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Airborne small-footprint full-waveform LiDAR data have a unique ability to

characterize the landscape because it contains rich horizontal and vertical

information. However, a few studies have fully explored its role in distinguishing

different objects in the urban area. In this study, we examined the efficacy of

small-footprint full-waveform LiDAR data on urban land cover classification.

The study area is located in a suburban area in Beijing, China. Eight land cover

classes were included: impervious ground, bare soil, grass, crop, tree, low

building, high building, and water. We first decomposed waveform LiDAR

data, from which a set of features were extracted. These features were

related to amplitude, echo width, mixed ratio, height, symmetry, and vertical

distribution. Then, we used a random forest classifier to evaluate the

importance of these features and conduct the urban land cover

classification. Finally, we assessed the classification accuracy based on a

confusion matrix. Results showed that Afirst was the most important feature

for urban land cover classification, and the other seven features, namely, ωfirst,

HEavg, nHEavg, RAω, SYMS, Srise, and ωRf_fl, also played important roles in

classification. The random forest classifier yielded an overall classification

accuracy of 94.7%, which was higher than those from previous LiDAR-

derived classifications. The results indicated that full-waveform LiDAR data

could be used for high-precision urban land cover classification, and the

proposed features could help improve the classification accuracy.
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1 Introduction

Urban areas are usually made up of many types of natural and artificial surfaces

(Myint et al., 2011; Chen et al., 2018). Urban land cover products play an important

role in urban planning, monitoring, and managing (Zhou, 2013; Man et al., 2015).

However, the urban landscape is complex and rapidly changing, which makes urban

mapping challenging (Chen et al., 2018). Remote sensing can acquire land cover
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information over large areas rapidly, and it has been widely used

for land cover classification (Man et al., 2015; Gómez et al., 2016).

High-resolution passive remote sensing data have rich spectral

and textural information, which have been used to extract

various object features to generate land cover maps (Dash

et al., 2007; Zhou et al., 2009; Hansen et al., 2010; Jia et al.,

2014; Wu et al., 2016). However, the problem of between-class

spectral confusion, within-class spectral variation, the shadows in

passive remote sensing imagery, and the lack of vertical

information always limit the accuracy of urban mapping.

LiDAR is an active remote sensing technique, which can

acquire both the horizontal and vertical information of objects,

and has been used in many applications, such as digital terrain

model generation, building modeling, and forest monitoring

(Webster, 2006; Lee et al., 2009; Chen and Gao, 2014; Dong

et al., 2017). In addition, LiDAR data have no shadow and can

eliminate the displacement of the object, so it has a unique

advantage in distinguishing different land cover types. In recent

years, airborne LiDAR data have been utilized increasingly for

land cover classification (Antonarakis et al., 2008; Sherba et al.,

2014; Qin et al., 2015). However, discrete-return LiDAR data

only contains three-dimensional point clouds with echo number

and intensity information, which are insufficient for complex

urban land cover classification (Mallet et al., 2011; Hellesen and

Matikainen, 2013).

As the technology advance, full-waveform LiDARwith the ability

to describe the complete reflected signal of each transmitted pulse has

been introduced. Besides the distance measurement, more physical

surface characteristics can be derived from the analysis of the

reflection waveforms, thus providing great potential for complex

urban land cover classification. Previous studies have studied

urban land cover classification based on full-waveform LiDAR

data (Guo et al., 2011; Chang et al., 2015). Mallet et al. (2011)

extracted 19 geometrical features and 8 waveform features from

full-waveform LiDAR data to classify urban region into building,

ground, and vegetation, and their results showed that waveform

features contributed most to the high classification accuracy

(95.3%). Neuenschwander et al. (2009) extracted nine full-

waveform features for land cover classification, and they found

Gaussian amplitude was the most important feature, resulting in a

classification accuracy of 85.8%. Zhou et al. (2015) extracted four

waveform features to classify the targets as road, trees, buildings, and

farmland, achieving a classification accuracy of 79.57%. Tseng et al.

(2015) extracted waveform LiDAR features to classify five urban land

cover types and obtained a classification accuracy of 86.01% (Tseng

et al., 2015). However, these studies simply extracted waveform

amplitude, echo width, and height features from full-waveform

LiDAR data for urban land cover classification. They did not

standardize the above features, nor did they consider the

symmetry, vertical distribution, and shape of waveforms, resulting

in insufficient classification types or low classification accuracy.

The main purpose of this research is to explore more

possibilities of small-footprint full-waveform LiDAR data for

urban land cover classification. For fulfilling this goal, this study

identified four specific objectives:1) to preprocess the waveform

LiDAR data and conduct a Gaussian decomposition; 2) to

propose a series of new waveform features and extract them

from the LiDAR data; 3) to evaluate the importance of variables

and use a random forest classifier to classify urban land cover

types; and 4) to evaluate the accuracy of urban land cover

classification.

