relationships between controlling factors that may not be

apparent otherwise and in situations where controlled
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experiments are not possible (Pearl and Mackenzie, 2018),

such as complex river catchments. This is particularly useful

for understanding of the complexities of P management in

river catchments that are subject to many uncertain

interacting biogeochemical processes and lag effects,

coupled with social and economic factors (Jarvie et al., 2019).

In this research, we aimed to 1) develop and test a

probabilistic decision support tool, using a hybrid BBN,

that includes both discrete and continuous variables and

integrates the available understanding of key processes

related to soluble reactive phosphorus (SRP) pollution risk

along the full P transfer continuum from source to impact

(Haygarth et al., 2005) in both surface and sub-surface

pathways, whilst accounting for uncertainty in data and

knowledge 2) develop and test a spatial application of the

model for probabilistic mapping of critical source areas,

including novel representation of risk factors related to P

mobilisation from soils 3) evaluate the uncertainty in the

understanding of the effectiveness of mitigation

interventions in contrasting study catchments.

2 Material and methods

2.1 Study catchments

Seven study catchments (size between 12–134 km2) that were

representative of Scottish land use and soil conditions in the

agriculturally most intensively managed areas (Figure 1; Table 1)

and had available water chemistry and discharge time-series at

catchment outlets were chosen for model parametrisation and

testing. The Lunan, Tarland, Cessnock and Mein catchments are

ongoing research sites and thus support extensive water quality

monitoring data. Fernie Burn, Linkwood Burn and Rough Burn

water bodies were selected because sewage discharges from

private septic tanks (STs), of particular interest to the Scottish

Environment Protection Agency (SEPA), were identified as the

single predominant pollution pressure, estimated to account

for >50% of P loss load as simulated by the SAGIS model

(Comber et al., 2018) used by the regulator.

2.2 Model development

2.2.1 Conceptual model development and
parameterisation

A hybrid BBN with both continuous and discrete variables

was developed in GeNIe 3.0 (www.bayesfusion.com), followed by

spatial implementation of a discretised version of the model

using the bnspatial package (Masante, 2016) in R modelling

environment (The R Project for Statistical Computing 4.1.3, R

Core Team, 2018) (Figure 2). The hybrid model had two

purposes: 1) the representation of key processes related to

SRP loss from both diffuse and point sources, using both

discrete and continuous variables, and 2) integration of SRP

losses at the catchment scale for rapid evaluation of potential

mitigation scenarios and to validate the model against SRP

concentrations at the outlet. The discretised spatial

implementation of the sub-modules then allowed to simulate

the spatial distribution of SRP losses from critical source areas.

The conceptual model structure (Figure 3, Supplementary Table

S1 and Supplementary Figure S1) was developed in an iterative

way through individual 1:1 consultation with domain experts,

including a biogeochemist (1), soil scientists (3) and a catchment

scientist (1), followed by two workshops with SEPA staff.

The model comprised five sub-modules: A) hydrology; and

four sources sub-modules simulating losses from B) diffuse

sources (both through drains and by soil erosion); C)

incidental losses from farmyards; D) sewage treatment works

(STWs); and E) STs. The modules A-C and E were

conceptualised to simulate the risk of SRP losses from

spatially distributed 100 × 100 m raster cells in kg ha−1 yr−1,

while module D was conceptualised to simulate losses for each

individual STW. The losses from the sub-modules were then

integrated in the “mainmodel” that acted as a routing module for

FIGURE 1
Location of the seven study catchments in Scotland included
in model development and testing.
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TABLE 1 Study catchment summary characteristics (mean, standard deviation and range (minimum-maximum)). Annual temperature and precipitation ranges within catchments are for the
1981–2010 period. STW–sewage treatment works, ST–individual domestic septic tanks. Soil types based onWorld Reference Base (WRB) (FAO, 2015). Percentage of assumed to be artificially-drained
land was based on Lilly et al. (2012).

Catchments Area
(km2)

Annual
temperature
(oC)
Range

Annual
precipitation
(mm)
Range

Daily
mean
flow
(m s−1)
Q95
-
Q5

SRP
concentration
(mg L−1)
Mean (SD)
Range

Elevation
(m)
Range

Slope
(%)
Range

Main
soil
types
(%)

Main
land
cover
types
(%)

Artificially-
drained
land %

STW
(no.)

ST
density
(no per
ha−1)

Cessnock 22 6.9–8.3 1,121–1,624 0.73 0.06 (0.05) 111–382 0.1–24.2 Eutric
Stagnosols (61%)

Improved
grassland (64%)

64 0 2.1

0.01–3.59 0.005–0.5
Seminatural
(28%)

Ombric
Histosols (19%)

Fernie Burn 52 7.5–8.7 707–938 0.54 0.04 (0.03) 32–265 0.0–45.0 Eutric
Cambisols (62%)

Arable (41%) 36 1 3.0

Improved
grassland (35%)Entic Podzols (21%)

0.13–1.04 0.005–0.13

Linkwood Burn 26 6.8–8.9 722–1,086 0.31
0.06–0.64

0.03 (0.02)
0.009–0.12

8–336 0.1–43.9 Entic and albic folic
Podzols (65%)
Histic Podzols (12%)

Forests (47%)
Arable (23%)
Improved
grassland (19%)

12 0 7.6

Lunan 134 7–8.5 634–943 1.81
0.29–5.88

0.03 (0.02)
0.002–0.1

2–248 0.0–36.5 Entic Podzols (49%)
Eutric
Cambisols (38%)

Arable (65%)
Improved
grassland (14%)

49 5 4.5

Mein 12 7.3–8.5 1,198–1,492 0.26 0.06 (0.04) 55–288 0.3–28.9 Dystric and eutric
Cambisols (59%)

Improved
grassland (65%)

56 0 2.8

0.01–0.94 0.001–0.3

Dystric
Gleysols (13%)

Seminatural
vegetation (16%)

Rough Burn 19 7.7–8.6 692–907 0.18 0.02 (0.01) 3–168 0.0–11.4 Entic and albic folic
Podzols (90%)

Forests (34%) 18 0 4.0

Improved
grassland (28%)

0.03–0.37 0.009–0.08

Arable (25%)

(Continued on following page)
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integration of losses at the catchment outlet, whereby the

combined SRP load from all sources (T yr−1) was divided by

the total annual runoff and the simulated SRP concentration (mg

L−1) was compared against observed SRP concentrations (see

Supplementary Table S1 for detailed model description). The risk

of the water body falling within the combined High/Good

(i.e., pass) or Moderate/Poor (i.e., fail) ecological status classes

was estimated, using the SRP concentration 0.07 mg L−1 as a cut-

off threshold, except for Tarland and Linkwood Burn where

0.04 and 0.06 mg L−1 thresholds were applied, respectively. In the

United Kingdom, the SRP standard is based on site-specific

estimates of natural phosphorus concentrations, considering

site’s alkalinity and altitude (UKTAG, 2015). Hence, a slightly

different threshold is relevant for different locations. However, it

needs to be emphasised that GES is determined as a combination

of factors, including physico-chemical, biological, specific

pollutant and hydro morphological assessments, all of which

must be fulfilled in order to reach GES. In this study, wemodelled

an important single aspect of GES, which needs to be combined

with additional assessment criteria to derive GES for a particular

catchment.

