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This study quantifies global premature deaths attributable to long-term

exposure of ambient PM2.5, or PM2.5-attributable mortality, by dust and

pollution sources. We used NASA’s Modern-Era Retrospective Analysis for

Research and Applications, Version 2 (MERRA-2) aerosol reanalysis product

for PM2.5 and the cause-specific relative risk (RR) from the integrated exposure-

response (IER) model to estimate global PM2.5-attributable mortality for five

causes of deaths, namely ischaemic heart disease (IHD), cerebrovascular

disease (CEV) or stroke, lung cancer (LC), chronic obstructive pulmonary

disease (COPD), and acute lower respiratory infection (ALRI). The estimated

yearly global PM2.5-attributable mortality in 2019 amounts to 2.89 (1.38–4.48)

millions, which is composed of 1.19 (0.73–1.84) million from IHD, 1.01

(0.35–1.55) million from CEV, 0.29 (0.11–0.48) million from COPD, 0.23

(0.14–0.33) million from ALRI, and 0.17 (0.04–0.28) million from LC (the

numbers in parentheses represent the estimated mortality range due

corresponding to RR spread at the 95% confidence interval). The mortality

counts vary with geopolitical regions substantially, with the highest number of

deaths occurring in Asia. China and India account for 40% and 23% of the global

PM2.5-attributable deaths, respectively. In terms of sources of PM2.5, about 22%

of the global all-cause PM2.5-attributable deaths are caused by desert dust. The

largest dust attribution is 37% for ALRI. The relative contributions of dust and

pollution sources vary with the causes of deaths and geographical regions.

Enforcing air pollution regulations to transfer areas from PM2.5 nonattainment

to PM2.5 attainment can have great health benefits. Being attainable with the

United States air quality standard (AQS) of 15 μg/m3 globally would have avoided

nearly 40% or 1.2 million premature deaths. The most recent update of PM2.5

guideline from 10 to 5 μg/m3 by the World Health Organization (WHO) would
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potentially save additional onemillion lives. Our study highlights the importance

of distinguishing aerodynamic size from geometric size in accurately assessing

the global health burden of PM2.5 and particularly for dust. A use of geometric

size in diagnosing dust PM2.5 from the model simulation, a common approach

in current health burden assessment, could overestimate the PM2.5 level in the

dust belt by 40–170%, leading to an overestimate of global all-cause mortality

by 1 million or 32%.
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1 Introduction

PM2.5, namely particulate matter (PM) with an aerodynamic

diameter of smaller than 2.5 μm, is a major air pollutant that

comes from diverse sources, such as fossil fuel combustion for

industrial and residential uses, biomass burning from wildfires

and crop field clearance, dust storms, biogenic and biological

activities of the ecosystems, burst of ocean bubbles, and volcanic

eruptions. Being over 30 times smaller than a human hair, these

fine particles can easily enter our respiratory systems and cause

significant health risks. The risks range from chronic

cardiovascular and respiratory disease to lung cancer, and

from cognitive decline to psychological distress, as suggested

by a growing body of compelling evidence (Pope et al., 2002;

Glinianaia et al., 2004; Pope and Dockery, 2006; Power et al.,

2016; Schraufnagel et al., 2019; Chen and Hoek, 2020). In 2015,

PM2.5 pollution was ranked as the fifth most important risk

factor contributing to global mortality (Cohen et al., 2017).

Globally exposure to ambient or outdoor PM2.5 pollution has

been increasing over the past decades (Shaddick et al., 2020).

Currently more than 90% of the global population is exposed to

an ambient PM2.5 level higher than the air quality guideline

(AQG) of 10 μg m−3 for annual PM2.5 exposure issued by the

World Health Organization (WHO) in 2006 (this AQG has been

updated to 5 μg m-3 in 2021 to better protect public health

worldwide, based on extensive scientific evidence, Chen and

Hoek, 2020).

Currently estimates of global health burden due to long-term

exposure to ambient PM2.5 are subject to large uncertainties. It

has been estimated that the PM2.5 level in recent years was

responsible for 3–9 million premature deaths a year (Lelieveld

et al., 2015; Cohen et al., 2017; Burnett et al., 2018; GBD, 2020;

McDuffe et al., 2021). Major sources for this broad range of

PM2.5 -attributable mortality come from both the

characterization of PM2.5 concentrations and the

quantification of concentration-response functions (CRF) or

relative risks (RR). Clearly, improving the estimate of PM2.5

-attributable mortality requires a great deal of collaborative effort

across multiple disciplines. In this study we focus on improving

the characterization of PM2.5 by using the Modern-Era

Retrospective analysis for Research and Applications, Version

2 (MERRA-2) aerosol reanalysis constrained by satellite

observations of aerosol optical depth (Randles et al., 2017).

We highlight the importance of using the aerodynamic

diameter (Daer), instead of geometric diameter (Dgeo), to

partition total dust mass into fine (PM2.5) and coarse dust in

air quality and health outcome assessment. The aerodynamic

diameter Daer is the diameter of a sphere with a density close to

water that has the same gravitational settling velocity as the

aerosol particle has (Hinds, 2022). Clearly, these two size

parameters will be different if the particle has a different

density and/or shape than water. In the real world, Dgeo is

always greater than Daer.

Mineral dust, composed of both fine (PM2.5) and coarse

particles, has a ubiquitous presence around the globe and is the

most important component of continental aerosols in terms of

mass. In assessing PM2.5 health impacts, mineral dust emitted

from remote deserts must be included (Ostro et al., 2021), though

many studies have largely focused on anthropogenic sources

because of their proximity to dense populations. Dust affects vast

regions both immediate to and far from the sources, because of its

long-range transport (Yu et al., 2012; Yu et al., 2013a; Yu et al.,

2013b, Yu et al., 2015). Although dust PM2.5 concentration is

much higher in areas adjacent to the sources than in downwind

regions, the health impact of dust could be more significant in

downwind populous regions (Sandstrom and Forsberg, 2008;

Stafoggia et al., 2013; Stafoggia et al., 2016). The most recent

analysis of model simulations shows that dust alone, by shutting

down all anthropogenic and fire emissions, could make ~40% of

the world’s population experiencing annual PM2.5 exposure

above the WHO AQG of 5 μg m−3 (Pai et al., 2022).

Giannadaki et al. (2014) estimated that dust PM2.5 caused

global mortality of 412,000, and 3.56 million years of life lost

per year. Recognizing the important impacts of mineral dust on

human health, weather and climate, and the environment and

society, the World Meteorological Organization (WMO)

launched its Sand and Dust Storm Warning Advisory and

Assessment System (SDS-WAS) in 2007 to provide science

and application communities with timely and quality forecasts

and observations of dust storms. Several regional nodes around

the globe have been established. And the United Nations (UN)

Global Assembly has passed two resolutions to recognize the
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severity of the SDS problem and call on all the UN entities to

foster close coordination in combating this thorny problem

facing us.

How important is dust PM2.5 in affecting human health?

Previous studies have yielded a wide range of estimates of the

relative contributions of dust and anthropogenic PM2.5 to global

mortality. Lim et al. (2012) estimated that dust accounted for

only about 2% of global total mortality in 2010. Evans et al.

