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Analysis of large-scale networks generally requires mapping high-dimensional

network data to a low-dimensional space. We thus need to represent the node

and connections accurate and effectively, and representation learning could be

a promising method. In this paper, we investigate a novel social similarity-based

method for learning network representations. We first introduce neighborhood

structural features for representing node identities based on higher-order

structural parameters. Then the node representations are learned by a

random walk approach that based on the structural features. Our proposed

truss2vec is able to maintain both structural similarity of nodes and domain

similarity. Extensive experiments have shown that our model outperforms the

state-of-the-art solutions.
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1 Introduction

Connections between entities are ubiquitous in the real world, and networks are a

powerful structure for modeling such connections between entities Newman (2010). With

the widespread application of network structures, network analysis has received

increasing attention in both academia and industry. For example, analyzing the social

groups of users can help various applications in social network scenario, such as

advertising Farahat et al. (2012), recommendation Forsati et al. (2013), and

community detection Watanabe et al. (2019). Moreover, in information networks,

analyzing the network structure can help people understand how information spreads

and how rumors spread Moradabadi and Meybodi (2018).

However, analyzing networks thoroughly means that we need to address the high-

dimensional network data challenge. Intuitively, a very important problem in network

analysis arises: how can we reduce high-dimensional data Goyal et al. (2018) to a low-

dimensional equivalent representation space to obtain a more concise and effective

analysis without introducing high-computation consumption. Representation learning is

an emerging technique that maintains both the relationship and attribute information of

the nodes in the network and generates representation vectors in a lower-dimension

space. In our work, we argue that there are two severe challenges for network

representation learning. The first challenge is to find a representation that

appropriately measures the characteristics of node connectivity relationships, and the

second problem is how tomap such characteristics into the vector space. To address above
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problems, we need to consider two types of similarities in

representation learning process, the nodes with similar

features and the nodes with similar structural roles.

Intuitively, interconnected nodes are considered to have

similar features. Nodes that are connected to each other in the

network are in the same community, then these nodes are also

close in the vector space. This proximity-based network

representation learning is also known as community-based

representation learning Rossi et al. (2019). Another way to

measure node similarity is to consider the structural roles of

nodes in the network Rossi and Ahmed (2015) Referring to nodes

with similar structural properties, structural roles define the set of

nodes that are structurally more similar to nodes within a

community than to nodes outside the community. This

approach aims to embed nodes with structurally similar

neighborhoods together, while allowing nodes to be farther

apart in the network. The node roles represent general

structural functions such as nodes acting as hubs, star edges,

near neighbors and bridges connecting different regions in the

graph. More precisely, two nodes belong to the same role if they

are structurally similar, do not need to be connected by edges,

and are not in the same community Ahmed et al. (2018).

From above observations, we notice that the similarity

between nodes in the network is not only characterized by

local community properties, but also by the role structure of

the global network topology. Therefore, both local intra-

community node connectivity similarity and global node role

similarity should be preserved in network representation

learning. However, in many real-world networks, the network

exhibits strong sparsity despite the large size of the network. Such

sparsity challenge makes it difficult to obtain node characteristics

by only extracting the neighborhood structure information of

nodes. In addition, the attributes of nodes and edges in the

network are usually incomplete, which increases the difficulty of

node similarity metrics. Consequently, network representation

learning faces the following challenges.

• Challenge 1. Structural identity of nodes is difficult to

represent accurately. The structural features of nodes can

not be accurately described by simple neighborhood

information, such as degree, motif, etc., and higher-

order structural features are needed.

• Challenge 2. Nodes within the same community also

need a more fine-grained way to distinguish the nodes

with high similarity. Although nodes within the same

community are closely connected, they still need to be

differentiated, and a more efficient way to measure their

similarity is needed to represent the learning of these

closely adjacent nodes.

• Challenge 3. It is difficult to balance structural similarity

and community similarity of nodes. In most methods, only

one of structural similarity and community similarity

between nodes can be maintained. The vector represents

the community similarity while losing the properties of

nodes with similar structures far from these nodes.