In effect, the modelling framework comprised two

conceptualisations—fully distributed sub-modules

conceptualised for grid-based application using raster data and

a semi-distributed main routing model, developed for rapid

evaluation of the effectiveness of potential mitigation measures

and comparison of simulated P losses against observed SRP

concentrations at the catchment outlet. To accommodate both

conceptualisations in a single model, we introduced two “switch”

nodes (1 and 4) with two states for the presence/absence of STs

and farmyards. These allowed us to calculate the losses from

these two sources in the main routing model just for those

locations where STs and farmyards were present and omit the

locations where these sources were absent to avoid skewing the

posterior distribution of SRP loads towards “zero” (see

Supplementary Table S1 for detailed description of each

node). Two additional “switch” nodes (2 and 3) were

introduced in the ST sub-module as root nodes to allow

simulation of management scenarios (ST Treatment and ST

Direct Discharge) in the hybrid model without triggering

discretisation. This was done as setting evidence on child

nodes would automatically discretise the model and lead to

loss of accuracy.

Prior probabilities for model parameterisation were

estimated from available observational time series, spatial data,

direct elicitation of subjective probabilities and literature (see

Supplementary Table S2 for list of data sources). Model

parameterisation followed a similar approach as in Troldborg

et al. (2022), whereby prior probability distributions for

continuous nodes were fitted to available data using the 5th,

50th, and 95th percentiles of the cumulative probability

distribution (O’Hagan, 2012) in the SHELF package (Oakley,

2020) in the open source statistical modelling environment R.T
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FIGURE 3
The overall structure of the hybrid model, with five sub-modules. (The structure of sub-models is presented in Supplementary Figure S1).

FIGURE 2
Conceptual diagram of model building steps and validation of the hybrid and discretised spatial model implementations. Two-way arrow
indicates iterative manual calibration of the spatial model by adjusting the upper limit of the highest target node state in the hybrid network.
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The lower and upper bounds of prior probabilities in continuous

nodes were constrained within plausible ranges informed by

available data and expert knowledge. Posterior probabilities

were then calculated by sampling from probability density

functions within this acceptable range. In some cases, this has

resulted in less than 10,000 acceptable Monte-Carlo simulations,

however enough valid samples were generated for calculation of

all conditional probability tables and to ensure stable model

simulations.

Each sub-module was discretised and applied spatially to GIS

data (Supplementary Table S2), that was used as hard-evidence to

simulate critical source areas of pollution within a probabilistic

framework, using the bnspatial package (Masante, 2016) in R. A

discretisation method selected for each node is described in

Supplementary Table S1. Discretisation was based on several

approaches, using published values from literature (e.g., ST

concentration, ST density, ST distance risk classes), expert

judgement (ST connectedness), uniform interval for root

nodes (e.g., mean total annual rainfall), percentiles (mean

daily runoff) and interpolation (e.g., for eroded SRP delivery

rate and drain SRP delivery rate). Interpolation was used to

ensure that conditional probabilities for the combination of

parent node states (low/low, medium/medium, high/high)

were meaningful. The spatially explicit model allowed to

simulate the estimated quantified loss of SRP from each raster

cell in kg yr−1 and the associated uncertainty using entropy. Risk

classes, the most probable risk class and the associated

uncertainty could also be simulated.

2.2.2 Time series and spatial data
Time series and spatial data sources used in the model

parameterisation and validation are summarised in

Supplementary Table S2. The open-source software QGIS 3.22

(QGIS Development Team, 2002) was used for import, analysis

and visualisation of spatial datasets (i.e., ST locations, elevation

and soils and land use layers) and R packages raster (Hijmans

and van Etten., 2022) and rgdal (Bivand et al., 2022) in the open

source statistical computing environment R (The R Project for

Statistical Computing 4.0.1; R Core Team, 2018) were used for

importing and processing rainfall grids. The following spatial

data were used in model parameterization:

2.2.2.1 Hydrology sub-module: Rainfall, Standard

Percentage Runoff

Monthly and annual rainfall averages for the study

catchments were calculated from HadUK (Hollis et al., 2019)

1 km2 gridded climate observations for the 1981–2010 period,

downloaded from the Natural Environment Research Council’s

Data Repository for Atmospheric Science and Earth Observation

(in NetCDF format). Standard Percentage Runoff was derived

from Hydrology Of Soil Types (HOST) class (Boorman et al.,

1995) of individual soil types found in the catchments (Soil

Survey of Scotland Staff, 2022) and was used to split rainfall into

surface runoff and infiltration. Standard Percentage Runoff is the

proportion of any rainfall event that is effectively contributing to

the fast response flow in a river network and, although not strictly

direct surface runoff, it is a reasonable approximation for the

majority of United Kingdom soil types (Lilly and Baggaley, 2014).

2.2.2.2 Diffuse sources sub-module: Land cover, soil

type, erosion risk, artificially drained land

Land cover composition in the study catchments was

determined using two datasets: 1) Scottish Integrated

Administration and Control System (IACS Anon, 2017)

polygons for 2015, which provide a detailed record of crop

types at a field scale for most cultivated land in Scotland, and

2) Land Cover Map 2007 (Morton et al., 2011), which gives

dominant land cover type at broad habitat level at 1: 25,000 scale

and was used to infill areas where IACS data were not available.

We aggregated IACS crop codes to match LCM2007 land uses

into five broad land cover types 1) arable, which included the

arable and horticulture LCM2007 code and IACS codes for

cereals, root vegetables and maize; 2) rough grazing, which

included the IACS codes for rough grazing; 3) grassland,

which included the LCM2007 and IACS codes for improved

grassland, 4) forest, which included the LCM2007 and IACS

codes for conifers and deciduous woodlands, 5) seminatural

vegetation, which included other seminatural habitats such as

heathlands, bogs and montane habitats from LCM 2007; and 5)

other, which mainly included built-up areas and freshwater.

Arable land or (improved) grasslands were the dominant land

cover types in most study catchments (Table 1), although forests

or seminatural vegetation covered extensive areas in four study

catchments.

Main soil types (>10% catchment cover) (Soil Survey of Scotland

Staff, 2022), aggregated land uses using the IACS (Anon, 2017) and

land cover maps (Morton et al., 2011) were derived to combine

with soil erosion risk classes (Baggaley et al., 2020). Soil erosion

risk (low, moderate or high risk) was assessed from a 50 m grid

map that gives the risk of a bare soil being eroded by water

under intense or prolonged rainfall (Baggaley et al., 2020). The

susceptibility to erosion was based on the soil’s capacity to

absorb rainfall, combined with the slope, to determine how

erosive the overland flow could be, with steeper slopes leading

to faster runoff and topsoil texture as a proxy for resistance to

entrainment. Soils with mineral topsoils have been classified

separately from those with organic (histic/peaty) topsoils, while

organic soils (Histosols/peats) were considered highly erodible

and at a high risk of erosion, irrespective of slope.

