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In recent years, carbon market transactions have become more active. The

number of countries participating in carbonmarket regulation is increasing, and

the carbon market’s overall turnover continues to grow. It is important to study

the features of carbon allowance price volatility for the stable development of

the carbon market. This paper constructs a modified ICSS-GARCH model to

analyze the volatility of carbon price returns and the dynamic characteristics of

price fluctuations in the emissions trading system of the European Union (EU-

ETS) and the Chinese carbon pilot markets in Hubei. The results show that

fluctuations in carbon price returns have a leverage effect and that the impact of

negative news on the market is stronger than that of positive news. The

international climate and energy conferences, abnormal changes in

traditional energy prices, and global public health emergencies all affect

volatility and cause shocks to the carbon trading market. The modified ICSS-

GARCH model with structural breaks can reduce the pseudovolatility of the

return series to a certain extent and can improve the accuracy of themodel. This

research can give policymakers some implications about how to develop the

carbon market and help market participants control the risks of fluctuations in

carbon allowances. Regulators should enhance carbon price monitoring and

focus on short-term shocks in the carbon market to reduce trading risks. The

Chinese carbon market should strengthen the system design and develop

carbon financial derivatives.
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1 Introduction

Countries around the world are taking steps to reduce emissions of greenhouse gases

such as carbon dioxide because of climate change and other environmental and ecological

problems (Can et al., 2022). To reduce carbon emissions, many countries have signed the

United Nations Framework Convention on Climate Change (UNFCCC), the Kyoto

Protocol and the Paris Agreement, etc. The Kyoto Protocol outlines the obligations of

developed economies to reduce emissions and proposes three flexible mechanisms to
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reduce emissions, of which carbon trading is one (Can et al.,

2021b). According to the International Carbon Action

Partnership’s (ICAP) Emissions Trading Worldwide Status

Report 2021, there are currently 25 emissions trading system

(ETS) in operation around the world, with another 22 scheduled

to go operational in the near future. Carbon emissions trading

will cover 17% of global emissions. The existing trading systems

include EU emissions trading system (EU-ETS) and US trading

system (RGGI), etc.

The EU-ETS was established in 2005 and is currently the

world’s largest and most active carbon emissions trading system.

EU-ETS carbon allowances trading reaches 8,1 billion tons of

carbon dioxide (CO2) in 2020, representing approximately

90 percent of the total global carbon trading volume, with a

trading volume of €20 billion. It has been implemented in four

phases and is currently in its fourth phase. In the first three

phases of EU-ETS development, the range of countries,

industries and enterprises covered by trading gradually

expanded, and the proportion of auctions in the allowance

allocation process gradually increased (instead of free

allocation). The major difference between the three phases is

the change from grandparenting1 to benchmarking2 in the

allocation of allowances, indicating the continuous maturation

of the EU-ETS management system. In the EU-ETS, the turnover

of EUAs is higher than that of other trading varieties, such as

certified emission reductions (CERs). EU allowance (EUA)

futures allow carbon credits to be traded on commodity

futures exchanges, such as soybeans, oil, and other

commodities. The EU-ETS has become the world’s largest

carbon futures market, with over 90% of the total volume

traded in the EU carbon market (Lamphiere et al., 2021). The

carbon futures market has made the market more open and has

become a model for other countries and regions.

According to the International Energy Agency (IEA), China’s

carbon emissions exceed 11.9 billion tons in 2021, covering about

one-third of the world’s carbon emissions. The Chinese

government announced at the Paris Climate Conference that

CO2 emissions will peak around 2030 and then decline by

60–65 percent compared to 2005. China is exploring the use

of market mechanisms to reduce greenhouse gas emissions in

response to the pressures of CO2 emission reduction and

sustainable development. As an important developing country

and CO2 emitter, China expects that the carbon market will help

achieve its emissions reduction objectives and reduce the global

greenhouse effect at the lowest economic cost among the

available emission reduction policies (Liu et al., 2015; Gozgor

and Can, 2017). Since 2013, China has initiated eight regional

carbon market pilots in Shenzhen, Shanghai, Beijing,

Guangdong, Tianjin, Hubei, Chongqing, and Fujian (Ren and

Lo, 2017). The pilot markets have been operational for only a

short period, and there are still some unstable factors in the

carbon market (Zhao et al., 2016). The carbon market in China

covered about 3,000 emitting enterprises in the steel, electricity,

and cement industries, establishing a large-scale market initially.

China’s carbon emissions trading market has grown to become

the world’s second largest, and it now plays an important role in

the international energy trading market. Under these

circumstances, it is more important and urgent to study how

carbon prices change in both the EU-ETS market and the

Chinese carbon market.

Both the EU carbon market and the Chinese carbon pilot

cover significant emission sectors such as industry and power.

However, because of the different development processes, there

are many differences between the two markets. The major

variation is in the allocation of carbon allowances. The

auction is employed in the EU-ETS, with the European

Commission determining the overall number of carbon

allowances and allocating them to each member. The auction

method ensures the scarcity of carbon allowances. The Chinese

carbon market adopts the free allocation approach and is

susceptible to surplus. Both the EU-ETS and Chinese markets

have excess carbon allowances, leading to a carbon price failure.

The Chinese market is particularly affected. Chinese carbon

credits can only be traded on the spot market. The diversity

of carbon financial instruments and trading activity is restricted

compared to the EU-ETS.