(2013) showed that by excluding dust the estimated global

mortality attributable to PM2.5 could decrease from 12.1% to

8%, suggesting that dust could account for about 33% of the

PM2.5 -attributable mortality. Lelieveld et al. (2015) used a global

model to estimate that dust contributes to 11–18% of the PM2.5

-attributable mortality, with the lower fractional contribution

corresponding to an assumption that anthropogenic PM2.5 was

five times more toxic than dust. Clearly, all these estimates

depend on how accurately models can capture the dust and

anthropogenic PM2.5 partitions.

The characterization of dust PM2.5 is subject to large

uncertainties. Observations of size-resolved dust are scarce

and subjected to high uncertainties. Model simulations of the

global dust cycle perform poorly, due to lack of strong

constraints on emissions, transport, and removals of dust

(Huneeus et al., 2011). Because models usually use

geometric size to describe the dust particle size

distribution, some studies have derived dust PM2.5 by

cutting off at Dgeo of 2.5 μm. In other studies, the dust

PM2.5 is defined as particles with a diameter of smaller

than 2.5 μm without clearly stating if it is referred to as

geometric or aerodynamic diameter. Given that the

geometric size of dust particles is significantly larger than

the aerodynamic size, the so-derived dust PM2.5 with the

cutoff at Dgeo of 2.5 μm would bias high, yielding an

overestimate of its health impacts. In this study we will

address this existing ambiguity by deriving the Modern-Era

Retrospective Analysis for Research and Applications,

Version 2 (MERRA-2) dust and total PM2.5 based on

aerodynamic size and evaluating them with surface

observations in heavily dusty regions. We will then assess

the relative contribution of dust PM2.5 to the global mortality

and the overestimation of mortality resulting from defining

dust PM2.5 with respect to the geometric size.

The rest of the paper is organized as follows. Section 2

describes the method used to estimate the five-cause mortality

attributable to long-term exposure to PM2.5 and major

datasets needed for the calculation, including MERRA-2

PM2.5 data. Section 3 presents an evaluation of MERRA-2

PM2.5 against in-situ observations from the United States

Diplomatic Posts around the world, the estimated PM2.5

-attributable cause-specific and total mortalities, including

its geopolitical distributions and respective contributions by

dust and non-dust (predominated by pollution) sources. This

is followed by a discussion in Section 4, including the need of

distinguishing aerodynamic size from geometric size in

determining PM2.5 from models and estimating the

mortalities, the potential premature deaths avoided if

current PM2.5 -nonattainment areas were transformed to

PM2.5 -attainment through a hypothetical scenario of air

pollution control, and major limitations of the study.

Section 5 summarizes major conclusions of the study.

2 Description of data and methods

2.1 MERRA-2 aerosol reanalysis and
surface PM2.5

In this study, we use annual mean PM2.5 concentrations

simulated by MERRA-2 to determine the PM2.5 exposure.

MERRA-2 is a NASA meteorological and aerosol reanalysis

for the modern satellite era (1979 - present) using the

Goddard Earth Observing System model, version 5 (GEOS-5)

(Gelaro et al., 2017). It runs at a nominal 50 km horizontal

resolution with 72 vertical layers with the model top at ~85 km.

In the GEOS-5 system, aerosols are simulated using a version of

the Goddard Chemistry Aerosol Radiation and Transport

(GOCART) model (Chin et al., 2002, 2009; Colarco et al.,

2010; CIESIN, 2018; Bauer et al., 2019). The GOCART

simulates major components of aerosols, including sulfate,

dust, black carbon, organic matter, and sea-salt. The model

considers the atmospheric processes of chemistry, convection,

advection, boundary layer mixing, dry and wet deposition, and

gravitational settling (Chin et al., 2002; Chin et al., 2009). Aerosol

particle sizes with a geometric diameter up to 20 μm are

simulated with parameterized hygroscopic growth, which is a

function of ambient relative humidity. Total mass of sulfate and

carbonaceous aerosols are calculated, while for dust and sea salt

the particle size distribution is explicitly resolved across five size

bins (i.e., 0.2–2.0, 2.0–3.6, 3.6–6.0, 6.0–12.0, and

12.0–20.0 microns in the geometric diameter) (Chin et al.,

2002). A log-normal distribution is assumed for mass in each

size bin.

The assimilation of aerosols in MERRA-2 involves careful

cloud screening and quality control (Zhang and Reid, 2006) and

homogenization of the observing system by a Neural Net scheme

(Lary et al., 2009) that translates satellite radiances (i.e., MODIS,

MISR, AVHRR, and SeaWiFS) into aerosol optical depth (AOD).

Observation and background errors are estimated using the

maximum likelihood approach. Following the AOD analysis,

3D aerosol mass mixing ratio analysis increments are produced

by exploring the Lagrangian characteristics of the aerosol

distribution and generating local displacement ensembles

intended to represent misplacements of the aerosol plumes

(Buchard et al., 2017). Although the composition, size

distribution, and vertical profile of aerosols are not assimilated

inMERRA-2, previous evaluations have shown that theMERRA-
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2 aerosol assimilation system can also improve the surface PM2.5

concentrations (Buchard et al., 2016) and specific aerosol

components such as dust (Buchard et al., 2017; Randles et al.,

2017).

In MERRA-2 products, surface PM2.5 concentration by

default is calculated as a sum of all aerosol components

(sulfate, organic matter, black carbon, dust, and sea salt) with

geometric diameter smaller than 2.5 μm, similar to the treatment

of the GEOS-Chem model (http://wiki.seas.harvard.edu/geos-

chem/index.php/Particulate_matter_in_GEOS-Chem#PM2.5_

and_PM10_diagnostics_for_GEOS-Chem). We denote this

MERRA-2 default PM2.5 product as PMgeo
2.5 to distinguish it

from the conventional definition of PM2.5 based on the

aerodynamic diameter in the air quality community. For

sulfate and carbonaceous particles, they have a sub-micron

size and PMgeo
2.5 = PM2.5. For dust particles covering a broad

size range from submicron to super micron, dry mass in bin 1 (0.

2–2.0 μm) and 38% of that in bin 2 (2.0–3.6 μm) are summed in

diagnosing PMgeo
2.5 concentration. Clearly, this definition is

inconsistent with the PM2.5 in air quality and public health

research communities. Many PM2.5 in situ instruments are also

designed to fractionate the size based on the aerodynamics. Kim

et al. (2021) and Huang et al. (2021) emphasized the need of

distinguishing aerodynamic size from geometric size when

comparing different measurements or evaluating model

simulations with measurements.

The aerodynamic diameter (Daer) is the diameter of a

sphere with a density close to water that has the same

gravitational settling velocity as the dust particle with Dgeo

(Hinds, 2022). Given that the dust particle (a density of about

2.6 g cm-3) is much heavier than water by 160%, Daer shall be

larger than Dgeo. Non-spherical shapes of dust particles also

contribute to the difference between Daer and Dgeo because

non-spherical particles fall at a slower rate than spherical

particles do. Previous studies have shown that the

Dgeo/Daerratio generally falls into a range of 0.64–0.93

(e.g., Reid et al., 2013; Huang et al., 2021). In this study

we use Dgeo

Daer
� 0.8, similar to Kim et al. (2021). This means dust

PM2.5 (with Daer≤2.5 μm) would have Dgeo≤ 2.0 μm.

Therefore, we use dust mass in the size-bin 1

(i.e., 0.2–2.0 μm) to approximate the dust PM2.5, which is

smaller than the default dust PMgeo
2.5 in MERRA-2 and GEOS-

Chem diagnoses.