To address the above challenges, we propose a network

representation learning method based on the social similarity

of nodes. In order to capture the higher-order structural

information of the nodes, we utilize a higher-order measure of

the relationship between nodes, the truss number, to construct

the structural identity of the nodes. Truss number is a value that

can be calculated on each edge to mark the strength of the

relationship between two nodes on this side. The truss number of

an edge is determined by the maximum k-truss in which the edge

is located, a k-truss is a maximal connected subgraph structure in

which each edge is in at least k − 2 triangles. We then utilize the

truss number information of the neighboring edges within a node

h-hop to construct the structural identity of this edge, which is

more effective than using simple structural information in the

way of degree, motif, etc. by using higher-order structural

information. To preserve the community proximity of nodes,

we use the walking strategy with the most similar structure

identity. This ensures both the structural similarity of the

node learning vectors and the community proximity. In

summary, our contribution is as follows.

• We are among the first to utilize the truss number, a

higher-order structural information, to describe the

structural identity of nodes. This approach contains a

large scope of structural features using a small quantity

of local higher-order information.

• We propose a random walk strategy based on structural

similarity, which can capture the similarity of nodes within

the same community.

• The proposed truss2vec for network representation

learning can guarantee adjacency similarity while

preserving node structural similarity. The experimental

results show that our method significantly outperforms

the baseline in node clustering, multi-classification.

2 Related work

Our work consider the both community-based

representation learning and structural role-based

representation learning in networks. The following introduces

the related work.

2.1 Community proximity representation
learning

Most community-based representation learning methods

arise from random walks or feature propagation. The random

walk-based methods capture nodes in networks that are close to
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each other within the communities for representation learning.

Nodes that are close to each other in the network are embedded

together, and random walks may visit nearby nodes first, which

makes them suitable for finding communities. The representative

methods based on random walks such as DeepWalk Perozzi et al.

(2014), node2vec Grover and Leskovec (2016), LINE Tang et al.

(2015), GraRep Cao et al. (2015), and ComE+ Cavallari et al.

(2019).

The feature propagation-based methods assume that the

initial attributes of nodes are used as inputs. Then, the

embeddings of nodes are generated through a k-step

propagation process. In each step, the features of a node are

diffused to its neighbors. After k rounds, each node gets an

embedding that is essentially a collection of information from its

k-hop neighbors. Although the propagation process relies on

walks between pairs of nodes, methods belonging to this do not

explicitly use walks to approximate the graph structure. Instead,

they propagate information over the network structure and

describe individual nodes by collecting the propagation

features of their neighbors Rossi et al. (2018b). The

representative network embedding methods based on feature

propagation are GCN Kipf and Welling (2016), GraphSage

Hamilton et al. (2017), MuliLENS Jin et al. (2019).

2.2 Structural similarity representation
learning

The main mechanisms of structural similarity-based

representation learning methods utilize the initial set of

structural features of the nodes to produce feature-based roles

Rossi and Ahmed (2015).

When using this mechanism, nodes with similar structural

features could have similar representation, even though these

nodes may be located in different parts of the networks. The basic

building blocks of networks, graphlets, naturally capture the key

structural features of the nodes Rossi et al. (2019). Notably, the

node representation is universal and can be easily computed on

any types of network. One of the fast algorithms for computing

such graphlets in large-scale networks, called PGD Ahmed et al.

(2015), which can only take a few seconds to compute graphlets

in networks with hundreds of millions of edges. The other

methods with similar performance include deepGL Rossi et al.

(2020b), MCN Lee et al. (2018), HONE Rossi et al. (2018a).

Representative methods such as roleX Henderson et al.

(2012) first map each node to a network role via a function

and then derive role-based representation for the nodes using the

concept of feature random walks to capture structural similarity.

The node representations learned from these feature-based walks

are able to capture network role Rossi et al. (2020a).

None of the methods mentioned have used subgraph-based

structures to measure the similarity between nodes and the

neighborhood structure properties of the vertices themselves.

This paper innovatively proposes a graph representation learning

method based on very practical cohesiveness subgraph indicator

k-truss to represent the similarities between vertices and the

domain structure of nodes.

3 Network representation learning
based on truss similarity

In this section, we first introduce the notations and definition

of our model, then we give the procedure of our network

representation learning framework based on k-truss.