2 Study area and data

2.1 Study area

This study was carried out in a suburban area in Yanqing

District, Beijing, China (115°57′13″E-115°58′40″E, 40°26′53″-
40°28′37″), and the location of the study region is shown in

Figure 1. The size of this study area is about 5.8 km2. The land

use of this area was dominated by residential land, mixed with

a small amount of agricultural and commercial land. The land

cover types in this study region are typical of urban and

suburban environments, including high building

(>3 layers), low building (1–3 layers), tree, grass, crop,

impervious ground, bare soil, and water, in which the

variety of the land cover makes it well suited for the goal

of this study.

2.2 LiDAR data

Airborne small-footprint full-waveform LiDAR data

were obtained in July 2014 using a Leica ALS70-HA

system. The wavelength of the laser pulse emitted by this

system is 1,064 nm, and the pulse frequency is 50 kHz. In this

survey, the system was operated with a beam divergence of

0.22 mrad at an average flying height of 1,600 m, so the

footprint diameter was approximately 0.35 m. The flight

lines were flown with a 50% side overlap, and the

scanning angle was ±12°. The pulse density was about

8 echoes/m2. The system was equipped with a high-

precision global positioning system (GPS) and an inertial

measurement unit (IMU), which could obtain the position

and attitude information of the sensor. The horizontal

accuracy of the LiDAR data was less than 10 cm, and the

vertical accuracy was less than 15 cm.

2.3 Reference data

The reference samples of eight land cover types were

randomly selected based on the LiDAR-derived digital

surface model (DSM) and referring to the high-resolution

Google Earth images. The geometric and orthophoto
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corrections have been carried out on the Google Earth images

using LiDAR-derived DSM and digital terrain model (DTM).

A total of 10,000 sampling points were selected for training

the land cover classification model and assessing the

classification accuracy. The rule for selecting a sampling

point is to obtain the same object within a radius of 3 m

around the sampling point (Luo et al., 2015). The number of

the training and validation sampling points per class is shown

in Table 1.

3 Methodology

The flowchart of the urban land cover classification

procedure in this research is shown in Figure 2, which

contains data preprocessing, waveform feature extraction, and

land cover classification. We first preprocessed the full-waveform

LiDAR data, including waveform denoising and smoothing.

Then, we used a Gaussian decomposition algorithm to

decompose the smoothed waveform LiDAR data into points

FIGURE 1
Location of the study region in Yanqing District, Beijing, China. (A) location of Beijing in China, (B) location of the study region in Beijing, (C) the
study region.

TABLE 1 The number of training and validation sampling points per class.

Class Training samples (points) Validation samples (points) Total samples (points)

Impervious ground 1,200 1,200 2,400

Bare soil 400 400 800

Grass 400 400 800

Crop 200 200 400

Tree 1,200 1,200 2,400

High building 700 700 1,400

Low building 700 700 1,400

Water 200 200 400

Total 5,000 5,000 10,000
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and extracted a set of new waveform features. Finally, we

classified these points into different land cover types using a

random forest classifier.

3.1 Waveform processing

3.1.1 Waveform preprocessing
Airborne small-footprint full-waveform LiDAR data should be

preprocessed at first to make certain of the reliability of the extracted

waveform features. Due to the system error, the limitations of sensor

capacity, and the interactions between the emitted pulse and the ground

object, there are some background noises in the original waveform

LiDAR data. We should remove the background noises to obtain

effective waveform signals. We used a frequency histogram method to

calculate the average value of background noises from the original

waveform data (Sun et al., 2008). Then, we subtracted them from the

original waveform data to remove the background noises (Duong et al.,

2008). After that, we used aGaussian filter to smooth thewaveformand

thus obtained the smoothed waveform data (Mallet and Bretar, 2009).

3.1.2 Waveform decomposition
We performed the Gaussian decomposition on the

preprocessed waveform data to obtain the point cloud data

with waveform features. We first estimated the initial

parameters of each Gaussian component of the waveform,

including peak amplitude, peak position, and the standard

deviation. Then, we used the Levenberg–Marquardt (LM)

algorithm to optimize these Gaussian parameters. After

waveform decomposition, each waveform was converted into

several 3D points with a set of waveform features, including echo

height, echo amplitude, echo width, and return number. The

detailed process of the Gaussian decomposition of waveform data

is shown in Wagner et al. (2006), and Figure 3 shows an example

of the results of Gaussian decomposition.

3.2 Feature extraction

Based on the decomposed waveform LiDAR data, we

proposed and extracted 22 waveform features to represent the

waveform data, which were related to amplitude, echo width,

mixed ratio, height, symmetry, and vertical distribution.