2.2 Mortality attributable to PM2.5

We calculate cause-specific mortality attributable to long-

term exposure of ambient PM2.5 in the most current year

(2019) for five diseases, namely ischaemic heart disease

(IHD), cerebrovascular disease (CEV) or stroke, lung

cancer (LC), chronic obstructive pulmonary disease

(COPD), and acute lower respiratory infection (ALRI). We

selected 2019, other than 2020 or 2021, to bypass

complications arising from excess deaths associated with

the COVID-19 pandemic. For each of the five causes

(denoted by subscript i), the PM2.5-attributable excess

mortality (ΔMorti) is calculated as:

ΔMorti � bippoppAFi (i � 1, 2, . . . . . . , 5) (1)
where bi is the baseline mortality rate for a specific cause, pop the

population count, and AFi the fraction of mortality attributable

to exposure of PM2.5. AFi is further estimated from the relative

risk (RRi) or the concentration-response function (CRF) that

describes how excess premature death increases with increasing

PM2.5 concentration, by following:

AFi � RRi − 1
RRi

(2)

For RRi, we use CRFs based on the Integrated Exposure-

Response (IER) model (Burnett et al., 2014), similar to that

being used by the Global burden of disease (GBD) estimates

and most studies in recent years (Lelieveld et al., 2015;

Ginnadaki et al., 2016; Cohen et al., 2017; Zhang et al.,

2017). As shown in Figure 1, different diseases have

different CRF. These CRFs are not always linear, depending

on the range of PM2.5 concentration. It is also worth noting

that RR in Figure 1 remains at 1.0 (i.e., no impact on health)

for PM2.5 lower than 6–7 μg m−3, depending slightly on the

cause of mortality. This PM2.5 level is considered as a

threshold where PM2.5 starts to pose a health risk, although

there is an argument that no level of PM2.5is safe for human

health. As discussed in Burnett et al. (2014), RRs show large

spreads (see Supplementary Figure S1). We hence adopted

their upper and lower bounds to represent the 95% confidence

intervals (CI95) and then estimated the range of mortality at

CI95. Like most other studies, we assume that all PM2.5

components or sources have the same CRF. Although some

FIGURE 1
Relative risk (RR) as a function of PM2.5 concentration (μgm−3)
or concentration-response function (CRF) for individual causes of
mortality, including ALRI, COPD, IHD, LC, and CEV.
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studies suggested that mineral dust might be less toxic than

sulfates and soot (Ozkaynak and Thurston, 1987; Ostro et al.,

2010), this finding is not conclusive. It would be still

reasonable to assume that there is no significant difference

in the toxicity per unit mass of dust and anthropogenic

pollution (Ostro et al., 2021).

We calculated cause-specific mortality attributable to the

long-term exposure of ambient PM2.5 in 2019 globally in 0.5+x

0.5+grid cells. Population count (pop) at the 0.5+x 0.5+grid

cells were taken from the Gridded Population of the World,

Version 4 (GPWv4), Revision 11 provided by the NASA

Socioeconomic Data and Applications Center (CIESIN,

2018). We interpolated MERRA-2 PM2.5 data into the 0.5+x

0.5+ grid cells, consistent with the population data. The

country-level baseline mortality rate biwas acquired from

the Institute for Health Metrics and Evaluation (IHME),

Global Health Data Exchange (GHDx) (http://ghdx.

healthdata.org/gbd-results-tool). For each grid, we

determined the country and assigned the grid with the

country-level bi for 2019. The 2019 baseline mortality

count, a product of baseline mortality rate and population,

is shown in Supplementary Figure S2 for individual causes.

The geographical distribution of the mortality depends on

cause of the death. The global total baseline mortality count is

2.45, 6.11, 3.26, 8.89, and 2.21 million for ALRI, CEV, COPD,

IHD, and LC, respectively. The all-cause global total baseline

mortality amounts to 22.73 million.

3 Results

In this section, we present an evaluation of MERRA-2

PM2.5 with data collected from a ground-based network, the

estimated cause-specific mortality counts attributable to ambient

PM2.5 in 2019, and relative contributions from dust and

pollution PM2.5.

FIGURE 2
Annual average PM2.5 (left panels) and PMgeo

2.5 (right panels) concentrations (μgm−3) fromMERRA-2 reanalysis in 2019 (A,B) and 2020 (C,D). PM2.5

concentrations measured in the United States Diplomatic Posts (greater than 270 days in a year) are overlaid on the MERRA-2 PM2.5 maps with the
same color scale.
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3.1 Spatial distribution of MERRA-2 PM2.5
and its evaluation

Figure 2 shows a comparison of MERRA-2 annual PM2.5

concentrations (defined by Daer≤ 2.5 μm) (left panels)

over global land with the MERRA-2 default output of PMgeo
2.5

(right panels) for both 2019 (top) and 2020 (bottom). Although

PM2.5 shows similar spatial patterns between 2019 and 2020,

differences in the magnitude are evident in some regions.

Notably, PM2.5 in the American West was significantly higher

in 2020 than 2019, presumably due to the record-breaking

wildfires in 2020 (Williams et al., 2022). In both years, the

PM2.5 often exceeded 25 μg m-3 in the dust belt (North Africa

and Middle East), India, and eastern China, implying a

tremendous benefit of achieving the WHO AQG in these

dusty and polluted regions. Clearly, PMgeo
2.5 (right panels) is

significantly higher than PM2.5 (left panel). This overestimate

of PM2.5 resulting from the use of geometric diameter is a factor

of 2 or more in the dust belt and 10–30% in highly populated and

polluted regions downwind of the dust sources. Therefore, the

use of default PMgeo
2.5 output from MERRA-2 will lead to a

significant overestimation of the mortalities in broad areas,

which will be assessed in Section 4.2.

Overlaid on these MERRA-2 PM2.5 and PMgeo
2.5 maps are

annual average PM2.5 (aerodynamic-size based) concentrations

measured in the United States Diplomatic Posts (33 embassies/

consulates in 2019 and 52 in 2020, where each station has PM2.5

measurements in more than 270 days annually). Locations of

these Diplomatic Posts and measured annual PM2.5

concentrations are provided in the supplement

(Supplementary Table S1). These PM2.5 observations are

carried out by the United States State Department in

collaboration with the United States Environmental Protection

Agency (EPA), which adopts the EPA’s protocol of instrument

installation, operation, maintenance, and assurance of data

quality for monitoring air quality in the United States The

dataset is part of EPA AirNow Network. It appears that

MERRA-2 agrees quite well with the surface observations in

some stations while is biased low in others. Substantial

differences stand out in Ulaanbaatar (Mongolia), Sarajevo

(Bosnia), Kampala (Uganda), Antananarivo (Madagascar), and

Lima (Peru), with MERRA-2 PM2.5 and PMgeo
2.5 being lower than

the observations by a factor of more than five. On the other hand,

in the dust belt MERRA-2 PMgeo
2.5 is substantially higher than the

surface observation, although MERRA-2 PM2.5 agrees

reasonably well with the station observation. Figure 3 shows a

detailed comparison of MERRA-2 PM2.5 and PMgeo
2.5 with the in-

situ PM2.5 (>15 μg m−3) in the heavily dusty United States

Diplomatic Posts that are selected as (PMgeo
2.5 /PM2.5 ≥1.5 and

PMgeo
2.5 - PM2.5≥15 μg m−3). In 16 of 17 heavily dusty

United States Diplomatic Posts (except in Bamako of Mali,

Figure 3), MERRA-2 PM2.5 agrees with the in-situ

observation within 35% (mean ± 1? of 24 ± 7%, ? represents

the standard deviation of bias). In comparison, MERRA-2 PMgeo
2.5

is 42%–175% (100 ± 52%) higher than the in-situ PM2.5

observation. Clearly the careful definition of PM2.5 is essential

for comparisons between model and observation and can greatly

improve the exposure estimate in the dusty regions. To what

extent the use of MERRA-2 PMgeo
2.5 would overestimate the

mortality will be discussed in Section 4.1.