In recent years, the effectiveness of carbon markets, the

volatility and risk assessment of carbon prices, and the

spillover effects between carbon markets and traditional

energy markets have been hot topics (Benz and Truck, 2009;

Chevallier, 2009; Zhang and Sun, 2016; Chang et al., 2017; Zhao

et al., 2020; Can et al., 2021a). In prior studies, time series of

financial asset markets, such as the stock market or crude oil

market, and structural breaks have been widely studied as the

iterative cumulative sum of squares (ICSS) algorithm for

detecting breaks is now well established (Malik and Hassan,

2004; Malik et al., 2005; Wen et al., 2018). However, less research

has been conducted on structural breaks in carbon markets. Price

volatility in the carbon market is influenced by external factors

such as political change, climate change, and allowance

allocation. External factors cause carbon price instability and

risk spillover. Moreover, exploring the reasons and mechanisms

of structural breaks is important for carbon market policymakers

to effectively adjust market policies. In this paper, we adopt the

modified ICSS algorithm to investigate the structural breaks in

carbon market returns and add structural breaks as a dummy

variable in the model to estimate the volatility characteristics of

the EU-ETS and the Chinese carbon market.

The current research on carbon market volatility is mainly

focused on the EU-ETS. In the existing literature, the volatility of

1 Grandparenting allows covered enterprises to get emission permits
based on their previous emissions within a base year or base period.

2 Benchmarking rewards efficient installations and can more easily
assimilate new entrants.
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carbon prices, the factors influencing carbon prices, the

effectiveness of carbon markets, and the measurement of risk

in carbon markets have been examined. Benz and Truck (2009)

and Daskalakis et al. (2009) analyzed the European carbon

market and found that emission allowance returns exhibit

skewness, excess kurtosis, and volatility clustering. Byun and

Cho (2013) used the GARCH model to estimate the price

volatility of carbon futures prices. Dutta (2018) used the

GARCH-jump model to investigate the volatility of the EU-

ETS prices and provide recommendations to investors and

policymakers. Guo et al. (2018) used the GARCH model to

analyze the impact of the EU-ETS emission announcements in

phases I and II on trading behavior and prices. The findings

confirm the maturity of the EU-ETS in phase II. Fan et al. (2017)

analyzed the impact of 50 policy announcements from the EU

ETS on carbon prices. The aggregate impacts of the 50 events

studied were small, and only sections of the policies impacted

carbon prices. Wang et al. (2019) demonstrated that all

externalities of the carbon market, whether energy prices or

policy announcements, are reflected in trading behavior and

they impact the demand and supply of carbon permits through

trading, which influences carbon pricing (Wang et al., 2019).

Zhang et al. (2018) adopted the EGARCH model to examine the

price of carbon pilot markets in China and discovered a long

memory in the sequence of carbon price returns. Zhao et al.

(2016) demonstrated that the market efficiency of ETS pilots in

China is not satisfactory, although ETS system designs have

achieved some promising preliminary results.

In this paper, we compare the price of EUA futures, the most

actively traded variant in the EU-ETS, with the spot price of the

Chinese carbon pilot market and analyze the price fluctuations in

the carbon market. This paper makes the following contributions

to the existing literature: Firstly, to the best of our knowledge,

prior studies have concentrated on the value-at-risk of the carbon

market while disregarding the impact of structural breaks on risk

assessments, thus making carbon market risk underestimated

(Zhang et al., 2018). Our research is a useful supplement.

Secondly, we noticed that policy announcements and

important events can cause structural changes in carbon price

returns, which can have an impact on the carbonmarket or create

market risks. We detect the structural change points by using the

modified ICSS algorithm. We then use the structural change

points as dummy variables to study how event shocks affect the

volatility of the carbon market. This is a novel approach in the

study of carbon market volatility to incorporate structural breaks

estimated by the modified ICSS algorithm into carbon market

volatility research. Furthermore, we explore the asymmetry of the

carbon price. This is an extension of the study of the

characteristics of carbon market prices. The findings confirm

that carbon price returns are also asymmetrical and that the

impact of positive and negative news on the carbon price varies,

which is similar to those of other financial assets. These

important results and conclusions will be used to make

important suggestions about how the carbon finance market

will grow in the future and how governments and market

participants will manage such a market and invest in it.

The remainder of this paper is structured as follows. Section 2

is a literature review. Section 3 introduces the methodologies

used in this paper. Section 4 reports the empirical results. Section

5 provides further discussion on EU-ETS futures in phase II and

provides policy recommendations. Section 6 provides the

conclusions of the paper.

2 Related literature

2.1 Carbon price volatility

In previous papers, time series of financial asset markets,

such as the stock market or crude oil market, with structural

breaks have been widely studied with the iterative cumulative

sum of squares (ICSS) algorithm for detecting breaks now well

established (Malik and Hassan, 2004; Malik et al., 2005; Wen

et al., 2018). However, less research has been done on structural

breaks in carbon markets.

The carbon market is an emerging financial market. Existing

literature on carbon markets is mainly focused on carbon prices,

including carbon market volatility, factors influencing carbon

prices, carbon market effectiveness, and carbon market risk

measurement.

For example, Benz and Truck (2009) and Daskalakis et al.

(2009) analyzed the European carbon market and found that

emission allowance returns exhibit skewness, excess kurtosis, and

volatility clustering. Byun and Cho (2013) estimated the volatility

of carbon futures prices using IV, k-NN, and GARCH-type

models. The results indicate that the GJR-GARCH model

offers the most information on the volatility of carbon futures.

Paolella and Taschini (2008) found asymmetries in the spot

carbon price, which are essential for risk management in the

carbon market. Dutta (2018) tested for extreme values in EUA

and investigated the volatility of EU-ETS prices using the

GARCH-jump model. The results demonstrate that the

GARCH-jump model can capture discrete jumps in asset

returns. Outliers and time-varying jumps play a crucial role in

the risk management of the carbon market. Wang et al. (2019)

demonstrated that all externalities of the carbon market, whether

energy prices or policy announcements, are reflected in trading

behavior and impact the demand and supply of carbon permits

via trading, which influences carbon pricing. Gorenflo (2013)

investigates the price efficiency of EUA futures and spot. The

results show that futures markets are better at finding prices than

spot markets, with carbon futures playing a bigger role.