Records of where artificial field drains were installed are not

available for cultivated areas in Scotland, therefore their location

and distribution had to be inferred.We used the approach of Lilly

et al. (2012), who estimated that almost all the soils in Scotland

under cultivation that had inhibited natural drainage

(i.e., imperfect, poor or very poor drainage classes) had

artificial drainage systems installed. Therefore, to identify

Frontiers in Environmental Science frontiersin.org07

Glendell et al. 10.3389/fenvs.2022.976933

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.976933


which soils within the study catchments were likely to have

artificial soil drainage, we overlayed areas of imperfect, poor and

very poor soil drainage from the available soil map (Soil Survey of

Scotland Staff, 2022) with cultivated areas based on the broad

land cover types of arable and improved grassland (Morton et al.,

2011).

2.2.2.3 Septic tank sub-module: ST location and density,

topography, soil properties, soil P sorption capacity, soil

hydrological characteristics

ST locations, modelled based on the “postcode” method,

whereby rural dwellings not connected to the main sewer

network are assumed to be served by private septic tanks

(May et al., 2015a), were provided by SEPA. The number of

septic tanks located within each 100 × 100 m grid cell was

counted to derive septic tank density.

The distance of individual STs to surface watercourses was

calculated by measuring the horizontal distance from the ST

location to the nearest water body in the SEPA detailed stream

network GIS layer (using the distance to nearest hub tool in QGIS

3.12.0). The mean distance of STs to the nearest water body was

calculated for each 100 × 100 m grid cell and individual grid cells

were assigned a risk rating as defined in Glendell et al. (2021) and

in Supplementary Table S1.

Terrain information was provided from an Ordnance Survey

digital terrain model at 50 m grid resolution (OS DTM50, Open

Data (OGL)), which was aggregated by mean to 100 m. The

100 m grid DTM was used to calculate mean slope (%) at the

modelled STs locations within each 100 × 100 m grid cell and

individual grid cells were then assigned a P loss risk rating as

defined in Glendell et al. (2021) and in Supplementary Table S1.

Information on soils was derived from the digitised soil map

(Soil Survey of Scotland Staff, 1970–1987) covering most of

cultivated land in Scotland. Information comprised of soil

type (Major Soil Subgroups/MSSG), the soil’s natural drainage

class and the associated HOST class (Boorman et al., 1995).

Dominant soil types within the study catchments were Cambisols

and Entic and Albic Podzols, apart from Cessnock where

Stagnosols covered most of the catchment’s area (Table 1).

Most soils in the Cessnock, Linkwood Burn and Lunan

catchments were naturally imperfectly or poorly draining,

while freely or relatively freely draining soils covered most of

the remaining catchment areas (Table 1).

Risk of ST effluent movement was assessed by extracting HOST

class at the location of each modelled ST and then translating HOST

class information into the risk factors as in Glendell et al. (2021),

Stutter et al. (2022) and May et al. (2015b). This was done by

considering the HOST conceptual models of water movement that

provide an integrated assessment of soil texture and soil hydrological

properties (soil infiltration and percolation) based on soil

morphological characteristics, such as the presence of a gleyed

layer, a slowly permeable layer or peaty topsoil, and the presence

of an aquifer or groundwater. Thus, this classification also provided a

general assessment of water table contamination risk. Most HOST

classes were assigned a high or very high-risk factor due to the high

potential for surface runoff and/or low permeability, while HOST

classes of low and moderate risk rating represented relatively free-

draining soils with no presence of an aquifer or groundwater or with

aquifers at depth greater than 2 m.

The information on phosphorus sorption capacity of soils at the

modelled ST locations was derived from the map of soil Phosphorus

Sorption Capacity (PSC) at 1: 250,000 scale, which gives the inherent

ability of soil to retain P, given soil chemistry, texture, pH and organic

matter content (Sinclair et al., 2015). In that work, soil properties (pH,

organic carbon content, clay content and oxalate extractable iron and

aluminium concentrations) were determined from a dataset of

399 topsoil samples from the National Soil Inventory of Scotland

(2007–9), other research projects and the National Soils Archive to

model PSC for each soil association. These values were then grouped

into three categories of PSC index from 1 (Low) to 3 (High). Where

no data were available, the areas were mapped as “not determined”.

In all catchments, the extent of the “not determined” PSC area was

less than 1%, with the exception of Cessnock where it was 22%, as

PSC was not determined for organic soils.

2.2.2.4 Incidental losses sub-module: Farmyard

presence and size

Presence of farm yards was derived from the Ordnance Survey

AddressBase (https://www.ordnancesurvey.co.uk/business-

government/products/addressbase) and Mastermap topography

datasets (https://www.ordnancesurvey.co.uk/business-government/

products/mastermap-topography). The AddressBase dataset was

filtered to select only postcodes coded as C (commercial), A

(agricultural) and 01 Farm (non-residential, which includes barns,

silos, sheds and silage storage). TheMastermap dataset was filtered to

select only Buildings (described as “Roofed constructions, usually

walled. Includes permanent roofed constructions that exceed 8.0 m2

in area”). A buffer of 100m was created around each AddressBase

location, and all buildings within this buffer were selected and

grouped as a “farm”. Then the minimum sized rectangle

necessary to enclose the group was calculated as a proxy for area

of hard standing and impermeable surfaces for each farm. The

conceptual representation of farmyard SRP losses followed that

presented in Stutter et al. (2022), whereby SRP load was

calculated as a product of farmyard area and SRP concentration

in the farm effluent. Initially, 100% of the load was assumed to reach

the watercourse, with the final proportion of these losses adjusted to

1% during model calibration.

2.2.2.5 STW sub-module: Location, treatment type and

design size

Information about Sewage Treatment Works (STW) was

provided by SEPA and comprised of grid references of their

locations, which were converted to coordinates for mapping

purposes, level of sewage treatment (primary, secondary,

tertiary) and design size based on population estimates.
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2.2.2.6 Main model: Observed SRP concentrations and

discharge data

Time series observations of SRP concentrations at the

catchment outlet were obtained from SEPA for five study

catchments and from experimental data from the James

Hutton Institute (Hutton) for Tarland and Lunan. Simulated

discharge data were obtained from SEPA for Fernie, Linkwood

and Rough Burn, while observed data were available for

Cessnock, Mein, Tarland and Lunan (Supplementary Table S2).

2.2.3 Elicitation
Direct elicitation (i.e., an expert providing a number of points on

the probability density function) was used on one occasion, to derive

delivery coefficients or the proportion of SRP load that might be

delivered to the freshwater system given a certain degree of ST

connectedness (Supplementary Table S3). We fitted a beta

distribution on a 0–1 scale to the elicited 5th, 50th, and 95th

percentiles inRpackage SHELF (Oakley, 2020) as stated in 2.2.1 above.