For those less-dusty United States Diplomatic Posts (N =

68), MERRA-2 PM2.5 concentrations are mostly biased low.

The average MERRA-2 to observed PM2.5 ratio is 0.48,

suggesting that the MERRA-2 PM2.5 is about 2 times lower

than the observation. China and India are the most polluted

and populous countries and the PM2.5-attributable mortality

is expected to be the highest. Figure 4 shows detailed

comparisons of MERRA-2 PM2.5 against the observations

at nine United States Diplomatic Posts in China (Beijing,

Guangzhou, Shanghai, and Shenyang) and India (Chennai,

Hyderabad, Kolkata, Mumbai, and New Delhi), two countries

that make up the majority of PM2.5-attributable deaths

(Cohen et al., 2017; McDuffe et al., 2021). In China,

MERRA-2 performs quite well in Beijing and Guangzhou,

with a bias (MERRA-2 to the observation ratio) of 0.75–1.08.

In Shanghai, the bias is 0.81 in 2019 but 0.57 in 2020. In

Shenyang of northeastern China, MERRA-2 PM2.5 has a larger

bias of 0.47 in both years, suggesting that MERRA-2 may

underestimate in this region by a factor of about 2. In

comparison, MERRA-2 performs more poorly in India. The

FIGURE 3
Comparisons of observed PM2.5 (black) and MERRA-2 PM2.5

(orange) and PMgeo
2.5 (blue) in the heavily dusty United States

Diplomatic Posts as defined in the text. PM2.5 has a unit of μg m−3.
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bias ranges from 0.39 to 0.58, except that Chennai has a

smaller bias of 0.71 in 2019. Given that the United States

embassies and consulates are usually located in populous and

heavily polluted urban areas, the MERRA-2’s horizontal

resolution of about 50 km may not be adequately fine to

capture potentially high heterogeneity of PM2.5 in urban

areas. Thus, the underestimate of PM2.5 by MERRA-2

would be lower than the biases discussed above, although a

quantitative estimate of the low bias is not possible.

Figure 5 shows cumulative distribution functions (CDF) of

population being exposed to annual concentrations of total

PM2.5 (blue solid line) and dust PM2.5 (orange solid line) in

2019 based on MERRA-2 reanalysis. Clearly, 90.5% and 65.5% of

global population were living in areas with annual PM2.5

exceeding the WHO AQG of 5 μg m−3 and 10 μg m−3,

respectively. Even without any anthropogenic sources 29.2%

and 15.0% of global population were still exposed to annual

dust PM2.5 concentration of >5 μg m−3 and >10 μg m−3,

respectively, suggesting significant health impacts imposed by

dust and a grand challenge of abating air pollution problem

through controlling anthropogenic emissions only. For

comparison, we also show similar CDFs for population

exposure to the MERRA-2 default total (blue dotted line) and

dust (orange dotted line) PMgeo
2.5 . Because PM

geo
2.5 is always higher

than PM2.5, a larger fraction of global population would live in

areas with PMgeo
2.5 exceeding theWHOAQG. 98.7% and 46.0% of

global population were exposed respectively to total and dust

PMgeo
2.5 of >5 μg m-3 on an annual average basis. In this study we

will quantify the mortality associated with the 2019 PM2.5 level

and how enforcing pollution control regulations globally to reach

different targets could save lives.

3.2 Cause-specific mortalities due to total
PM2.5

We estimated the global total all-cause mortality attributable

to total PM2.5 at 2,889,578 or nearly 2.9 million a year, which is

composed of 1,192,153 from IHD, 1,013,414 from CEV,

287,358 from COPD, 229,912 from ALRI, and 166,741 from

LC. This suggests that 12.7% of 2019 baseline all-cause mortality

is attributed to total PM2.5. The PM2.5-attributable fraction is

9.4%, 16.6%, 8.8%, 13.4%, and 8.3% for ALRI, CEV, COPD, IHD,

and LC, respectively, which is collectively determined by the

spatial distributions of PM2.5 (Figure 2A) and the baseline

mortality count (Supplementary Figure S2). The mortality is

FIGURE 4
Comparisons of MERRA-2 PM2.5 concentration (μgm−3) in 2019 and 2020 with the observations at nine United States Diplomatic Posts in China
and India.

FIGURE 5
Cumulative distribution functions (CDFs) of population
exposed to ann ual concentration of total PM2.5 (blue solid line)
and dust PM2.5 (orange solid line). For comparison, similar CDFs for
exposure to total PM2.5 (blue dotted line) and dust PM2.5

(orange dotted line) defined based on geometric diameter are also
shown.
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highly heterogeneous geographically, as shown in Figure 6. The

cause-specific and all-cause mortality represents the number of

deaths in each 0.5+x 0.5+ grid, for which the same color bar is

used for all the panels. This is a combined effect of PM2.5 level

and population. with zero mortality in many areas. While

mortality due to PM2.5 is very low in many areas, the greatest

mortality occurs in China and India, followed byWest Africa, the

western Europe, and the eastern United States Although PM2.5

concentration in West Africa is higher than that in China and

most of India (Figure 2A), the mortality in West Africa is

significantly lower due mainly to the less population in West

Africa. Pie charts in Figure 7 show how global cause-specific and

all-cause mortalities are distributed among countries, with top

10 ranked countries being distinguished by colors and the

remaining countries being marked as “Other” in light gray.

The top 10 countries account for 77–93% of the global total

mortality, depending on the diseases. Among the top

10 countries, China is the largest contributor in all the

diseases except ALRI, with the percent contribution ranging

from 33% (IHD) to 69% (LC). For all-cause mortality, China

is ranked as the largest contributor with a share of 43%. For

ALRI, India surpasses China to become the largest contributor

(33%). India is the second largest for the other four diseases

(CEV, COPD, IHD, and LC), which yields a 23% share of global

all-cause mortality due to PM2.5. China and India combined

account for about two thirds of global all-cause mortality. From

the perspective of individual causes, the two countries constitute

a majority (58–80%) of the mortality in all causes except ALRI.

For ALRI, Nigeria has a mortality comparable to that of China.

How is our estimated all-cause mortality for 2019 compared

with results in literature? The 2010 global mortality of 3.16 (CI95:

1.52–4.60) million by Ginnadaki et al. (2016) and Lelieveld et al.

(2015) agrees with our estimate of 2.89 (CI95: 1.38–4.48) millions

within 10% (Table 1). Their estimated mortality of 1.31 million

for CEV and 374 thousand for COPD is 30% higher than our

corresponding estimates of 1.01 million and 287 thousand, which

constitute the major difference between the two studies. For the

other three causes (ALRI, IHD, and LC), the agreement is no

more than 10%. In addition, the 2015 global mortality of

4.2 million estimated by Cohen et al. (2017) is about 45%

higher than the 2.89 million estimated in this study. Zhang

et al. (2017) estimated the global premature death of

3.45 million by using GEOS-Chem simulations of PM2.5 to

estimate the exposure, which is about 20% higher than our

estimate. Burnett et al. (2018) developed a much higher RR

based on the Global Exposure Mortality Model (GEMM) and

estimated the global mortality of 8.9 (7.5–10.3) million in 2015,

which is about a factor of 3 higher than our estimate. In

summary, all these comparisons show that our estimated

global all-cause mortality is smaller than previous estimates.