Numerous studies have examined the performance of the

carbon market in China. For example, Zhang et al. (2018)

adopted the EGARCH model to examine the price of carbon

pilot markets in China and discovered a long memory in the
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sequence of carbon price returns. Lyu et al. (2020) investigates

the dynamic characteristics of volatility using the MCMC-SV

model and Chinese carbon price returns in Hubei, Shenzhen, and

Shanghai from 2015 to 2018. The results demonstrate that the

Chinese carbon prices indicate an aggregation of volatility,

although the long-term volatility is not highly cyclical. Zhao

et al. (2016) demonstrated that the market efficiency of ETS pilots

in China is not satisfactory, with huge price differences and

insufficient liquidity across ETS pilots, although ETS system

designs have achieved some promising preliminary results.

This result was caused by the inappropriate allocation of

allowances and the low motivation of businesses to trade. Liu

et al. (2020) examined the operational efficiency of China’s seven

carbon markets, using a variance ratio test. The findings suggest

that the markets in Hubei and Guangdong are weakly efficient,

while the remainder of the markets are less efficient.

Prior research indicates that the modified ICSS model has

been widely utilized in measuring the volatility of financial assets

and is capable of analyzing the volatility of carbon market prices

(Malik and Hassan, 2004; Wen et al., 2018). In addition, a

comparative study of EU-ETS and Chinese carbon pilot

markets could help the carbon market develop better.

2.2 EU-ETS and China carbon pilots

The EU Emissions Trading System (EU-ETS), established in

2005, is a carbon trading mechanism based on EU regulations

and national legislation. The EU-ETS is the world’s most

developed carbon trading system and dominates the

international carbon financial market. Currently, the EU-ETS

is in its fourth phase, following three phases of development and

gradual improvement. During previous phases of development,

the carbon market’s coverage of covered sectors and gases

gradually expanded, and the proportion of auctions in the

allowance allocation process gradually increased. Table 1

shows the difference between the different phases of EU-ETS.

In the EU-ETS, the turnover of EUAs is higher than that of

other trading varieties, such as certified emission reductions

(CERs). In this paper, EUA futures phase III prices are used

to analyze the behavior of price volatility in the carbon market,

while phase II prices are used for the comparative analysis.

Figure 1 shows the price trend of EUA futures from 2005 to 2021.

The carbon market was immature during the first phase of

the EU-ETS due to a lack of experience with relevant allocations.

In the first phase, numerous factors affected the futures price, and

there were significant price fluctuations. Because of the inability

to store Phase I and Phase II allowances across phases, the EUA

price fell to an all-time low of €0.01 at the end of 2007,

undermining the effectiveness of the EU-ETS market. In the

second and third phases, the European Commission revised the

trading mechanism and the way allowances are allocated. Since

2008, EUA futures prices have shown regular changes, influenced

by global economic trends and energy prices. The EU-ETS

matured after the initial two stages of exploration and

development. Thus, this paper analyzes the volatility

characteristics of futures prices in the third stage.

As the main supplier of demand for clean development

mechanism (CDM) projects, China participates in worldwide

emission reduction missions. In 2013, China established eight

regional ETS pilots. The pilots have different prices, turnover, and

volumes. Figure 2 shows the price trend for the major pilots. The

price trend of each carbon pilot in China is different, and the eight

carbonmarket pilots have their own transaction rules and systems.

Furthermore, most studies use trading data from the carbon pilots

TABLE 1 Characteristics of the different phases of EU-ETS.

Phase I
(2005–2007)

Phase II (2008–2012) Phase III (2013–2020) Phase IV (2021–2030)

Emission allowances
(MtCO2e)

2096 2049 2084 1,610

Greenhouse gas CO2 CO2 and N2O CO2, N2O and PFCs CO2, N2O, and PFCs

Decline rate — — 1.74% 2.20%

Allowance allocation Free allocation 10% of general allowances were
auctioned off

57% of general allowances were
auctioned off

57% of general allowances were
auctioned off

Industry Power sector Power sector, Aviation sector Expanded industrial sector Consistent with Phase III

FIGURE 1
Price trends in EUA futures. The vertical lines mark the
beginning of the different phases: phase I (2005–2007), phase II
(2008–2012), phase III (2013–2020), and phase IV (2020–present).
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in Shenzhen, Guangdong, and Hubei because these three pilots

have higher market shares and liquidity than other carbon

pilots (Fan and Todorova, 2017; Chang et al., 2018; Zhao et al.,

2020). The Hubei spot price is used in this study because it is the

largest market in terms of turnover and is relatively active and

mature.

3 Methodology

3.1 Modified ICSS algorithm

The iterative cumulative sums of squares (ICSS) algorithm

was proposed by Inclan and Tiao (1994). This method is used to

distinguish structural break points of volatility based on the

cumulative sum (CUSUM) test statistic. At the start of the

process, the method assumes that the variance of the time

series is the same for a certain period of time. The variance

changes at the time of the unexpected event and then remains

constant. There is a sudden structural change during an event.

The procedure is as follows.

Assume that the sample has T observations and that the

residual sequence of the sample at ~ i.i.d.N(0, σ2t ), with NT

structural variance points, can be divided into NT +1 intervals.

The sequence of structural mutation points is written as

{k1,k2, . . . . . . kNT,}, 1< k1 < k2 < . . . < kNT <T. Each interval’s

variance is denoted by σ2j , where j � 0, 1, 2, . . . , NT, i.e.,

σ2
0 � a20 1< t< k1

σ2
1 � a21 k1 < t< k2

σ2
NT

� a2NT
kNT < a<T1

(1)

Ck � ∑k
i�1ϵ2t , k � 1, 2, . . . . . . , T represents the cumulative sum of

squares of the return series up to moment k. Then, CT � ∑T
t�1ϵ2t .

Define IT as the statistic.