2.2.4 Sensitivity analysis and validation
Multiple lines of evidence were used to evaluate the model.

Firstly, sensitivity analysis was undertaken on a discretised

version of the hybrid BBN in GeNIe 3.0 using the algorithm

of (Kjærulff and van der Gaag, 2000) that calculates a complete

set of derivatives of the posterior probability distributions over

the target nodes over each of the numerical parameters of the

Bayesian network, using P losses from different sources (erosion,

drains, farmyards, ST, STW) and SRP concentration at the

catchment outlet as target nodes.

Secondly, SRP concentration (mg L−1) at the catchment

outlet simulated in the hybrid model was compared with the

available water quality observations at the catchment outlet (see

Supplementary Table S2 for data sources) and % Bias was used as

a measure of model performance,

%Bias � Xsim −Xobs

Xobs
(1)

where Xsim were SRP concentrations sampled from 10,000 Monte-

Carlo model simulations at the catchment outlet and Xobs were

sampled from a distribution fitted to observed data. Departure of

+/−50% from observations was considered behavioural.

Thirdly, uncertainty in the simulated outcomes in the spatial

implementation of the model was evaluated by calculating the

Shannon entropy index of the target nodes, given the state

probabilities. The entropy H(X) for node X is defined as:

H(X) � −∑n
i�1
piln(pi) (2)

where pi is the probability associated to the state i of target

node. The entropy quantifies the information content within a

node and equals 0 if X is known with certainty and is maximised

when X is unknown (i.e., X is given by a uniform distribution).

Finally, the SRP losses in the spatial implementation of the

model were calculated by summing the mid values of target node

states weighted by their probability (p) as:

LoadSRP � p1*mid1 + p2*mid2 + . . . + pn*midn (3)

where midn is the mid value of the nth state of the target node.

For each SRP source (erosion, drains, farmyards, STWs, STs), the

final P loss node (kg SRP ha−1 or kg yr−1 for STWs) was used as

the target.

The combined yields from each SRP source in each study

catchment were then summed and divided by the median total

annual runoff (m3). The calculated SRP concentration (mg L−1)

was compared against observed median annual SRP

concentration in each study catchment and % bias was

calculated as

%Biask �
⎛⎜⎜⎜⎜⎝∑n

1
Xsimk

Qmedk

⎞⎟⎟⎟⎟⎠ −Xobsk

Xobsk
(4)

where Xsimk were simulated SRP concentrations calculated as

the sum of all grid cell yields for each source n (erosion, drains,

farmyards, STWs, STs) in each study catchment k, Qmedk was

the median annual runoff and Xobsk was the observed median

annual SRP concentration in each study catchment k. This was

undertaken as an iterative manual calibration process, whereby

the spatial implementation of the model was further calibrated

against the observed SRP concentrations by constraining the

upper limit of the highest state for each SRP target node to

plausible ranges, whilst still generating enough valid samples to

calculate all combinations of conditional probability

distributions in the conditional probability tables in the

hybrid model.

2.2.5 Simulated scenarios
The effect of the following three mitigation interventions

with eight scenarios was simulated:

1) The effect of buffer strips on the SRP concentration and the

probability of achieving GES at the catchment outlet under

three scenarios: a) a “negative control” assuming no buffers

implemented in the catchment b) current status whereby

good agricultural practice regulations require a mandatory

2 m buffer strip along waterways in all cultivated fields c)

extending the statutory 2 m buffers in 80% cropped fields to

the voluntary 8 m buffers, available under enhanced

agricultural support payments. The effect of the three

treatments on sediment removal was specified in the

“Buffer sediment removal” node whereby beta statistical

distributions (on a 0–1 scale) were fitted to buffer

efficiency data for different buffer widths collated from

literature (Stutter et al., 2021). Zero removal was assumed

for the “no buffer” scenario. SRP release from eroded
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sediment was then calculated using empirical regression

equation based on unpublished data from the Lunan

catchment (see Supplementary Table S1 for further detail).

2) Fertiliser application rates below, at and above agronomic

optimum (based on Morgan P target class; a soil P test used

for agronomic guidance in Scotland). Here, agronomic

optimum for different crop types was based on Sinclair

et al. (2015), where recommended target soil P status for

agronomic optimum was related to crop type and soil PSC. In

the “below agronomic optimum” scenario, the target Morgan

P soil status was reduced by one class, whilst in the “above

agronomic optimum” scenario the target Morgan P soil status

was increased by one class.

3) Baseline P pollution losses from STs were compared against a

“maximum scenario” where we assumed tertiary treatment of

septic tank effluents, improved maintenance and, in this case,

a scenario of no direct connectedness to watercourses.

Concentrations for different treatment types for

“Maintained” STs were informed by literature review

(Glendell et al., 2021). These were defined as Truncated

Normal distribution (at zero) with a mean for each

treatment type (“None” 14 mg L−1, “Primary” 10 mg L−1,

“Secondary” 5 mg L−1 and “Tertiary” 2 mg L−1) and

standard deviation at 1/10th of the mean to account for

uncertainty. For “Failing” STs, “None” treatment was

assumed. Tertiary treatment of ST effluent can comprise

aeration components, filters, reedbeds or chemical

additions (see Supplementary Table S1 for detailed model

description).

3 Results

3.1 Validation, source apportionment and
sensitivity analysis

Figure 3 shows the overall model structure of the hybrid

model, while the structure of the five sub-modules is presented in

the Supplementary Figure S1.

Figure 3 shows the simulated vs observed probability

distributions of achieving GES in the hybrid version of the

model. In 46% of simulations, the % bias was less than the

FIGURE 4
Simulated probability of achieving GES compared against observed SRP concentrations at the catchment outlet. Horizontal arrows indicate
simulations that are within 10% of observed SRP values. Upward and downward arrows indicate instances where model simulations depart from the
observed probabilities by > 10%. “Overall” indicates average simulations marginalised across the seven study catchments.

Frontiers in Environmental Science frontiersin.org10

Glendell et al. 10.3389/fenvs.2022.976933

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.976933


50% departure considered to be acceptable, whilst in 30% cases,

the % bias was above the 50% acceptance threshold (Figure 3).

However, the agreement between discrete simulated (78%) and

observed values (81%) across all catchments was high. Figure 4

shows a comparison between simulated and observed

probabilities of achieving GES for the seven study catchments.

In two cases (Fernie Burn and Mein), the difference was less than

10%. In two cases (Cessnock and Tarland), the model over-

predicted the probability of GES by >10% and in three cases

(Linkwood, Lunan, Rough Burn) the probability was under-

predicted by >10%.
Figure 5 shows a comparison between simulated and

observed SRP concentrations (mg L−1) at the catchment outlet

in the hybrid model, with the simulated values being more

uncertain than the observations. In four study catchments

(Fernie, Linkwood, Lunan, Rough Burn), the observed inter-

quartile ranges were within those simulated by the model, whilst

in three study catchments (Cessnock, Mein, Tarland) the upper

quartile of the observed concentrations exceeded that of the

simulated values.