Considering an undirected and unweighted graph G(V, E),

whereV is the set of nodes and E is the set of edges. The neighbors

of node v ∈ V is denoted as N(v). Then, the definition and related

properties of k-truss can be denoted as follows.

3.1 Definition 1 (k-truss)

The k-truss of G, denoted by Hk, is defined as the maximal

connected subgraph ofG, where each edge e inHk is contained in

at least k − 2 triangles.

We define truss number of an edge e in G as t(e) = max{k: e ∈
Hk}. It indicates that if t(e) = k, then there is a Hk contains e but

there is not a Hk+1 contains e. We define the truss number of a

node v in G as t(v) = max{t(e): v ∈ e}, which indicates the value of

the largest k-truss that a vertex can be. The maximum truss

number of all edges in G is defined as tmax. Figure 1 shows an

example of k-truss.

Next, we design the representation learning model based on

k-truss, which includes three steps: Step 1: Structural Identity

Extraction. This step aims to define an identity for a node, and

the identity can generalize the structural similarity of nodes.

Based on the assumption of structural role learning methods

Rossi et al. (2020a) that nodes with the same role have similar

structures in their neighborhoods. The wider the range of

neighborhoods is more useful for characterizing a node. To

obtain high-order structural information of nodes, we

consider the neighbors to h hops from the original node.

Formally, for a node v ∈ V, we denote Rh
v as the set of nodes

FIGURE 1
Example of k-truss.
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that are exactly h hops away from v. To catch the structural

information of v from the nodes in Rh
v , we store the truss number

of nodes inRh
v to a tmax-dimensional vector dhv . The ith entry of d

h
v

is the number of nodes with truss number i. dv is node structural

vector consisting of all dhv within h hop,

dv � ∑
k�h

k�1
δk−1dh

v , (1)

where δ ∈ (0, 1] is an attenuation factor for v aggregated over

h hops.

Step 2: Node Similarity Computation. We now incorporate

the above node identities into a node similarity function that relies

on the node structural identity to compare node similarities:

sim u, v( ) � exp −‖du − dv‖22( ). (2)

In our model, the similarity of two nodes is the Euclidean

distance of the structural vectors of nodes.

Step 3: Walks based on Similarity. After we obtain the node

similarity, we use random walk to learn the vector representation

of the nodes. To make the random walk process match the node

similarity, we need to consider a more reasonable walk strategy

rather than using a complete random strategy. Therefore, we

need an improved random walk method with the feature that the

higher similarity between the nodes, the higher probability of

wandering occurs. To this end, inspired by node2vec Grover and

Leskovec (2016), a recent research learning a network by

sequences of nodes. However, the sampling strategies of nodes

in recent works are too simple or singular and do not consider the

structural similarity between nodes.

We design a neighborhood sampling strategy based on node

similarity that allows us to maximize the capture of sequences of

nodes with similar structures. Starting from each given source node

v, we perform a randomwalk of fixed length l to generate a sequence

of nodes (c0, . . ., ci, . . ., cl−1), where c0 = u, let ci denote the ith node in

the walk. The node ci is generated by the following distribution.

Pr ci|ci−1( ) � sim ci, ci−1( )
∑x∈N ci−1( )sim x, ci−1( ), (3)

where ci is one of the neighbors of ci−1. Each neighbor of ci−1 has the

above probability to be chosen as the next node of the sequence. The

more similar the neighborhood structure of nodes, the more the

probability of being in the same walk sequence.

The pseudocode for truss2vec is presented in Algorithm 1. The

inputs are the graph and all the parameter we need in the learning

procedures, and the output is the embeddings of nodes. Firstly, the

truss numbers of vertices can be computed by truss decomposition

Wang and Cheng (2012) (Line 1). Then the structural identity of

each node based on the truss numbers computed by Eq. 1 (Lines

2–7). We sample nodes by R walks for each node, and the nodes in

each walk satisfy the structural similarity (Lines 8–12). Finally, all

the nodes in the selected walks are training by SGD and the

embeddings are returned (Lines 13–14).

ALGORITHM 1. Truss2vec.