IT � supk

∣∣∣∣∣∣∣∣
���
T /

2
√

Dk

∣∣∣∣∣∣∣∣ (2)

where Dk � Ck
Ct
− k

T and D0 � DT � 0 Assuming that _t is a

normally distributed random variable that is distributed

independently and identically at zero mean, the asymptotic

distribution of the test statistic is

IT0supk
∣∣∣∣W*

r

∣∣∣∣ (3)

Dk follows a Brownian bridge process that fluctuates up and

down around the zero axis if the sample is homoscedastic over

the estimation period. If there is a structural change in the

interval, Dk will deviate from zero and have a certain

probability of crossing the boundary. A structural break point

is considered to exist in the interval when
���
T /

2
√

Dk exceeds the

upper and lower bounds of 1.358 at a 95% confidence interval.

The ICSS algorithm assumes that {ϵt} ~ i.i.d.N(0, σ2) and

that the variance in the subintervals is constant. The idea that

returns from financial assets are normally distributed underpins

many traditional financial theories, but the reality is that many

(even most) assets do not conform to this assumption. Instead,

empirical distributions exhibit higher peaks and fatter tails. Sanso

and Malik thus proposed a modified ICSS algorithm. The

modified test statistic is shown below (Sansó et al., 2004;

Malik et al., 2005).

κ2 � sup|GK��
T

√ | (4)

Previous research has shown that event shocks can cause

structural break points in time series (Malik, 2003). Dummy

variables incorporated into the model can reduce the

pseudovolatility of the return series and improve model

accuracy. The modified ICSS algorithm is used to detect

structural break points in the following study. We use the

FIGURE 2
Price trends of major carbon pilots in China, including the Beijing, Guangdong, Hubei, and Shenzhen pilots.
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news to determine which major events they correspond to and

add them to the model as dummy variables.

3.2 GARCH model

Engle (1982) proposed the autoregressive conditional

heteroskedasticity (ARCH) model for studying the volatility of

asset prices. Bollerslev (1986) proposed the generalized ARCH

(GARCH) model. The GARCH model adds the lagged values of

the conditional variance across periods to the ARCH model to

describe the long memory of financial assets. The GARCH (p, q)

model is given by the following equation:

at � σtt
σ2
t � α0 +∑p

i�1αia
2
t−i +∑q

j�1βjσ
2
t−j

(5)

where α0 > 0, αi ≥ 0, βj ≥ 0 and 0<∑p
i�1αi +∑q

j�1βi < 1. These

constraints on the coefficients ensure the nonnegativity of the

variance. The GARCH (1, 1) model is by far the most commonly

used model because it avoids a large number of delays that were

previously associated with it, and thus it is our preferred model

within the GARCH family of models.

3.3 Exponential GARCH model

Many studies have found a leverage effect in financial assets.

The leverage effect is caused by the fact that negative returns have

a greater impact on future volatility than positive returns

(Christie, 1982). The exponential GARCH (EGARCH) model

was proposed by Nelson (1991). On the left side of the model

equation, the conditional variance is logarithmized. This model

overcomes the critical limitation of GARCH models, which is

parameter nonnegativity. The conditional variance equation of

the EGARCH (1, 1) model is given by the following equation.

ln(σ2
t ) � α ln(σ2

t−1) + β
∣∣∣∣∣∣∣μt−1σ t−1

∣∣∣∣∣∣∣ + γ
μt−1
σ t−1

+ ω (6)

The μt−1
σt−1 term replaces the μt−1 term in the EGARCHmodel. It

improves the model’s ability to describe the effect magnitude and

persistence. The model describes the asymmetry of volatility

through the additional parameter. The leverage effect is achieved

by the second and third terms on the right side of the equation.

If the coefficient of the asymmetric term γ � 0, there is no

leverage effect. If the coefficient of the asymmetric term γ< 0, it

means there is a leverage effect. This ensures that positive return

shocks induce less volatility than negative return shocks (Engle

and Ng, 1993). It is clear that negative shocks will have a larger

effect on future volatility than positive shocks of the same size.

The normal distribution, which forms the basis of portfolio

theory, may not necessarily apply to financial asset price patterns.

Therefore, we assume that the residuals follow a generalized error

distribution (GED) in the following analysis. The distribution is

given by the following equation.

f (x|v) � v

λ × 21+1
v × Γ(1v)e

−1
2×

∣∣∣∣∣∣xλ
∣∣∣∣∣∣v , x ∈ (−∞,∞)(0< v ≤∞) (7)

λ � ⎡⎢⎣2−2
v ×

Γ(1v)
Γ(3v)

⎤⎥⎦ 1
2 (8)

where v is the degrees of freedom.

3.4 Modified ICSS-GARCH model

In this paper, we adopt the AR (1)-GARCH (1, 1) model to fit

the EUA futures returns and MA (1)-GARCH (1, 1) to fit the

Hubei spot returns. The ICSS-GARCH models used to describe

the EUA futures returns and Hubei spot returns are shown in Eqs

9, 10, respectively.

rt � ϕ1rt−1 + at

at � σ tεt

σ2
t � α0 + α1a

2
t−1 + β1σ

2
t−1 +∑n

k�1dkDk (9)
rt � θ1at−1 + at

at � σ tεt

σ2
t � α0 + α1a

2
t−1 + β1σ

2
t−1 +∑n

k�1dkDk (10)

4 Empirical analysis

4.1 Data

In this paper, we collect a dataset of EUA futures prices

and Hubei carbon spot prices. In this part, we use data on

EUA futures from phase III. The sample period for EUA

futures is from 1 January 2013, to 31 December 2020. The

sample period for spot prices on the Hubei carbon market is

from 1 July 2019, to 30 July 2021, encompassing two emissions

trading compliance periods. The Chinese carbon market is

still in the development stage. To better capture price

fluctuations, we chose data from recent years.

The logarithm of the prices is used to calculate all yield

series data.

Rt � lnYt − lnYt−1 (11)

where Yt represents the carbon price on day t, Yt−1 represents the
carbon price on day t-1, and Rt represents the carbon returns.