In spatial application, % bias ranged between −1.7 and 292%,

indicating a close correlation between simulated and observed

SRP concentrations at the catchment outlet (Table 2).

Figure 6 shows the sensitivity analysis and the strength of

influence between variables. Due to mathematical and software

limitations, sensitivity analysis was by necessity undertaken on a

discretised version of the network, which introduces additional

uncertainty. Hence it is notable that the simulated probability of

GES in the discretised version of the network for spatial

application (63%) deviated from the observed values (82%)

more than the simulated values in the hybrid network (78%).

Notwithstanding this limitation, it was possible to identify the

most influential variables, including the study catchment,

fertiliser application rates, soil Morgan P, SRP delivery rate

from soil erosion, realised load from STs, STWs design size,

runoff and crops. The presence/absence of artificial drainage, soil

erosion, farmyards and ST were also influential variables.

3.2 Effectiveness of mitigation
interventions in contrasting study
catchments

3.2.1 Buffer management
The implementation of buffer strips did not affect the

probability of achieving GES. Figure 7 and Table 3 show no

change in the spatial losses of SRP due to soil erosion under the

three buffer implementation scenarios. Drain losses are not

presented as they were not affected by buffer strips in the

model, due to pollution in drains likely to bypass the buffer.

FIGURE 5
Simulated vs. observed SRP concentrations mg L−1 at the outlet of the seven study catchments showing a greater uncertainty in simulated than
observed SRP concentrations. The box plots show the median and inter-quartile range, the whiskers show the minimum and maximum values, and
the violin width shows the probability density distribution.
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3.2.2 Fertiliser inputs
As described above, we simulated the effect of change in fertiliser

application rates on the SRP concentration and the probability of

achieving GES at the catchment outlet under three scenarios: 1)

reducing the application rates below the agronomic optimum by one

class below the target Morgan P soil status (Sinclair et al., 2015) 2)

current status whereby all agricultural land is fertilised up to the

recommended agronomic optimumand 3) increasing the application

rates above the agronomic optimum by one recommended target

Morgan P soil status class. In the hybrid model, the probability of

achieving GES increased by 5% and decreased by 7% under the two

intervention scenarios 1) and 3), respectively. Figure 8 and Table 3

show the change in the spatial losses of SRP due to soil erosion under

the three fertiliser management scenarios in the spatial

implementation of the model. Entropy as a measure of

uncertainty increased with increasing fertiliser additions for

erosion risk but was reduced in the same scenario for drain loss

(Figure 8), reflecting the different physical and biogeochemical

processes involved in the surface and sub-surface losses.

Reduction of fertiliser application rates below agronomic

optimum reduced the total SRP losses from erosion by 67% and

drain losses by 41%, while increased application above agronomic

optimum increased the total SRP losses by 52 and 58% from erosion

and drains, respectively (Table 3).

3.2.3 Septic tank discharge management
The baseline P pollution losses from STs were compared

against a “maximum scenario” where we assumed tertiary

treatment of septic tank effluent, improved maintenance and

no direct discharge to watercourses. In the hybrid version of the

model, for the “maximum” ST scenario the probability of the

watercourse achieving GES increased by 8% (78% under baseline

and 86% under maximum scenario). Figure 9 shows the change

in the spatial losses of SRP under two ST management scenarios

and the associated uncertainty, with a notable reduction in

uncertainty associated with the maximum intervention. The

total spatial SRP losses between the baseline and maximum

ST intervention scenarios decreased by 82% (Table 3).

4 Discussion

The first objective of this work was to develop and test a

systems-based decision support tool that integrates the available

TABLE 2 Total annual SRP losses kg yr−1 and mean SRP losses kg ha−1 yr−1 simulated using the discretised spatial implementation of the model and
derived estimated SRP concentrations in the seven study catchments. Mean drain, ST and farmyard losses are calculated per area of catchment
covered by these source areas. Mean erosion losses are calculated for the whole catchment area.

Baseline scenario Cessnock Fernie Burn Linkwood Burn Lunan Mein Rough Burn Tarland

Total SRP losses kg yr−1

Erosion losses 88.30 402.95 102.65 1,356.90 67.38 97.93 376.79

Drain losses 217.83 146.99 34.78 484.89 95.59 28.86 108.87

ST losses 65.01 208.98 231.73 589.11 45.10 72.39 176.70

STW losses 0.00 15.17 0.00 421.41 0.00 0.00 408.00

Farmyard losses 22.16 15.39 16.89 47.51 18.91 4.30 15.43

Total SRP losses (kg yr−1) 391 791.19 385 2,904.20 226 202 673

Median annual runoff (ML) 8,326 32,832 6,244 81,130 4,163 3,469 16,777

Simulated median SRP concentration (mg L−1) 0.05 0.07 0.06 0.10 0.05 0.06 0.06

Observed median SRP concentration (mg L−1) 0.05 0.03 0.03 0.03 0.05 0.02 0.06

% Bias −1.70 91.37 129.50 188.45 14.86 291.74 0.65

Mean SRP losses kg ha−1 yr−1

Erosion losses 0.04 0.07 0.04 0.10 0.05 0.05 0.05

Drain losses 0.14 0.08 0.10 0.07 0.14 0.08 0.10

ST losses 1.63 1.31 1.30 0.93 1.37 1.00 0.89

Farmyard losses 0.24 0.18 0.27 0.17 0.40 0.22 0.22

Median SRP losses kg ha−1 yr−1

Erosion losses 0.004 0.11 0.002 0.13 0.004 0.004 0.003

Drain losses 0.14 0.07 0.10 0.07 0.14 0.07 0.10

ST losses 1.41 1.15 1.04 0.72 1.40 0.98 0.66

Farmyard losses 0.24 0.19 0.28 0.17 0.40 0.22 0.22
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understanding of key processes related to SRP pollution risk

along the P transfer continuum from both surface (overland

flow) and sub-surface pathways (drains), whilst accounting for

the uncertainty in both knowledge and data. A second objective

was to develop a spatial application of the model for probabilistic

mapping of critical source areas. Finally, we tested the model to

evaluate the likely effectiveness of water quality mitigation

measures within an uncertainty framework. The first two

objectives are discussed in Section 4.1 and the third objective

is discussed in Section 4.2 below.

4.1 Developing and testing a probabilistic
systems-based decision support tool

Despite several decades of development (Yuan et al.,

2020), water quality modelling in catchment systems still

faces numerous challenges (Fu et al., 2020). These are

related to the complexity of catchment processes, the

limitations in their understanding, representation in the

model structure and our ability to depict these

relationships mathematically (Kim et al., 2014).