At the country-level, significant differences also exist among

the studies. Table 2 compares our estimates of all-cause

mortalities for top 10 countries with those from three studies

(Ginnadaki et al., 2016; Cohen et al., 2017; McDuffe et al., 2021).

FIGURE 6
Estimated 2019 cause-specific [(A)–ALRI, (B)–CEV, (C)–COPD, (D)–IHD, (E)–LC] and all-cause (F)mortality ΔMort attributable to the long-term
exposure to total PM2.5. Global total mortality is given in titles of individual panels.
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For example, Cohen et al. (2017) estimated mortalities in India,

Russia, United States, and Bangladesh are substantially higher

than those from the other studies. For China, Cohen et al. (2017)

estimated its share in global mortality at 26%, which is lower than

the 36–43% estimated by all the other studies. Clearly the ranking

of top countries with high mortality differs among the studies. In

addition, our estimate of total mortality of 1.23 million in China

is consistent with the estimated 1.27 million deaths attributable

to PM2.5 in 2010 byWang et al. (2017). For COPD, LC, IHD, and

CEV, our respective estimates of mortality of 125, 114, 386, and

574 thousand in China are within 15% of that by Wang et al.

(2017). On the other hand, our estimate of 33 thousand ALRI-

related deaths is much higher than their estimated 4 thousand

deaths.

Possible reasons for the differences in mortality among these

studies include several aspects associated with PM2.5

concentrations. However, pinpointing the differences between

these studies needs substantial effort, which is beyond the scope

of this study. PM2.5 data sets used in these studies are for different

years, i.e., 2010 for Lelieveld et al. (2015) and Ginnadaki et al.

(2016), 2015 for Cohen et al. (2017), and 2019 for this study. If

significant trends have occurred in top 10 countries over the past

decade, that would contribute to the mortality difference. The

PM2.5 datasets also have different spatial resolutions, ranging

from 11 km (Cohen et al., 2017) to 0.5 deg (this study) and

FIGURE 7
Relative contributions (%) of top 10 countries (colored) and remaining other countries (gray) to global mortality for five specific causes (i.e., ALRI,
CEV, COPD, IHD, LC) and all the causes. The number in the center of each pie-chart denotes the total number of global deaths.

TABLE 1 Estimated global premature mortality (thousands)
attributable to long-term exposure of ambient PM2.5 in
2019 based on median RR and its CI95 range. Ginnadaki et al. (2016)
estimated mortality for 2010 is listed for comparison.

Cause This study median
mortality count (CI95)

Ginnadaki et al. (2016)

ALRI 230 (141-332) 230

COPD 287 (114-477) 374

IHD 1,192 (730-1840) 1,080

LC 167 (37-276) 161

CEV 1,013 (354-1554) 1,310

All-cause 2,890 (1376-4,479) 3,155 (1520-4,600)

Frontiers in Environmental Science frontiersin.org09

Yang et al. 10.3389/fenvs.2022.975755

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.975755


1.1 deg (Lelieveld et al., 2015; Ginnadaki et al., 2016). A higher

resolution would generally yield a higher mortality, because of

the correlation of high PM2.5 level and dense population. These

PM2.5 datasets are also different in the extent to which the model

simulations are constrained by observations. In Lelieveld et al.

(2015) and Ginnadaki et al. (2016), PM2.5 concentrations are

taken from simulations by a global chemical transport model. On

the other hand, our study and Cohen et al. (2017) use PM2.5 data

that are constrained by satellite observations of AOD through

data assimilation or data fusion. However, the PM2.5 data used in

Cohen et al. (2017) are defined by using the geometric size of

particles, which will be higher than the aerodynamic-size defined

PM2.5 in this study, particularly in dust-dominated regions.

Differences in methods of calculating PM2.5 exposure and

mortality may also contribute to the differences in the estimated

mortality shown in Table 1. Cohen et al. (2017) calculated the

population-weighted mean PM2.5 at country-level and then

estimated the nation’s mortality by using the CRF and

baseline mortality data. The mortality was not calculated at

11 km × 11 km grid cells. This is different from our study,

Lelieveld et al. (2015), and Ginnadaki et al. (2016) where the

mortality is calculated at grid cells first and then added up to

obtain the country-level mortality. Given the non-linearity of

the CRF, it is anticipated that the calculated mortalities from

the two approaches might be different. We use the MERRA-2

PM2.5 data and follow the method of Cohen et al. (2017) to

calculate country-level mortality with the population-

weighted country-level PM2.5. For the global total, the so-

estimated mortality of 2.63 million is only about 2.8% higher

than our grid-level estimate of 2.56 million. On a regional

scale the difference is slightly larger, for example with 6.1% in

China and 4.5% in India.

TABLE 2 Comparison of the estimated 2019 all-causemortality (worldwide and the top 10 ranked countries) from this study with that of three studies
(Ginnadaki et al., 2016; Cohen et al., 2017;McDuffe et al., 2021). Themortality has a unit of thousand persons. For individual countries, the number
in parentheses represents the percentage of a country contributing to the global total mortality.

Geopolitical region This study for 2019 McDuffe et al. (2021)
for 2017

Cohen et al. (2017) for
2015

Ginnadaki et al. (2016)
for 2010

World 2,890 (CI95: 1376 - 4,479) 3,833 (CI95: 2720 - 4970) 4,241 3,155 (CI95: 1520 - 4600)

China 1232 (43%) 1387 (36%) 1108 (26%) 1327 (42%)

India 676 (23%) 867 (23%) 1090 (25%) 575 (18%)

Pakistan 86 (3.0%) 86 (2.2%) 135 (3.2%) 105 (3.3%)

Bangladesh 86 (3.0%) 64 (1.7%) 122 (2.9%) 85 (2.7%)

Nigeria 62 (2.1%) 51 (1.3%) 51 (1.2%) 89 (2.8%)

Indonesia 54 (1.9%) 94 (2.5%) 79 (1.9%) 51 (1.6%)

Russia 52 (1.8%) 68 (1.8%) 137 (3.2%) 67 (2.1%)

Egypt 43 (1.5%) 88 (2.3%) n/a 34 (1.1%)

United States 39 (1.3%) 47 (1.2%) 88 (2.1%) 52 (1.7%)

Nepal 34 (1.2%) n/a n/a n/a

FIGURE 8
2019 annual average pollution PM2.5 (A) and dust PM2.5 (B) from MERRA-2 reanalysis.
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3.3 Relative contributions by dust and
pollution sources

We carry out a set of sensitivity tests to estimate relative

contributions to the global mortality by PM2.5 from dust storms

versus non-dust sources. We consider PM2.5 from all non-dust

sources as a proxy for pollution PM2.5, implying that biomass

burning smoke and secondary organic aerosol formed from

biogenic emissions are all counted as pollution aerosol.