Figure 3 shows the trend of returns. It can be noted that the

sample is stationary, but simultaneously shows volatility

clustering. Furthermore, all of the return series in the figure

are subject to extreme volatility.
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4.2 Descriptive analysis

Table 2 shows the basic characteristics of EUA futures

and Hubei spot returns. The minimum values of the two

returns are −0.4347 and −0.1972. The maximum values of the

EUA futures returns and Hubei spot returns are 0.2405 and

0.0952, respectively. Meanwhile, the mean value of the EUA

futures returns is 0.0008 and the mean value of Hubei spot

returns is 0.0001. The standard deviations of EUA futures

returns and Hubei spot returns are 0.0342 and 0.0306,

respectively. The kurtosis of all the return series exceeds

three, and the skewness of these returns is not equal to

zero. The skewness of the EUA futures return is greater

than zero, indicating a right-skewed distribution. The

skewness of the Hubei spot return is less than zero,

indicating a left-skewed distribution. The two series have

the same characteristics as other financial time series, with

higher peaks and fatter tails.

The JB statistic shows that none of the return series follow a

normal distribution. Figure 4 indicates that the quantile-quantile

plot test results confirm this as well. Therefore, using the

generalized error distribution (GED) to characterize the data

in the modeling approach in this paper can more accurately

explain the statistical features of the carbon return series.

4.3 Carbon price volatility characteristics

In this part, we examine the volatility characteristics of the

series because the GARCH family model requires the series to be

stable and to have conditional heteroskedasticity. Thus, before we

establish the GARCH models, it is essential to test whether the

two series are stationary and heteroskedastic.

4.3.1 Unit-root test
We examine whether the series is stationary by using the

AugmentedDickey Fuller (ADF) test. Table 3 shows the results from

the ADF test. The results for the EUA futures andHubei spot return

series all reject the null hypothesis, since the t-statistic values are

equal to 0.0000, indicating that the two series are both stationary.

4.3.2 ARCH-LM test
We examine whether the series is heteroskedastic by using the

ARCH-LM test. We regress the return series on the constant term

to obtain the residual series and take the lags of order 1, order 5,

and order 10 for the test. Table 4 shows the results of the ARCH

effect test for the return series. Both the F-statistic and LM-statistic

are significantly larger than the critical values, and the residuals of

the return series have conditional heteroskedasticity. This means

that the GARCH family of models can be used.

FIGURE 3
Carbon price yield trends. (A) EUA futures return trend; (B) Hubei spot price return trend. The sample period is from 1 January 2013, to
31 December 2020, for EUA futures and from 1 July 2019, to 30 July 2021, for Hubei spot returns.

TABLE 2 Data descriptive statistics. This table presents the descriptive
statistics results of carbon price returns considered for the whole
sample period. JB denotes the Jarque-Bera test statistic for the null of
normality.

Variables REUA3 RHBEA

Mean 0.0008 0.0001

Median 0.0000 −0.0003

Maximum 0.2405 0.0952

Minimum −0.4347 −0.1972

Std. Dev 0.0342 0.0306

Skewness 0.5423 −0.4601

Kurtosis 20.2870 8.1436

Jarque-Bera 26,073.8000 538.0974

Prob 0.0000 0.0000
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4.4 Empirical results

In this part, we perform a modeling analysis of carbon price

returns. First, we use the EGARCH model to evaluate the impact

of positive and negative news on returns. Then, we use the

modified ICSS algorithm to locate structural breaks in the

returns and find the times when structural changes occur;

then, we introduce them into the GARCH model as dummy

variables to investigate the impact of event shocks on return

volatility. In this paper, some of the structural breaks are

generated at the time corresponding to the associated

announcement in the news and are added to the model as

dummy variables to investigate the impact of event shocks on

return volatility. In further discussions, we compare data from

phases II and III of EUA futures to see if there is continuity in the

causes driving structural fractures.

4.4.1 Leverage effect analysis based on the
EGARCH model

It is known that the volatility of financial assets tends to be

asymmetric, which means that good news and bad news have

different impacts on financial assets (Nelson, 1991). Therefore,

this paper establishes an EGARCH model to study the leverage

effect of the volatility of carbon return series. Table 5 shows the

estimation results for the EUA futures. The fluctuations of EUA

futures and Hubei spot returns are asymmetric, i.e., rises and falls

in carbon price returns have different effects on future volatility.

FIGURE 4
Quantile-quantile plots for returns. (A) EUA futures; (B) Hubei spot. The sample period is from January 1, 2013, to December 31, 2020, for EUA
futures and from July 1, 2019, to July 30, 2021, for Hubei spot returns.

TABLE 3 ADF test of EUA futures and Hubei spot returns. The null
hypothesis of the ADF test is the presence of a unit root, that is, the
series is nonstationary.

REUA3 RHBEA

t-Statistic −35.2274 −19.3779

Prob.* 0.0000 0.0000

Test critical values

1%Level −2.5661 −2.5699

5%Level −1.9410 −1.9415

10%Level −1.6166 −1.6162

TABLE 4 ARCH-LM test results. The null hypothesis is that a series of residuals exhibits no conditional heteroscedasticity. The p-value represents the
significance of the corresponding test.

Number of
lags

F-statistic Prob Obs*R-squared Prob

REUA3 1 27.9778 0.0000 27.6299 0.0000

5 13.4695 0.0000 65.3989 0.0000

10 7.1150 0.0000 69.1253 0.0000

RHBEA 1 9.5616 0.0021 9.4109 0.0022

5 9.9415 0.0000 45.4617 0.0000

10 7.4020 0.0001 21.3779 0.0001
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In addition, the coefficient of the asymmetric term γ is −0.0340,

indicating that there is a leverage effect on the impact of carbon

return volatility and that the impact of negative news on carbon

market volatility is greater than that of positive news. Positive

news generates a shock of a factor of 0.2023 (β + γ) to the

volatility of EUA futures, and negative news generates a shock

of a factor of 0.2703 (β − γ). The news impact curve for EUA

futures returns is shown in Figure 5, which confirms the

asymmetry of the impact.