Furthermore, model development is frequently hampered

by lack of observational data, that is multivariate, variable,

and expensive to obtain (Slaughter et al., 2017). Numerous

classifications of water quality models have been devised and

extensively reviewed (Rode et al., 2010; Fu et al., 2020; Yuan

et al., 2020). Models have been classified into lumped, semi-

and fully-distributed (Fu et al., 2018); simple to complex

(Yuan et al., 2020); steady state or dynamic; deterministic

and stochastic; physically-based, conceptual and empirical

(Ejigu, 2021); catchment to global (Mayorga et al., 2010;

Vilmin et al., 2020), each associated with certain

assumptions and limitations. Here, we have developed a

steady state probabilistic conceptual catchment model,

informed by expert knowledge and empirical data. The

model was designed for operational decision making to

inform the likely effectiveness and targeting of water

quality mitigation measures. The model combined two

spatial representations—a semi-distributed hybrid BBN for

rapid evaluation of the likely effectiveness of mitigation

measures at the catchment scale and a fully-distributed

spatial BBN, coupled with GIS, for spatial targeting of

mitigation measures and the understanding of critical

source areas. The model was evaluated using a suit of

approaches, including sensitivity analysis and independent

FIGURE 6
Sensitivity analysis of the discretisedmodel for spatial implementation, with SRP concentration at the catchment outlet (mg L−1) and losses from
drains, soil erosion, septic tanks, farmyards and STWs (kg ha−1 yr−1) as target nodes. Deeper red indicates more sensitive variables and thicker lines
greater strength of influence.
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testing of both model implementations against

observational data.

In the hybrid model, % bias was skewed towards under-

prediction (46% of simulations with <50% bias), whilst 25% of

simulations were within the 50%+/− range deemed acceptable

and 30% of simulations had >50% bias. Hence, according to this

objective function, the model tended to under-estimate SRP

losses. However, this was not mirrored in the direct

comparison of discretised simulations against observed data,

whereby there was 78% probability of a simulated

concentration falling within the GES class, as compared to

81% probability of achieving GES indicated by the

observations (Figure 3). Hence, based on this direct

comparison, the hybrid model tended to provide conservative

estimates of SRP concentrations. The comparison between

simulated and observed concentrations (Figure 5) indicated

that the model simulations were more widely distributed than

observations. This may be due to the low temporal resolution of

the observed data that may not represent the full variability in

water quality status. However, the evaluation of the model

against observational data is heavily influenced by data

quality, including whether observed SRP concentrations and

discharge data monitoring location are geographically co-

located (not always the case with regulatory monitoring data)

and the proximity of the regulatory monitoring sites to the

catchment outlet. The greater uncertainty in simulated SRP

concentrations may also be due to the stochastic nature of the

model that makes it more difficult to constrain simulations

within narrow bounds.

In the spatial implementation, % bias ranged

between −1.7 and 292 (Table 2), indicating satisfactory model

performance. It has been shown that large uncertainty is

associated with observed low-resolution monitoring data

(Johnes, 2007), whereby uncertain observations can lead to

FIGURE 7
Erosion losses in the Tarland study catchment under three buffer mitigation scenarios and the associated uncertainty (entropy). Drain losses are
not shown as they are not affected by buffers in the model structure.
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errors between 231% at lower P concentrations and 81% at higher

P concentrations (Hollaway et al., 2018). Hence, calibrating a

model against these infrequent regulatory data can itself lead to

biases, alongside the acknowledged uncertainties in using these

data to evaluate waterbody GES.

The mean estimated losses per ST in this study

(0.9–1.6 kg ha−1 yr−1) were comparable to P losses between

0.6 and 1.7 kg yr−1 reported in May et al. (2015), although it

has to be noted that the estimates provided inMay related to total

P (TP) losses from a single septic tank while estimates in this

research represented SRP losses per hectare that may include

several septic tanks, albeit multiple STs are less likely to be

present. However, the simulated ST losses are one to two

orders of magnitude greater than those reported in Stutter

et al. (2022) for 19 comparable catchments in Scotland

(0–0.023 kg ha−1), although the latter were reported for the

bioavailable dissolved P (BADP) species, which is a fraction

of SRP.

The conceptual representation of farmyard losses initially

followed that presented in Stutter et al. (2022), whereby SRP load

was calculated as a product of farmyard area and SRP

concentration in the farm effluent, with 100% of the load

assumed to reach the watercourse. However, these initial

losses proved to be two orders of magnitude higher than the

contribution from any other SRP source in the study

catchments, resulting in unrealistic SRP concentrations at

the catchment outlet (results not shown). Hence, during the

calibration process, only 1% of farmyard losses were assumed to

reach the watercourse in the final model. This representation

differs from that implemented in Stutter et al. (2022) who

assumed that 100% of farmyard runoff would contribute to

stream P loading at a catchment scale, as they found a large gap

in observed and estimated stream P loadings until these

farmyard contribution were included among P sources. The

simulated mean P losses from farmyards presented in this study

(0.17–0.40 kg ha−1 farmyard, Table 2) appear comparable to

Stutter et al. (2022) (0–0.213 kg ha−1 for BADP), however the

latter were apportioned to the whole catchment area and not

just the area of farmyards, resulting in much larger total

catchment loads.

The losses from farmyards are uncertain and supporting

data are scarce. The reduced contribution of 1% of farmyard

runoff in this research accounted for the fact that whilst

farmyards can be significant sources of P pollution in

headwater catchments (Harrison et al., 2019; Stutter et al.,

2022), with a strong effect on water quality at the local scale,

pollutants from farmyards can be rapidly attenuated by the

stream network (Harrison et al., 2019). At our assumed lower

TABLE 3 Comparison of simulated total annual SRP loss kg yr−1 per catchment under baseline and eight management scenarios in the spatial model.
S1-S3 scenarios; FB–fertiliser application below agronomic optimum, FO–fertiliser application at agronomic optimum, FA–fertiliser application
at agronomic optimum. Ref–reference used to calculate % change in SRP losses for different management scenarios.

Total SRP loss kg yr−1

Scenario Cessnock Fernie
Burn

Linkwood
Burn

Lunan Mein Rough
Burn

Tarland Mean Change
%

Erosion losses Buffers
current

88.30 402.70 102.55 1,355.93 67.38 97.83 376.52 355.89 Ref

Erosion losses Buffers
increase

88.30 402.64 102.53 1,355.70 67.37 97.80 376.45 355.83 0

Erosion losses Buffers none 88.30 402.97 102.67 1,356.97 67.38 97.95 376.83 356.15 0

Erosion losses S1 FB 29.46 138.38 33.78 473.79 22.33 33.45 125.79 122.43 -67

Erosion losses S2 FO 91.20 424.29 106.56 1,436.16 70.23 102.56 394.00 375.00 Ref

Erosion losses S3 FA 144.24 646.17 167.61 2,160.74 109.57 157.76 610.58 570.95 52

Drain losses Buffers current 217.83 146.99 34.78 484.89 95.59 28.86 108.87 159.69 Ref