Amplitude-related metrics:

• Afirst: peak amplitude of the first echo of the waveform,

which is derived from the Gaussian decomposition of the

waveform.

FIGURE 2
Flowchart of the land cover classification procedure in this
study.

FIGURE 3
Representation of Gaussian decomposition: raw waveform
(red points) and decomposed Gaussian components (black lines).
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• nAfirst: normalized peak amplitude of the first echo, which

is calculated as nAfirst � Afirst

Aall
, where Aall is the sum of all

echo amplitudes of the waveform.

• ARf_fl: ratio of the first echo amplitude and the sum of the

first and last echo amplitudes of the waveform. It can be

calculated as ARf fl � Afirst

Afirst+Alast
, where Alast is the peak

amplitude of the last echo of the waveform.

Echo-width-related metrics:

• ωfirst: width of the first echo of the waveform, which is the

standard deviation of the first Gaussian component, and it

is derived from the Gaussian decomposition of the

waveform.

• nωfirst: normalized echo width of the first echo, which is

calculated as nωfirst � ωfirst

ωall
, where ωall is the sum of all echo

widths of the waveform.

• ωRf_fl: ratio of the first echo width and the sum of the first

and last echo widths of the waveform. It can be calculated

as ωRf fl � ωfirst

ωfirst+ωlast
, where ωlast is the echo width of the

last echo of the waveform.

Mixed-ratio-related metrics:

• RAω: ratio of amplitude and width of the first echo of the

waveform, and it is calculated as RAω � Afirst

ωfirst
.

Height-related metrics:

• HEavg: energy weighted average height of the waveform. It

is calculated as HEavg � ∑N
i�1

Ei
Eall

× Hi, where Ei is the

energy of bin i, Eall is the energy of all bins, Hi is the

height of bin i, and N is the total number of bins of the

waveform.

• nHEavg: ratio of the energy weighted average height and the

height of the waveform. It is calculated as nHEavg � HEavg

Hw
,

where Hw is the height of the waveform.

• Havg: average height of all bins of the waveform. It is

calculated as Havg � ∑
N

i�1Hi

N .

• nHavg: ratio of the average height of all bins and the height

of the waveform. It is calculated as nHavg � Havg

Hw
.

Symmetry-related metrics:

• Trise: the rise time of the first peak of the waveform, which is

defined as the duration between the leading edge of the first

echo and the first peak.

• Tfall: the fall time of the first peak, defined as the duration

between the first peak and the trailing edge of the first echo.

• Srise: the sum of the amplitudes during the rise time of the

first peak.

• Sfall: the sum of the amplitudes during the fall time of the

first peak.

• SYMT: ratio of the rise time and the fall time of the first

peak of the waveform. It is calculated as SYMT � Trise
Tfall

.

• SYMS: ratio of Srise and Sfall. It is calculated as SYMS � Srise
Sfall

.

Vertical-distribution-related metrics:

• N: the total number of echoes within a waveform.

• nTfirst: ratio of the first echo time and all echo times of a

waveform. It is calculated as nTfirst � Tfirst

Tall
, where Tfirst is

the first echo time of the waveform, Tall is the sum of all

echo times of the waveform.

• TRf_fl: ratio of the first echo time and sum of the first and

last echo times of a waveform. It is calculated as

TRf fl � Tfirst
Tfirst+Tlast

, where Tlast is the last echo time of

the waveform.

• nSfirst: ratio of the first echo area and all echo areas of a

waveform. It is calculated as nSfirst � Sfirst
Sall

, where Sfirst is

the first echo area of the waveform and Sall is the sum of all

echo areas of the waveform.

• SRf_fl: ratio of the first echo area and the sum of the first

and last echo areas of a waveform. It is calculated as

SRf fl � Sfirst
Sfirst+Slast, where Slast is the last echo area of the

waveform.

3.3 Land cover classification

The study area comprises eight main land cover types: high

building (>3 layers), low building (1–3 layers), tree, grass, crop,

impervious ground, bare soil, and water. In this study, we used

a random forest classifier to conduct urban land cover

classification, which had been widely used for classification

(Guo et al., 2011; Immitzer et al., 2012; Rodriguez-Galiano

et al., 2012; Raczko and Zagajewski, 2017; Wu et al., 2018). The

random forest classifier was proposed by Breiman and

implemented in the R package (Breiman, 2001). It is a

decision-tree-based ensemble classifier, which operates by

constructing a number of decision trees during the training

process and obtaining the prediction class. It can solve the

overfitting problem of decision trees to their training set. Aside

from classification, the importance of each metric can be

estimated and ranked from the training process. In this

study, all the 22 LiDAR waveform metrics shown in Section

3.2 were imported into the random forest classification model

to identify important metrics and classify the urban

landscapes.