Table 6 shows the estimation results for the Hubei spot

returns. Although the coefficient γ of the asymmetric term of the

Hubei spot returns is less than 0, the asymmetric term is not

statistically significant, which means that there is no significant

leverage effect. The reason is that China’s carbon trading market

is still at an early stage of development, and the main trading

entities are enterprises whose emissions are controlled. In

addition, China only has a spot trading market, which is less

active than the EU market. After years of development and

innovation, the EU-ETS has become more mature, with a

broader investor structure and larger trade volume. Thus,

compared to its traditional financial market, China’s carbon

market still needs to be developed.

4.4.2 Volatility analysis based on the modified
ICSS-GARCH model
4.4.2.1 Structural break tests based on the modified ICSS

algorithm

Using the modified ICSS algorithms presented in Section 2,

we begin by detecting the structural breaks. We set the

significance level for the algorithms at 0.05. Table 7 shows the

results of structural break tests for the carbon market using the

modified ICSS algorithm. There are nine structural change points

in the EUA futures returns and four structural change points in

the Hubei spot returns in the sample period. In this paper, some

of the structural breaks are generated at the time corresponding

to their announcement in the news and are added to the model as

dummy variables. We find that the international climate and

energy conferences, abnormal changes in prices of traditional

energy such as oil, and global public health emergencies all affect

the volatility of the carbon market and cause certain shocks to the

carbon trading market.

Table 8 shows the events that occurred on the dates

corresponding to the structural breaks; the results indicate

that the major event shocks caused the variance to change

structurally. Next, we add the structural breaks as dummy

TABLE 5 Estimation results of the EGARCH (1, 1) model for EUA futures
returns from 1 January 2013, to 31 December 2020.

Variable Coefficient Std. Error z-Statistic Prob

Mean Equation

AR (1) −0.0740 0.0209 −3.5432 0.0004

Variance Equation

α −0.3501 0.0537 −6.5191 0.0000

β 0.2363 0.0260 9.0825 0.0000

γ −0.0340 0.0166 −2.0462 0.0407

ω 0.9754 0.0063 155.8713 0.0000

FIGURE 5
News impact curve of the EGARCH (1, 1) model of EUA futures
returns.

TABLE 6 Estimation results of the EGARCH (1, 1) model for Hubei spot
returns from 1 July 2019, to 30 July 2021.

Variable Coefficient Std. Error z-Statistic Prob

Mean Equation

AR (1) −0.2565 0.0433 −5.9280 0.0000

Variance Equation

α -0.9801 0.1045 −9.3756 0.0000

β 0.3803 0.0499 7.6175 0.0000

γ 0.0504 0.0349 1.4450 0.1485

ω 0.9015 0.0115 78.3068 0.0000

TABLE 7 Structural breaks of EUA futures and Hubei spot returns.

REUA3 RHBEA

1 2013.05.14 2019.12.27

2 2014.02.24 2020.06.04

3 2014.05.21 2021.01.26

4 2015.06.02 2021.04.13

5 2015.12.10

6 2016.11.10

7 2017.04.28

8 2020.03.11
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variables to the GARCH model to compare how important

events affect the volatility of carbon prices.

4.4.2.2 Analysis of the GARCHmodel based on structural

breaks

Using the modified ICSS algorithm, we have found structural

breaks. Then we introduce them into the GARCH model for

comparative analysis. We compare two models: one without

structural change points and the other with structural change

points, which are given individually in both cases.

4.4.2.2.1 GARCH model without structural breaks. First,

we use the GARCH model without structural breaks. Tables

9, 10 show the estimation results of the GARCH model. For

EUA futures and Hubei spot returns, all parameters are

significant. The coefficients of α and β in the model are

positive, and their sum is close to 1, indicating that the

volatility of the carbon market has persistence and long

memory.

4.4.2.2.2 GARCH model with structural breaks. We adopt

the modified ICSS-GARCH model to further analyze the

volatility characteristics of the carbon market. Tables 11, 12

illustrate the results of the estimation. We find that the

characteristics of volatility are attenuated when we consider

structural breaks. We observe a decrease in the sum of α and

TABLE 8 Events corresponding to structural breaks.

Date Event

REUA3 2013.05.14 Shale oil production in the United States has expanded dramatically. The International Energy Agency (IEA) predicts that the
United States will produce one-third of additional world crude oil supply during the next 5 years

2014.02.24 The United Nations held a special event to highlight the importance of the needs of small island developing states in addressing
climate change

2015.06.02 Paris, France hosts the 26th World Gas Conference

2015.12.10 The adoption of a new agreement on global climate change at the Paris Climate Change Conference will have an impact on the EU-
ETS and EUA prices will fall in the future

2016.11.10 The 22nd Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC), held in
Morocco, focused on the key role of cities in the implementation of the Paris Agreement

2017.04.28 The U.S. signs an executive order to expand offshore oil and gas drilling

2020.03.11 The World Health Organization (WHO) declares the novel coronavirus (COVID-19) outbreak a global pandemic. Oil prices
continue to be affected by global uncertainties

2020.04.22 COVID-19 pandemic stalls global economic recovery. The combination of falling demand, rising supply caused such a pronounced
crude petroleum price plunge

RHBEA 2019.12.27 The UN Climate Change Conference COP 25 took place under the Presidency of the Government of Chile

2020.06.04 Price changes due to approaching performance period

2021.01.26 China stated it will further strengthen domestic efforts to adapt to climate change and comprehensively improve climate risk
resilience at the Climate Adaptation Summit

TABLE 9 Parameter estimates of the AR (1)–GARCH (1, 1) model for
EUA futures returns in phase III, without structural breaks from
1 January 2013, to 31 December 2020.