Drain losses Buffers
increase

217.83 146.99 34.78 484.89 95.59 28.86 108.87 159.69 0

Drain losses Buffers none 217.83 146.99 34.78 484.89 95.59 28.86 108.87 159.69 0

Drain losses S1 FB 131.39 79.05 21.85 244.26 59.06 15.92 70.58 88.87 -41

Drain losses S2 FO 180.50 146.14 32.43 492.02 80.06 28.37 100.38 151.41 Ref

Drain_losses_S3_FA 341.59 215.78 50.07 718.40 147.65 42.29 155.65 238.78 58

Baseline ST losses 65.01 208.98 231.73 589.11 45.10 72.39 176.70 198.43 Ref

ST losses maximum
scenario

8.67 32.80 54.05 103.13 5.76 13.07 35.39 36.12 -82
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1% contribution of farmyard effluent reaching the stream

network, the SRP losses per hectare of farmyard were still

greater than those from erosion or drains (Table 2). Farmyard

pollutant losses are influenced by a range of factors, including

farm management practices, topography and hydrological

connectivity, resulting in great variability in SRP

concentrations found in farmyard drains (Harrison et al.,

2019). Hence this sub-module would benefit from further

targeted data collection to verify our assumptions and

ascertain whether farmyard losses may be under-estimated.

This may help to address the equifinality in model calibration

as observed SRP concentrations at the catchment outlet

represent an integrated signal from multiple catchment

processes (Bieroza et al., 2020, 2021) and as such may fail

to detect the true contribution from different pollution

sources within a catchment (Harrison et al., 2019).

The current conceptualisation of soil erosion losses in the

model was based on the assumption that the probability of

occurrence of erosion was governed by soil type and was

typically low, while erosion rates were controlled by land use

(Rickson et al., 2020). This has led to a skewed posterior

distribution of erosion losses with many zeros in the hybrid

version of the model and was also evident in the much smaller

median than mean SRP losses per hectare in several catchments

(Table 2). In general, erosion rates are known to be uncertain

(Benaud et al., 2020; Cloy et al., 2021) and need to be constrained

further (Rickson et al., 2020). To this end, sediment and organic

matter fingerprinting has recently been found to be a promising

way of verifying erosion models and reducing the uncertainty of

erosion losses (Wiltshire et al., 2022).

Overall, these multiple approaches to evaluating the hybrid

model performance indicate a satisfactory performance within

FIGURE 8
Erosion losses and drain losses in the Tarland study catchment under three fertiliser management scenarios below, at and above agronomic
optimum and the associated uncertainty (entropy).
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plausible ranges that is “fit for purpose” as a decision support tool

(Schuwirth et al., 2019). The model provided probabilistic

mapping of critical source areas and evaluation of alternative

management interventions within an uncertainty framework.

While the manual calibration informed by observed data and

plausible ranges of SRP losses from literature was still subject to

equifinality, a major advantage of this conceptual risk-based

modelling approach is that all parameters have a physical

meaning and hence could be potentially constrained by

observations.

Identifying controlling factors on SRP pollution is known to

be difficult (Glendell et al., 2019; Pohle et al., 2021) due to

complex interacting processes and lag effects (Bieroza et al.,

2020). In this study, sensitivity analysis highlighted the

importance of catchment-specific parameterisation of key

processes affecting SRP losses from different sources and SRP

concentrations at the catchment outlet. Influential variables

included fertiliser application rates, soil Morgan P status, SRP

delivery from soil erosion, realised SRP load from STs, and STWs

design size. The presence/absence of potential SRP sources such

as STs and farmyards, presence/absence of soil erosion and

artificial drainage were also sensitive parameters and whilst

such information may appear basic, it is currently often

uncertain. For example, the presence of rural STs used

modelled data based on connectedness of dwellings to the

public sewage network (May et al., 2015b), while information

on the design size of STWs is not always available. Similarly,

actual occurrence of soil erosion is seldom observed, let alone

FIGURE 9
ST losses kg ha−1 in the seven study catchments under (A) baseline and (B)maximummitigation scenario (tertiary treatment, full maintenance,
no direct discharge to watercourses) and the uncertainty (entropy) (C,D) associated with these scenarios.
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quantified (Cloy et al., 2021), thus contributing to model

uncertainties.

We set-up the model in seven study catchments that covered

the climatic and land use gradient across Scotland to test model

transferability and get a better insight into the reasons that may

explain the difference in model performance. Catchment-specific

model parameterisation is relatively straightforward where

comparable spatial data is available and the model performed

acceptably well between different study catchments, albeit with

difference in performance. The specific reasons for model under-

or over-prediction in individual catchments are unclear but may

be elucidated further through in-depth consultations with

stakeholders and with the help of local knowledge. Some of

the differences may be related to uncertainties associated with

catchment-specific observational data, including the lack of co-

location of water quality and discharge monitoring sites and in

relation to catchment outlet, as well as the length of the available

observational record. The insufficient quality of water quality

data often limits the testing and verification of current P fate and

transport models (Drohan et al., 2019). Hence, the transferability

of the model presented in this study could be further tested in a

catchment with high-resolution observational data.

The need for discretisation is a known limitation in many

applications of Bayesian Network modelling. In this work, we

developed a hybrid network that can be applied for rapid

assessment of mitigation scenarios without the need for

discretisation. However, the spatial application is currently

still only available for discretised networks, which inevitably

leads to increased uncertainty. Our approach of independent

validation of both model implementations helped to build

confidence in the simulated outcomes. The ability to simulate

uncertainty associated with critical source areas using entropy, to

model both surface and subsurface loss pathways and to simulate

the effect of intervention scenarios on P losses within a

probabilistic framework offer an important advancement on

existing representations of critical source areas developed to

date (e.g., Djodjic and Villa, 2015; Gagkas et al., 2019;

Thomas et al., 2021; Reaney, 2022). In addition, the inclusion

of farmyards and septic tanks as SRP sources in rural headwater

catchments is a novel aspect that is challenging to represent and

is often neglected in existing source apportionment models (May

et al., 2015a; Harrison et al., 2019). While these benefits outweigh

the limitations associated with the loss of accuracy due to

discretisation, this issue should be investigated in future

software developments to allow direct linking of hybrid BBNs

to GIS.

Amajor strength of the modelling approach developed in this

study was the ability to integrate available understanding of key

processes related to P pollution risk in surface waters, based on

expert knowledge and extensive empirical research over

two decades in Scotland. This approach to model building,

based on scientific and stakeholder consensus, has helped to

overcome uncertainties regarding model structure and resulted

in a parsimonious representation of the system coupled with a

transparent parameterisation of key processes. Whilst BBNs have

been found to perform comparably well to other statistical

modelling approaches, such as artificial neural networks,

classification trees, random forest and logistic regression, their

graphical nature represents a real advantage in building model

credibility with users (Death et al., 2015). Our model helped to

overcome limitations related to the disparities in temporal and

spatial data resolution, data scarcity and epistemic uncertainties

regarding process understanding and quantification. Visser et al.