Input: G=(V, E), D: embedding dimensions, R: walks per

node, l: walk length, w: context size, h: neighborhood hop

count, δ: attenuation factor

Output: embeddings

1 Compute the truss numbers t(u) for u ∈ V;

2 foreach u ∈ V do

3 Compute the set of h-hop neighbors of u, Rh
u;

4 for i = 1 → h do

5 foreach v ∈ V do

6 diu[t(v)] + +;
7 du � du + δipdiu;

8 walks ←∅;

9 for iter = 1 → R do

10 foreach u ∈ V do

11 walk = GenerateWalk(G, u, l);

12 walks.add(walk);

13 emb = StochasticGradientDescent(w, D, walks);

14 return emb;

15 Procedure GenerateWalk(G, u, l):

16 walk ← [u];

17 for l = 1 → l do

18 31 32v = walk[l − 1];

19 s ← select a node from N(v) by Pr(s|v), s∉walk;
20 walk.add(s);

21 return walk;

4 Experiments

In this section, we evaluate our network representation

learning framework based on truss similarity. We first

introduce the datasets, and then we evaluate the multi-

classification task and sensitivity of the algorithm.

4.1 Datasets

We conducted comparative experiments on four datasets.

The three datasets Brazile, Europe and USA are directed

networks of flights between airports. Each edge represents a

TABLE 1 The statistics of the datasets.

Dataset name #vertices #edges #lables

Brazile 131 1,003 4

Europe 399 5,993 4

USA 1,190 13,599 17

Wiki 2,450 11,596 4
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connection from one airport to another, and the label of a node

shows the categories of the airports. Wiki is a communication

network of Wikipedia, where nodes represent users and edges

denote the talk page where two users have written messages. In

each dataset, each vertex has its own corresponding category

label, and the statistics of datasets are as follows. In each dataset,

each vertex has its own corresponding category label, and the

statistics of datasets are as show in Table 1.

4.2 Clustering

For each graph, we perform the truss2vec algorithm to

generate the embedding vectors. For visualisation purposes, we

plot the embedding vectors for each vertex on a two-dimensional

axis by dimensionality reduction to observe the aggregation of

categories of vertices. The dimensionality reduction method is

based on T-SNE van der Maaten and Hinton (2008). Figure 2

shows the distribution of vertices by embedding vector for the four

datasets. It can be seen that some of the vertices with the same label

are aggregated in close proximity to each other, but due to the

limitations of the word2vec model and the fact that the

dimensionality reduction algorithm loses some accuracy, not all

vertices can be aggregated perfectly.

4.3 Multi-classification

Our experiments evaluate the node feature vector

representation obtained with truss2vec by means of the

FIGURE 2
The results of node clustering. The differently colored points represent data with different labels, and the label number is the category names of
the labels.
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FIGURE 3
The results of multi-classification. We use different fraction of labeled data as the training set, showing the scores of 4 algorithms.
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following standard supervised learning task: multi-classification

of nodes. For the vertex multi-classification problem, we evaluate

the performance of truss2vec against the following

representation learning algorithms.

• LINE Tang et al. (2015). This method learns the

representation of nodes by two separate stages. In the

first stage, it learns the d
2 dimension by performing a

BFS-style simulation of the nodes’ neighbors. In the

second stage, it learns the next d
2 dimension by

sampling nodes that are strictly 2-hop away from the

source node.

• DeepWalk Perozzi et al. (2014). This method is based on a

random walk, starting from a specified node, randomly

selecting the next node to be walked from its neighbors,

and continuously walking downwards until the set walk

length l. By performing this work several times, multiple

node sequences can be obtained, and these node sequences are

treated as word sequences to be input into the word2vec

Grohe (2020) model to obtain the node representation vector.

• Node2vec Grover and Leskovec (2016). Unlike DeepWalk

where the sequences of nodes is completely random, in

node2vec the sequences from one node to the next has a

certain probability, which controls whether the sequences

of nodes favor depth-first or breadth-first.