Variable Coefficient Std. Error z-Statistic Prob

Mean Equation

AR (1) −0.0703 0.0213 −3.3053 0.0009

Variance Equation

α 0.1190 0.0161 7.3805 0.0000

β 0.8743 0.0155 56.501 0.0000

TABLE 10 Parameter estimates of the MA (1)—GARCH (1, 1) model for
Hubei spot returns without structural breaks from 1 July 2019, to
30 July 2021.

Variable Coefficient Std. Error z-Statistic Prob

Mean Equation

MA (1) −0.2862 0.0397 −7.2178 0.0000

Variance Equation

α 0.2436 0.0367 6.6409 0.0000

β 0.7403 0.0250 29.6049 0.0000

TABLE 11 Parameter estimates of the AR (1)—GARCH (1, 1) model for
EUA futures returns in phase III, with structural breaks from
1 January 2013, to 31 December 2020.

Variable Coefficient Std. Error z-Statistic Prob

Mean Equation

AR (1) −0.0679 0.0216 −3.1376 0.0017

Variance Equation

α 0.1175 0.0165 7.1255 0.0000

β 0.8695 0.0156 55.8617 0.0000

Dummy 0.0006 0.0002 3.3950 0.0007
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β for both EUA futures and Hubei spot returns. The sum of α and

β for EUA futures returns decreases from 0.9933 to 0.9870, and

the sum of α and β for Hubei spot returns decreases from

0.9838 to 0.9730. This indicates that the strong persistence

and long memory characteristics of volatility become weaker

after we add the structural breaks as a dummy variable to the

model. The modified ICSS-GARCH model reduces the

pseudovolatility of the return series and enhances the model’s

accuracy (Malik et al., 2005).

Table 13 depicts the results of the ARCH-LM test for the

residuals after we model the return series. The p-value of the

residual series is greater than 0.05 for lag orders of 1, 5 and 10,

and therefore the null hypothesis is accepted. This shows that

after modeling, the conditional heteroskedasticity in the series is

removed, which means that the model fits well.

5 Further discussion

5.1 Analysis of EU-ETS phase II

We replace our dataset with the EU-ETS phase II trading data

for further discussion of the volatility of EUA futures’ returns.

Due to data availability, the scope for the prices of EUA futures’

returns is from 2 January 2008, to 31 December 2012. Table 14

illustrates the basic characteristics of EUA futures returns in

phase II. The descriptive statistics show that the mean value of

the return in phase II is -0.0010, which is lower than the value of

0.0008 in phase III, indicating that the return of EUA futures is

gradually increasing. The standard deviation of phase II is 0.0271,

which is not significantly different from phase III, and the price

fluctuation is more stable. In addition, the returns of both phases

have the characteristics of higher peaks and fatter tails and do not

follow a normal distribution.

We also conducted ADF and ARCH-LM tests on the data of

EUA futures in phase II, and the results show that the returns

remain stationary and the residuals of the return series are

conditionally heteroskedastic. Next, we analyze the volatility of

EUA futures returns in phase II using the same methods as in

Section 3.

The estimation results for the EGARCH (1, 1) model are

shown in Table 15. The fluctuations in phase II of the EUA

futures are asymmetric. The coefficient of the asymmetric term γ

is −0.0674, indicating that there is a leverage effect on the impact

of carbon return volatility and that the impact of negative news

on carbon market volatility is greater than that of positive news.

Positive news generates a shock of a factor of 0.1475 (β + γ) to

volatility, and negative news generates a shock of a factor of

0.2823 (β − γ).

We examine the structural break points uncovered by using

the modified ICSS algorithms. There are four structural breaks in

the EUA futures returns in phase II: they occurred on 21 October

2008; 16 June 2009; 28 May 2010; and 22 June 2011. We also add

these structural breaks to the model as dummy variables.

Table 16 illustrates the estimation results of the GARCH (1,

1) model without the structural breaks. Table 17 shows the results

of the ICSS-GARCH (1, 1) model with structural breaks. The

findings show that the characteristics of volatility are attenuated

once we consider structural breaks. There is a decrease in the sum

of α and β for both phases. The sum of α and β for EUA futures

returns decreases from 0.9936 to 0.9847.

This is consistent with the findings for phase III, in which

EU-ETS volatility does not change significantly between the two

phases, confirming that phase II volatility characteristics persist

into phase III. This also indicates that the strong persistence and

long memory characteristics of volatility become weaker after we

add the structural breaks as dummy variables to the model. The

TABLE 12 Parameter estimates for the MA (1)—GARCH (1, 1) model for
Hubei spot returns with structural breaks from 1 July 2019, to
30 July 2021.

Variable Coefficient Std. Error z-Statistic Prob

Mean Equation

MA (1) −0.2796 0.0409 −6.8393 0.0000

Variance Equation

α 0.1745 0.0273 6.3987 0.0000

β 0.7985 0.0212 37.734 0.0000

dummy 0.0013 0.0005 2.5024 0.0123

TABLE 13 ARCH-LM test results for residual series. The null hypothesis is that a series of residuals exhibits no conditional heteroscedasticity. The
p-value represents the significance of the corresponding test.

Number of
lags

F-statistic Prob Obs*R-squared Prob

REUA3 1 0.0626 0.8025 0.0626 0.8024

5 0.3687 0.8703 1.8471 0.8699

10 0.5542 0.8519 5.5569 0.8510

RHBEA 1 0.9329 0.3346 0.9350 0.3336

5 0.5851 0.7114 2.9448 0.7085

10 0.6466 0.7738 6.5295 0.7690
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modified ICSS-GARCH model reduces the pseudovolatility of

the return series and enhances the model’s accuracy. A proper

assessment of short-term price and volatility is a critical issue in

the carbon market since effectively measuring volatility risk is

critical for carbon market managers in a complex market.