(2022) found a trade-off between model predictive accuracy and

transparency, whereby transparent models suffered from lower

prediction accuracies than “black-box” statistical models. In this

work, we developed a transparent model with empirically based

relationships and identifiable parameters that performed well as a

“fit-for-purpose” decision support tool for operational decision

making, while balancing complexity and tractability. The model

was sufficiently complex to serve as a heuristic tool to learn about

system behaviour (Kim et al., 2014), whilst remaining

transparent and accessible due to its graphical nature. The

model provided a straightforward tool for the evaluation of

alternative management scenarios, whilst accounting for

uncertainty, and can be easily updated with new knowledge.

In further development, future scenarios related to climate, land

use and demographic change and refined management

interventions can be included relatively easily.

Typically, fully-distributed models are not considered

suitable for large catchments (Fu et al., 2018). Thanks to the

computational efficiency of BBNs, the fully distributed spatial

implementation developed in this study can be adapted for both

fine-scale and course-scale simulations from small to large

catchments, with reasonable computational requirements that

can be typically run on a standard laptop in a matter of minutes.

The model allows to simulate pollutant transfers from critical

source areas along both surface and sub-surface pathways and to

simulate spatial targeting of management interventions within an

uncertainty framework, thus bridging a gap between non-

spatially explicit loss coefficient based approaches and

physically based, spatially explicit catchment models that

require extensive parameterisation (Gumiere et al., 2011;

Stutter et al., 2021a).

In terms of limitations, the model does not produce time-

series predictions, as is the case with parsimonious mechanistic

models such as SimplyP (Jackson-Blake et al., 2017), but is a

steady-state model simulating risk at an annual time-step.

Furthermore, the model does not include in-stream nutrient

processing (e.g., Vilmin et al., 2020) or SRP release from

sediments, which can be an important source of pollution,

particularly during low flows (Stutter et al., 2021b), although

these processes can be explored in further model development. In

addition, P legacy effects associated with changes in P balances

over longer time-scales have important implications for effective

water quality mitigation, however, data to represent these inputs
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may be scarce and uncertain (Powers et al., 2016). We propose

that the probabilistic approach presented in this work may help

to address these uncertainties in future studies, thanks to the

ability to incorporate diverse data from a range of sources, whilst

propagating the uncertainty. A dynamic BBN (e.g., Rachid et al.,

2021) can then be developed to represent P fluxes over shorter or

longer timescales.

4.2 Effectiveness and uncertainty of
mitigation interventions

In the non-spatial hybrid model that included both discrete

and continuous variables, the reduction in nutrient inputs was

shown to have a greater effect on SRP pollution risk (5%–7%

change) than the increase in the width of buffer strips from the

current regulatory 2 m to voluntary 8 m (no change). This was

also apparent in the spatial implementation of the model, where

fertiliser reduction led to a notable reduction of spatial SRP losses

from both surface erosion (−67%) and sub-surface drain

pathways (−41%), whilst fertiliser application above

agronomic optimum increased the SRP losses from erosion by

52% and from drains by 58% (Table 3; Figure 8). This was most

likely the result of the catchment-scale extent of fertiliser

reduction intervention measure covering all agricultural land

and is in line with other studies that found that standard

agronomic practices rather than poor nutrient management

are the most likely sources of nutrient pollution (Cloy et al.,

2021). A recent study by Steidl et al. (2022) also found that P

balance, rather than the timing or nature of agronomic activities

was the most important factor associated with SRP losses

through drains. Contrary to common expectation, Steidl

et al. (2022) found that short-term dynamics in solute losses

in drains reflected long-term processes related to soil-solution

quality and were not related to short-term management

measures. The long pathway for soil recovery from long-

term fertilisation presents a difficulty for balancing

agronomic and environmental goals, however it is an

essential component for long-term sustainable management

of P resources (Jarvie et al., 2019).

The lack of simulated effect of enhanced buffers (from 2 to

8 m width) was most likely due to buffer strips being present only

in cropped fields where they mitigate diffuse SRP losses from soil

erosion on undrained land, representing a relatively small

proportion of the overall SRP losses from all sources.

Secondly, crop land in Scotland is frequently artificially

drained and buffers were not thought to be effective in these

locations. In addition, the efficiency of buffers is strongly related

to the type of soil, topography, vegetation composition and

structure (Stutter et al., 2021a), which were not specifically

linked to buffer effectiveness in this model. Hence, future

model developments should represent more targeted siting of

different types of buffers (Stutter et al., 2021a) according to the

nature of the riparian zone, including the effect of “integrated

buffer zones” capable of intercepting pollution from field drains

(Carstensen et al., 2021), to test the effectiveness of buffer

mitigation measures in greater detail. This may require a

more complex model of riparian buffers to be implemented as

further work outside the scope of this manuscript. However, the

modular nature of the model allows this to be readily

incorporated in future, using a combination of ongoing buffer

literature synthesis and stakeholder knowledge for specific

catchments of interest.

Conversely, ST management by improving ST maintenance,

effluent treatment and avoiding direct discharge to watercourse in

these rural catchments appeared to be an effective way of reducing

pollution risk by c. 8% in the hybrid model and lead to an 82%

reduction in STs losses in the spatial implementation (Table 3;

Figure 9). This was in line with previous findings, that reported

that in small headwater catchments with rural population, septic

tanks could make a significant contribution to the overall SRP

pollution risk and act as multiple point rather than diffuse

sources (May et al., 2015a). However, for effective mitigation, all

types of STs and treatment methods need appropriate siting,

regulated discharge and regular maintenance in order to be

effective in the medium to longer term (May et al., 2015b). In

addition, tertiary treatment by aeration allows consented discharge to

watercourses without further soil treatment and this contradiction

between the twomitigation interventions (tertiary treatment but with

direct discharge) has not been considered in the model.

5 Conclusion and outlook

In this study, we developed a novel risk-based modelling

approach to conceptualise the complex problem of P

management in river systems. The approach allowed us to

combine diverse data of varied spatial and temporal resolution,

including literature, time-series, spatial data and expert opinion,

incorporating a significant body of earlier research representing

region-specific understanding. The graphical nature of the BBN

helped to make the conceptual model structure transparent and

accessible, while the fully distributed spatial model implementation

bridged a gap between non-spatially explicit loss coefficient-based

approaches and physically based, spatially explicit catchment models

that require extensive parameterisation. We demonstrated model

transferability between contrasting study catchments and proposed a

framework that can be relatively easily modified for other locations

and adapted to reflect new knowledge and data. Future work could

focus on upscaling of themodel to cover larger spatial extents at lower

spatial resolution or conversely, downscaling simulations to finer

spatial resolution, or to field scale when applied to GIS polygons

rather than raster data. In future research, the model can be further

refined to include in-stream removal, co-cycling with other macro-

nutrients, extended to simulate the effect of additional spatially

targeted measures and used as a blueprint for modelling of other
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nutrients and contaminants. Simulating the impact of future climate

and land use change can also be pursued.
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