Figure 8 shows spatial distributions of 2019 annual average

pollution and dust PM2.5 concentrations. The pollution PM2.5

higher than 15 μg m−3 occurs in broad areas of East and South

Asia and several hot spots presumably associated with fires in

Siberia, Alaska (United States), Canada, and southern Africa. Not

surprisingly, high dust PM2.5 concentration occurs largely in the

dust belt extending from North Africa to the western China, with

the level greater than 50 μg m−3 in some major dust source

regions.

We run the mortality calculation by using pollution PM2.5

and then subtract it from the mortality by total PM2.5 (shown in

3.2) to obtain the mortality attributable to dust PM2.5. Similarly,

another set of mortality is computed with dust PM2.5 and the

difference between the mortality attributable to total PM2.5 and

the mortality calculated with dust PM2.5 is considered to

represent the mortality attributable to pollution PM2.5.

Because of the nonlinearity of concentration-response

functions (see Figure 1), the mortality attributable to dust

PM2.5 is about a factor of two higher that the mortality

computed with dust PM2.5, while the mortality attributable to

pollution PM2.5 17% higher that the mortality computed with

pollution PM2.5. Table 3 compares respective contributions to

the cause-specific and all-cause global mortality being attributed

to both pollution PM2.5 and dust PM2.5. On a global average, the

ratio of mortality attributable to dust PM2.5 and pollution PM2.5

ranges from 0.18 (LC) to 0.59 (ALRI), depending on the cause of

mortality. For the all-cause mortality, the dust to pollution ratio

is 0.28. It is also necessary to note that due to the non-linear

nature of the CRF (Figure 1), adding up the so-derived

mortalities attributed to pollution PM2.5 and dust PM2.5

yields an all-cause mortality of 3.25 million, which is 13%

larger than the baseline mortality by total PM2.5. Such high

bias depends on the cause of mortality, ranging from 9% for IHD

to 24% for ALRI.

Our estimated global all-cause mortality of 2.53 (1.21–3.86)

million attributable to pollution PM2.5 is comparable to the 2.1

(1.3–3.0) millions by anthropogenic PM2.5 in 2000 estimated

from an ensemble of chemistry-climate models (Silva et al.,

2013). On the other hand, our estimated 721 (376–994)

thousand deaths attributable to dust PM2.5 is 75% higher than

the 412 thousand estimated by Giannadaki et al. (2014) based on

a global model simulation, presumably because dust PM2.5 from

MERRA-2 reanalysis is higher than that simulated by the global

aerosol model used in the latter study. Figure 9 shows spatial

distributions of the calculated all-cause mortality attributed to

pollution PM2.5 (a) and dust PM2.5 (b), respectively. For the

pollution PM2.5, the mortality counts of more than 500 per 0.5 ×

0.5 grid occur in highly populated eastern China and Indo-

Gangetic plain. Large mortality counts are also evident in other

polluted regions such as West Europe and eastern United States,

and Equatorial Africa. In comparison to the pollution-

attributable mortality, the dust-attributable mortality is

generally lower in most of the regions except the areas

adjacent to desert and with less combustion sources such as

West Africa and Middle East. In the highly populated Indian

subcontinent and the northern part of the eastern China, the

dust-attributable mortality is similarly high. Even in some parts

of the western Europe and the eastern United States that are

remote from the dust source regions, dust can cause a significant

number of deaths, due presumably to the intercontinental

transport of mineral dust (Yu et al., 2012; 2013b). Over

uninhabited deserts, the very high PM2.5 concentration (as

shown in Figure 2A) yields zero exposure and zero mortality.

To obtain a more quantitative assessment of the relative role of

pollution and dust PM2.5, Table 4 compares pollution-

attributable and dust PM2.5-attributable mortality in the top

10 countries. In Egypt and Nigeria, the ratio of dust-attributable

to pollution-attributable mortality is 3.86 and 1.95, respectively,

suggesting predominant role of dust in causing deaths due to

their proximity to major dust sources in North Africa andMiddle

East. Improving air quality in these countries depends strongly

TABLE 3 Estimated cause-specific and all-cause global mortality (unit: thousands) attributable respectively to dust and pollution PM2.5 in 2019 based
on median RR and its CI95 range.

Cause Pollution-attributable ΔMort Dust-attributable ΔMort Dust: Pollution

ALRI 179 (115–247) 106 (72-136) 0.59

CEV 937 (327–1,416) 223 (74-306) 0.24

COPD 265 (108–426) 54 (25-80) 0.20

IHD 994 623–1,512) 309 (199-428) 0.31

LC 158 (35–261) 28 (7-44) 0.18

All-cause 2,532 (1209-3,861) 721 (376-994) 0.28
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on how the wind-erosion dust can be controlled. On the other

hand, the dust to pollution mortality ratio is less than one third in

Indonesia, China, Bangladesh, Nepal, India, and the

United States, suggesting the predominant contributions of

pollution PM2.5 in these five countries. In particular, the dust

contribution is negligible in Indonesia, with a dust to pollution

ratio of 0.03. For these countries, controlling pollution emissions

is an efficient pathway for improving air quality and reducing the

death counts. In between these two groups, the dust to pollution

mortality ratio is 0.59 and 0.88 in Russia and Pakistan,

respectively, suggesting comparable roles of dust and pollution

PM2.5 in causing the excess mortality.

Our estimate of dust PM2.5-attributable mortality in this

study is likely to be underestimated because a substantially

larger mass of dust particles coarser than 2.5 μm in

aerodynamic diameter could cause additional health issues

such as asthma and other respiratory illnesses (Pope and

Dockery, 2006; Sandstrom and Forsberg, 2008; Karanasiou

et al., 2012). Dust plumes also carry a wide range of irritating

spores, bacteria, viruses, and persistent organic pollutants,

posing significant health threats. The frequency of dust storms

in the southwestern United States has been found to be

strongly correlated with Valley fever incidences (Tong

et al., 2017). On top of the local dust, the long-range

transport of dust plumes from North Africa and Asia may

be a health concern for the United States (Schuerger et al.,

2018; Heft-Neal et al., 2020).

4 Discussion

4.1 Overestimation of mortality resulting
from using MERRA-2 PMgeo

2.5

Although it is widely known in the air quality and health

community that PM2.5 is defined based on the aerodynamic

diameter, there exist some ambiguities in practical applications.

Aerosol chemical transport models generally use geometric size

FIGURE 9
Estimated 2019 all-cause mortality attributable to (A) pollution PM2.5 and (B) dust PM2.5. For distributions of cause-specific mortality, please
refer to Supplementary Figures S3, S4.

TABLE 4 Pollution-attributable and dust-attributable mortality (thousands) in the top 10 countries.

Country Pollution-attributable ΔMort Dust-attributable ΔMort Dust: Pollution

China 1215 104 0.09

India 588 135 0.23

Pakistan 44 39 0.88

Bangladesh 86 10 0.11

Nigeria 25 49 1.95

Indonesia 54 2 0.03

Russia 52 28 0.54

Egypt 11 41 3.68

United States 39 13 0.33

Nepal 31 6 0.20
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to characterize the particle size distributions. As discussed in

Section 2.1, some studies derive PMgeo
2.5 instead of PM2.5 based on

the aerodynamic size. The resulting overestimation of PMgeo
2.5 is

particularly severe in the dust belt where dust particles are a

predominating component of aerosol (see Figure 3). It is thus

anticipated that the use of PMgeo
2.5 would significantly

overestimate the mortality, with a magnitude depending on

region and the cause of the mortality.