To summarize, our study shows the following findings: First,

there is a leverage effect on the impact of carbon return volatility,

and the impact of negative news on carbon market volatility is

greater than that of positive news. This is consistent with

previous research demonstrating that the returns on financial

assets are leveraged and that positive and negative news have

different impacts on return volatility (Paolella and Taschini,

2008; Dutta, 2018). Secondly, we find that the international

climate and energy conferences, abnormal changes in prices of

traditional energy such as oil, and global public health

emergencies all affect the volatility of the carbon market and

cause certain shocks to the carbon trading market. Wang et al.

(2019) demonstrated that all externalities of the carbon market,

whether energy prices or policy announcements, are reflected in

trading behavior and impact the demand and supply of carbon

permits via trading, which influences carbon pricing. We extend

this conclusion. Finally, our results are consistent with previous

results using themodified ICSS-GARCHmodel to study financial

market data (Malik et al., 2005; Wen et al., 2020). The results

show that the modified ICSS-GARCHmodel is also applicable to

the study of carbon market volatility and that the model can

reduce the pseudovolatility of the return series to a certain extent

and improve the accuracy of the model.

5.2 Policy recommendations

The findings of this study are potentially significant for

further research into carbon emission permits. They help

policymakers and investors in the carbon market identify risks

and develop strategies to minimize them.

Firstly, regulators should enhance carbon price monitoring

and focus on short-term shocks in the carbon market to reduce

trading risks. Studies have shown that when the carbon market is

subject to exogenous shocks, prices are prone to dramatic

fluctuations and the market does not compensate for potential

risks. Market managers should recognize and identify abnormal

price fluctuations and forecast the trend. In addition, market

management should establish stability reserves in order to

minimize extreme price changes in response to exogenous

shocks, reduce trade risks, and improve market stability.

Second, the Chinese carbon market should improve the

system design. The findings indicate that the EU-ETS price is

less volatile and more stable than the carbon market in China. In

the short term, the Chinese carbon market is inactive,

participants are risk-averse, and products lack diversity. In the

long term, the Chinese carbon market needs a comprehensive

development plan and a well-structured market framework. It

still needs to be improved in many ways, and the design of the

system should be strengthened.

Finally, the Chinese market should boost the development of

carbon finance instruments. Chinese carbon credits can only be

TABLE 14 Phase II data descriptive statistics. This table presents the descriptive statistics results of carbon price returns considered for the whole
sample period. JB denotes the Jarque-Bera test statistic for the null of normality.

Variables Mean Std. Dev Skewness Kurtosis Jarque-bera Prob

REUA2 −0.0010 0.0271 0.0837 6.9123 819.7549 0.0000

TABLE 15 Estimation results of the EGARCH (1, 1)model of EUA futures
returns in phase II from 2 January 2008, to 31 December 2012.

Variable Coefficient Std. Error z-Statistic Prob

Variance Equation

α −0.3826 0.0744 −5.1423 0.0000

β 0.2149 0.0340 6.3273 0.0000

γ −0.0674 0.0170 −3.9598 0.0001

ω 0.9709 0.0080 120.7018 0.0000

TABLE 16 Parameter estimates of the GARCH (1, 1) model for EUA
futures returns in phase II without structural breaks from
2 January 2008, to 31 December 2012.

Variable Coefficient Std. Error z-Statistic Prob

Variance Equation

α 0.1008 0.0167 6.0045 0.0000

β 0.8928 0.0170 52.5048 0.0000

TABLE 17 Parameter estimates of the GARCH (1, 1) model for EUA
futures returns in phase II with structural breaks from 2 January
2008, to 31 December 2012.

Variable Coefficient Std. Error z-Statistic Prob

Variance Equation

α 0.0947 0.0170 5.5775 0.0000

β 0.8970 0.0172 52.223 0.0000

dummy 0.0005 0.0002 2.2230 0.0262
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traded on the spot market. To increase the liquidity of the carbon

market, policymakers should encourage the development of

derivative products such as carbon futures, which can

diversify investment portfolios and attract more investors to

participate in trading. Stability in the carbon market can be

established through the use of derivatives for price discovery and

risk aversion. Prior studies suggest that the EU-ETS reduces the

volatility of spot prices after the introduction of futures products,

and spreads the uncertainty of spot prices through a hedging

mechanism (Chevallier et al., 2011). Furthermore, derivatives can

be used for price discovery and risk aversion in order to stabilize

the carbon market. It can also increase market activity and

encourage both institutional and individual investors to trade

actively in the carbon market.

6 Conclusion

Responding to climate change, realizing carbon emission

reductions at the lowest cost by economic market means and

reversing the increasing trend of greenhouse gas emissions are

major challenges for the world.

In this paper, we investigate the volatility characteristics of

the EU-ETS and the Chinese Hubei carbon market, by using the

modified ICSS-GARCH model. The study shows the following

findings. 1) There is a leverage effect on the impact of carbon

return volatility, and the impact of negative news on carbon

market volatility is greater than that of positive news. The

leverage effect in the Hubei carbon market was not

statistically significant during the sample period. We surmise

that this result could be due to inactive market trading and

trading entity limits. 2) We find that the international climate

and energy conferences, abnormal changes in prices of

traditional energy such as oil, and global public health

emergencies all affect the volatility of the carbon market and

cause certain shocks to the carbon trading market. 3) We adopt

the modified ICSS algorithm to find the structural breaks and

introduce them as dummy variables to investigate the impact of

event shocks on the volatility of the carbon market. The results

indicate that the ICSS-GARCH model can reduces the

pseudovolatility of the return series to a certain extent and

improve the accuracy of the model. In addition, our results

hold after we replace the data from EUA futures phase III

with those from phase II, indicating that our model is robust

and that the factors affecting phase II persist into phase III.

Our findings could be important for carbon emission permit

research. They help policymakers and investors identify risks and

develop prevention measures. Regulators can minimize trade

risks by enhancing monitoring of carbon prices. Policymakers

should improve the way the system is set up and speed up the

development of carbon finance instruments for the Chinese

carbon market.
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