In our comparison experiments, we use the same parameter

settings for each algorithm to ensure that the parameters and the

sampling method do not have an effect on the experimental

results. For DeepWalk, Node2vec, and Truss2vec, since all the

three methods are implemented based on the random walk, the

difference lies in the way of generating node sequences. Thus, the

parameters of these three algorithms are set to be the same,

specifically, we set d = 128, l = 80, r = 10, k = 10, where d is the

vector dimension, l is the length of the sequence, r is the number

of sequences starting at each node, and k is the number of

samples (context size). We repeated the random seed

initialization experiment 10 times and averaged the results to

minimize the error.

Representations of nodes are fed into a one-vs-rest logistic

regression classifier with L2 regularization. The training and test

data are divided equally into 10 random instances. We used

Macro-F1 scores and Micro-F1 scores to compare the

performance. Since the accuracy trends are similar to those of

Micro-F1, they are not shown in our results. For a fine-grained

analysis, we compared performance when varying the percentage

of training tests from 10% to 90%. For brevity, we have

summarized the results for the Micro-F1 and Macro-F1 scores

in Figure 3. According to the trend of the curves, it can be seen

that the scores of all algorithms improved as the percentage of the

training set increased, i.e., the accuracy of node classification

FIGURE 4
The results of the effect of attenuation factor on the performance of the algorithm. We show the scores of 4 algorithms under different factors.
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improved. Moreover, for all three datasets except brazile-

airports, truss2vec outperforms the other three algorithms.

Node2vec is close to deepwalk, and in some cases node2vec

outperforms deepwalk, and LINE has a worse performance.

However, in brazil-airports, LINE scores the highest, well

ahead of deepwalk and node2vec, and truss2vec is second

only to LINE. the reason for this situation is that the network

is sparse, so the structured nature of the nodes has little effect on

the representation of the nodes. On the contrary, the first-order

and second-order neighbors of the nodes better reflect the

identity of the nodes, so the neighborhood-based LINE

algorithm achieves better performance. Collectively, our

truss2vec performs more consistently in the above four

datasets, and achieves good results in all datasets.

4.4 Sensitivity

The performance of truss2vec involves a number of

parameters, and in this experiment we investigate the effect of

different parameter choices on truss2vec performance. Labeled

data is used in each graph accounting for 80% of the data, and

default values are used for all parameters except those being

tested. Since our proposed truss2vec considers the h-hop

neighbors of the nodes as the structural identity and the more

distant neighbors have less influence on the structure of the

nodes as the number of hops increases. In Eq. 1, δ is the hop

number attenuation factor, the distribution vector of truss

number constituted by the node’s 1-hop neighbors is

multiplied by the attenuation factor σ, the distribution vector

of truss number constituted by the 2-hop neighbors is multiplied

by δ2, and so on, the distribution vector of truss number

constituted by the vertex’s h-hop neighbors needs to be

multiplied by the attenuation factor δh, and the choice of the

influence factor δ affects the embedding vector of each node. To

measure the effect of the attenuation factor δ on the performance

of the algorithm, we perform an experimental analysis of the

Macro-F1 and Micro-F1 scores as a function of the parameter δ.

As shown in Figure 4, when δ = 0.1, the higher-order neighbors of

a node have almost no effect on the representation vector of that

node, while when δ = 0.9, the higher-order neighbors of a node

have little effect on that node as opposed to the lower-order

neighbors. For the three datasets of Brazile, USA, and Europe, the

highest scores are obtained when δ is 0.5 and 0.6. When δ is

smaller or larger, both Macro-F1 scores and Micro-F1 scores

decrease. This also means that to consider the influence of the

near-low-order neighbors and high-order neighbors of the nodes

together, the attenuation factor of this kind will work better.

However, for Wiki, the experimental effect is superior when δ

takes a smaller value, i.e., it means that for the nodes in wiki, their

lower-order neighbors have more influence on the node

representation vector and higher-order neighbors have almost

no influence.

5 Conclusion

Graph learning has been a critical and fundamental problem

of real-world graph-based applications. In this paper, we

proposed a new approach, truss2vec, which based on the

social similarities and can maintain both structural similarity

and domain similarity of nodes. Extensive experiments have

shown that the truss2vec outperforms in clustering, multi-

classification, and sensitivity.

In the future, it is possible that more effective cohesive subgraph

indicators can be used in the learning representation of graphs.
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