Here we quantify such overestimation by calculating the

mortality with MERRA-2 PMgeo
2.5 in 2019 (Figure 2B) and

then comparing the results with the baseline PM2.5-

attributable mortality (Section 3.2) calculated with MERRA-2

PM2.5 (Figure 2A), as shown in Table 5 for cause-specific global

mortalities. For COPD, IHD, LC, and CEV, the use of PMgeo
2.5

leads to an overestimation of mortality by 27–31%. For ALRI,

however, the overestimation is as high as 60%, due to the

predominance of ALRI in the dust belt (Figure 2A and

Supplementary Figure S2). For the all-cause mortality, the

overestimation is about 1 million deaths or 32%. This exercise

manifests the importance of distinguishing aerodynamic size

from geometric size in defining PM2.5 for assessing health

outcomes resulting from PM2.5 exposure. Reconciling the

differences in estimated mortality in literature needs to factor

in the difference in the definition of PM2.5. It is also highly

recommended that future studies define and report their PM2.5

appropriately and clearly.

4.2 Potential health benefits of enforcing
air pollution regulations to meet
certain PM2.5

To assess potential health benefits of enforcing air pollution

regulations to meet the air quality standards related to PM2.5, we

carry out a set of idealized sensitivity tests by setting an upper

limit of annual PM2.5 concentration at a targeted level of 35, 25,

15, 10, and 5 μg m−3, respectively. For grid cells with current

PM2.5 concentrations exceeding a targeted level (i.e., PM2.5

nonattainment areas), we assign them with the targeted PM2.5

level. For remaining grid cells, the PM2.5 concentrations retain

their current values. This scenario focuses on transforming grid

cells from PM2.5-nonattainment to PM2.5-attainment, without

accounting for continuous improvement of air quality in those

already PM2.5-attainment areas. These targeted PM2.5 levels are

selected based on a review of major ratified air quality standards

or advocated guidelines around the world and are consistent with

WHO’s four interim target (IT) levels and AQG (De Longueville

et al., 2013; Ginnadaki et al., 2016; Chen and Hoek, 2020). The

standard for annual PM2.5 is set at 15 μg m−3 in the United States

and several other countries, while the European Union targets at

25 μg m−3. For comparison, China and India, two of the most

polluted countries, are implementing a less stringent standard of

35 and 40 ?g/m3, respectively, in order to improve air quality and

mitigate health impacts. WHO issued a guideline of 10 μg m−3 for

annual PM2.5 in 2005 and has recently updated it to 5 μg m−3 in

2021 (Chen and Hoek, 2020), which is the most stringent target

of PM2.5 control for mitigating adverse impacts on human

health.

TABLE 5 Comparison of estimated global cause-specific deaths (thousands) attributable to long-term exposure of ambient PM2.5 in 2019 between
using PM2.5 (Figure 2A) and PMgeo

2.5 (Figure 2B).

Cause With MERRA-2 PM2.5 with MERRA-2 PMgeo
2.5 mortality

ratio (PMgeo
2.5 :PM2.5)

ALRI 228 368 1.60

CEV 1,013 1,326 1.31

COPD 287 366 1.27

IHD 1,192 1543 1.29

LC 167 219 1.31

all-cause 2,890 3,822 1.32

FIGURE 10
Estimated health benefits or global premature deaths
(thousands) avoided due to the complete success of enforcing air
pollution control worldwide to meet WHO Interim Targets (IT-1,
IT-2, IT-3, IT-4) and AQG for annual average PM2.5 of 35, 25,
15, 10, and 5 μg m−3, respectively.
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Figure 10 shows potential health benefits of enforcing air

pollution regulations to transfer areas from PM2.5

nonattainment to PM2.5 attainment. Clearly, turning highly

polluted areas to meet the 35 μg m−3 standard only yields an

avoidance of 82 thousand premature deaths, which is 2.8% of

PM2.5-attributable global mortality. This suggests that highly

polluted and populous regions like China, India and West Africa

need to take more drastic actions to lower PM2.5 concentration

and protect the health of human beings in a meaningful way. A

more stringent air quality standard should be adopted. With the

implementation of more stringent PM2.5 standards, potential

health benefits out of the pollution controls would increase

substantially. The avoided premature deaths from

implementing the EU standard of 25 μg m-3 would increase to

383 thousand a year. If the United States AQS (15 μg m−3) was

successfully implemented globally, about 40% or 1.2 million of

the PM2.5-attributable deaths would be avoided, which

represents a significant health benefit of the strict pollution

control. If every place in the world is attainable to the old

WHO guideline of 10 μg m−3, the premature deaths avoided

would increase to 1.85 million. The recent update ofWHO PM2.5

guideline from 10 to 5 μg m−3 would potentially save an

additional one million lives a year.

There are caveats in the estimated health benefits under the

simplified scenarios of pollution controls and regulations. On the

one hand, potential health benefits of implementing air pollution

control to meet the targeted air quality standards could be greater

than that shown above, because PM2.5 at a grid is kept the same

when it is lower than the targeted standard. In the real world,

even the pollution control strategy at local, regional, and national

level may have much broader impacts in downwind regions

because of the long-range transport of air pollution (Chin et al.,

2007; Yu et al., 2008; Yu et al., 2012, Yu et al., 2013a; Yu et al.,

2013b; Yu et al., 2015; Liu et al., 2009; Anenberg et al., 2014;

Zhang et al., 2017). Note also that CRFs used in this study have a

threshold of 6–7 μg m−3 for PM2.5 starting to be harmful to

human health. Therefore, our estimated health benefit here

would represent a lower bound if such a threshold is lower or

even does not exist.

On the other hand, PM2.5 in the dust-dominated regions

could be largely uncontrollable, because the dust emissions are

driven by meteorological conditions (such as wind speed, soil

moisture, vegetation covers, among others) that would be

influenced by anthropogenic activities. When carving out the

dust belt (17W-70E, 10–35N) in calculating the health benefit,

the global total health benefit would amount to 76, 356, 1,090,

1708, and 2,679 thousands for enforcing WHO IT and AQG of

35, 25, 15, 10, and 5 μg m−3. This represents a 7% decrease in the

full-scale health benefits reported in Figure 10.

Nevertheless, dust PM2.5 might decrease in the future driven

by climate change, leading to a health benefit. Observations have

indicated that the dust emissions have been decreasing in recent

decades in part of Gobi deserts and in the Middle East, due to the

decades-long persistent effort of revegetation and irrigation

expansion, respectively (Shaddick et al., 2020; Yu et al., 2020;

Song et al., 2021; Xia et al., 2022). Yuan et al. (2020) identified

based on distant and recent past dust records that the

interhemispheric contrast of the Atlantic sea-surface

temperature (SST) or ICAST has driven variability of African

dust at decadal to millennial timescales. They further predicted

that the increase of ICAST in the global warming scenarios would

reduce African dust by more than 30% as early as 2050. If the

decreasing trends of regional dust continue and the prediction of

future dust decline is robust, the air quality in the dust belt would

be improved in the future, leading to significant health benefits.

4.3 Major uncertainties associated with
the mortality estimates

The estimated mortality in this study is subject to notable

uncertainties associated with several sources. As discussed

earlier, large spreads in the RR-PM2.5 relationships as

quantified by the 95% confidence interval have led to the

estimated global all-cause mortality ranging from 1.4 million

to 4.5 million (i.e., a factor of more than 3 differences). A recent

study (Burnett et al., 2018) suggests the IER RR could have been

significantly underestimated, particularly at high PM2.5

concentrations, suggesting that our estimate of global

mortality may be biased low. Burnett et al. (2018) also

suggested that there could be significant premature deaths

that are not accounted for by the five diseases considered in

this and other studies. In addition, the use of globally uniform

RR-PM2.5 relationship neglects its potentially large diversity

from region to region. As a result, the estimated regional

mortality has larger uncertainty than the global total mortality

does. Tightening the range of estimated mortality requires that

more cohort studies of health outcomes from PM2.5 exposure be

carried out in diverse regions.

The relatively coarse resolutions for PM2.5, population, and

the baseline mortality all contribute to the uncertainty in the

estimated PM2.5-attributable mortality. Given the co-existence

of higher PM2.5in more populous areas (e.g., urban areas), the

use of coarse resolution PM2.5data would lead to an

underestimate of the mortality. Improving model resolution

is needed to resolve the heterogeneity of PM2.5concentrations

in urban areas. Satellite pixel size has become finer, and some

recent studies have taken advantage of this improvement to

scale global chemical transport modeling of PM2.5at a relatively

coarse resolution to as fine as 10 km on a global scale (Brauer

et al., 2016) or even 1 km on a regional basis (Wei et al., 2021).

Such high-resolution PM2.5data would be useful for future

studies when a use of geometric size or aerodynamic size in

defining PM2.5is clarified, and associated bias is corrected. On

the other note, the cause-specific total mortality rate is currently

reported to WHO at country-level, which does not resolve sub-
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country variability. This can lead to large uncertainty in large

country like China and Indian where many natural and social-

economic factors can affect the mortality. However, it is

unlikely that the spatial resolution of the mortality data

could be significantly improved soon.

Although our evaluation shows very good agreement

between MERRA-2 PM2.5and in situ observation in the

heavily dusty regions, the MERRA-2 PM2.5on average is a

factor of about 2 smaller than the in-situ measurements in

other cities. Such low bias is heterogeneous in space. In

China, MERRA-2 PM2.5agrees with the station measurement

within 25% in eastern and southern China, the underestimate

could reach a factor of 2 in northeastern China. Throughout

India, MERRA-2 PM2.5is consistently smaller than the surface

measurement by about a factor of 2. The low bias in the MERRA-

2 PM2.5could be partially explained by the fact that the model’s

resolution is not fine enough to capture high heterogeneity of

PM2.5 in urban areas. We believe that even though MERRA-2

assimilates the satellite retrievals of AOD, it still underestimates

PM2.5in non-dusty regions. Therefore, our estimated mortality

in non-dusty regions is biased low. As a result, our estimate of

dust fractional contribution to global mortality is likely

biased high.

Using the same RR for all components of PM2.5assumes

inherently that PM2.5has the same toxicity regardless of their

sources (e.g., industrial pollution, biomass burning, and dust

storms) and the toxicity depends only on the mass

concentration of PM2.5. This is like other studies in

literature (e. g., Lelieveld et al., 2015; Ginoux et al., 2001;

Ginnadaki et al., 2016; Cohen et al., 2017; McDuffe et al.,

2021). This oversimplification is made due to the lack of

epidemiological studies for quantifying potential differences

in the toxicity conclusively. It is challenging to isolate dust

from a complex mixture of dust and anthropogenic aerosol

and to measure the exposure to dust. Nevertheless, there is

emerging evidence of dependence of toxicity on chemical

composition or source of PM2.5, though results are

generally mixed (Ostro et al., 2010, 2015; Thurston et al.,

2013; Thurston et al., 2016). Several papers have underscored

the importance of and called for incorporating the chemical

composition or sources of PM2.5in the mortality assessment

(Kinney et al., 2010; Lelieveld et al., 2015; West et al., 2016;

Leigh et al., 2020). Recently Chen et al. (2020) developed a

component-adjusted approach to assess the joint impacts of

PM2.5concentration and composition on mortality. It was

found that accounting for the composition in the

assessment could increase the cardiovascular mortality by

27% in a specific region. More research is warranted in the

future to improve the quantitative understanding of chemical

composition and sources of PM2.5on mortality to assess the

health impacts of PM2.5more accurately. It also requires that

PM2.5composition be observed in wide areas and simulated

with chemical transport models with much improved

accuracy, which poses a great challenge.

5 Conclusion

We estimated global premature deaths attributable to long-

term exposure of ambient PM2.5in 2019 by using PM2.5from

MERRA-2 aerosol reanalysis product and the cause-specific

relative risks from the integrated exposure-response model.

The estimated yearly global premature deaths attributable to

ambient PM2.5exposure in 2019 amount to 2.89 (1.38–4.48)

millions, which is composed of 1.19 (0.73–1.84) millions from

IHD, 1.01 (0.35–1.55) millions from stroke, 0.29 (0.11–0.48)

millions from COPD, 0.23 (0.14–0.33) millions from ALRI, and

0.17 (0.04–0.28) millions from LC. The mortality counts vary

substantially with geopolitical regions, with the highest number

of deaths occurring in Asia. China and India account for 43% and

23% of the global PM2.5-attributable deaths, respectively.

Although desert dust is emitted in remote and less populous

regions, the dust plume can transport long distances and affects

populations in downwind regions as far as different continents

across oceans. The dust-attributable to pollution-attributable

mortality ratio is 0.28 for all-cause deaths, suggesting that

22% of the global deaths are caused by desert dust. The

relative contributions of dust and pollution sources vary with

the causes of deaths (17–60%) and geographical regions.

We also assessed potential health benefits of enforcing air

pollution regulations to transfer areas from PM2.5nonattainment

to PM2.5attainment. The air quality standards currently being

implemented in China and India, the two largest contributors of

global mortality, do not yield a significant health benefit. More

stringent air quality standards need to be enforced to produce

significant health benefits. If every place in the world were

attainable with the United States standard of 15 μg/m3, about

40% or 1.2 million of the PM2.5-attributable deaths would have

been avoided. Being attainable with the WHO guideline of 10 μg/

m3 globally would have avoided 1.8 million or 64% of premature

deaths. The most recent update of WHO PM2.5 guideline from

10 to 5 μg/m3 would potentially save additional one million lives.

These estimates would represent an underestimate of health

benefit if the regions around the world currently in

compliance with the AQS continue to improve the air quality.

Our study manifests the importance of distinguishing

aerodynamic size from geometric size in validating simulated

PM2.5 concentrations and accurately assessing their global health

burden. A use of geometric size in diagnosing dust PM2.5from

the model simulation could significantly overestimate the

PM2.5level in the dust belt by 40–170%, leading to an

overestimate of global all-cause mortality by 1 million deaths

or 32%. We recommend that the aerosol modeling community

clarify the existing ambiguity on defining the PM2.5.
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Despite a reasonably good agreement with other estimates of

global mortality, our estimates are subject to significant

uncertainties, including low bias in the MERRA-2 PM2.5in

highly polluted cities, large spread in the concentration-response

functions (CRF), and the negligence of potential CRF regional

variability and sub-country variability in the baseline mortality

rate. Our calculation also assumes that PM2.5from different

sources have the same toxicity, which may not hold true as

suggested by a few lines of emerging evidence. Reducing these

uncertainties requires substantial, cross-disciplinary efforts on

improving the estimate of PM2.5exposure and establishing more

rigorous CRF accounting for the dependencies on geopolitical

regions and PM2.5sources through epidemiological cohort studies.
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