3.4 Accuracy assessment

After the urban land cover types were classified, we carried

out an accuracy assessment using the validation sampling

points. Table 1 shows the number of evaluation sampling
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points per class. A total of 5,000 sampling points were used to

evaluate the accuracy of urban land cover classification.

Classification accuracy was evaluated based on a confusion

matrix (Paneque-Gálvez et al., 2013), as shown in Table 2.

Accuracy metrics include the producer’s accuracy, the user’s

accuracy, the overall accuracy (OA), and the kappa coefficient

(k), which have been widely used for the accuracy evaluation of

classification (Puertas et al., 2013; Chiang and Valdez, 2019;

Jiang et al., 2021). The overall accuracy is the ratio of correctly

classified samples to the total number of samples, calculated

according to Eqs 1, 2. The Kappa coefficient is a conformance

metric based on actual protocols, represented by main

diagonals and occasional protocols represented by a row and

column totals (Alexander et al., 2010), and the calculation

method is shown in Eqs 1, 3–5.

sum � a + b + c + d + e + f + g + h + i (1)
OA � a + e + i

sum
(2)

p0 � a + e + i

sum
(3)

pe � (a + d + g) × (a + b + c) + (b + e + h) × (d + e + f)
+(c + f + i) × (g + h + i)

sum × sum
(4)

k � p0 − pe

1 − pe
(5)

4 Results

The random forest analysis provides the importance of

waveform features for the urban land cover classification

model and each land cover type. The variable importance of

the random forest classification model can be expressed by the

mean decrease in accuracy and mean decrease in Gini. We

ranked the 22 waveform features according to their importance,

as shown in Figure 4. Figure 4A shows that Afirst has the largest

mean decrease in accuracy, followed by ωfirst, HEavg, nHEavg,

RAω, SYMS, Srise, and ωRf_fl. The other 14 features have an

obviously smaller mean decrease in accuracy than these

features. Figure 4B shows that Afirst has the largest mean

decrease in Gini, followed by ωfirst, ωRf_fl, SYMS, RAω, HEavg,

Srise, and nHEavg. The remaining 14 features have an obviously

smaller mean decrease in Gini than the above features.

Therefore, Afirst is the most important feature in urban land

cover classification using waveform LiDAR features. Seven

other features, namely, ωfirst, HEavg, nHEavg, RAω, SYMS, Srise,

and ωRf_fl, also make important contributions to the

classification results.

Table 3 shows the first six variables that are most important

for each land cover type, in which the importance of variables

TABLE 2 An example of the error matrix of land cover classification.

Predicted types/observed
types

A B C

A a b c

B d e f

C g h i

FIGURE 4
Variable importance of the urban land cover classification model in terms of mean decrease in accuracy (A) and mean decrease in Gini (B).
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decreases gradually from top to bottom. Table 3 shows that the

peak amplitude of the first echo and its ratio to the echo width

(i.e., Afirst and RAω) effectively distinguish all types of land

cover. Echo-width-related features (e.g., ωfirst and ωRf_fl) can

be used to distinguish rough objects (e.g., tree and crop) from

flat objects (e.g., buildings and impervious ground). Height-

related features (e.g., nHEavg and HEavg) are important features

in the classification of high objects (e.g., tree and high

building), medium objects (e.g., low building), and low

objects (e.g., bare soil and grass). Symmetry-related features

(Srise and SYMS) can be used to distinguish objects with

different vertical distribution characteristics (e.g., tree, crop,

grass, high building, low building, and water).

We used the testing dataset to validate the accuracy of

urban land cover classification. The confusion matrix is

shown in Table 4. Table 4 shows that all land cover types

have a producer’s accuracy of larger than 90% and a user’s

accuracy of larger than 80%. Therefore, all land cover types

are well classified. Among all land cover types, high building

and water have the highest producer’s accuracy (97%),

followed by tree (96.9%) and low building (94.6%). The

impervious ground has the highest user accuracy (97.6%),

followed by high building (97.3%), water (97.0%), and tree

(96.7%). The overall accuracy of the urban land cover

classification in this study region is 94.7%, and the kappa

coefficient is 0.94.

The land cover classification map of the study area using

waveform features based on the random forest classification

model is shown in Figure 5. Overall, the seven main land cover

types (i.e., tree, high building, low building, impervious ground,

grass, crop, and bare soil) were well depicted, and small water

pools were also identified by the classification model. In

addition, a comparison of Google Earth image and LiDAR-

derived land cover classification results is shown in Figure 6,

providing zoomed-in pictures of the detected trees and building

borders. This comparison shows that full-waveform LiDAR

data get good results for urban land cover classification in this

study.

TABLE 3 The first six variables that are most important for each land cover type (ranking of importance from top to bottom).

Bare soil Crop Grass High building Impervious ground Low building Tree Water

Afirst Afirst Afirst Afirst Afirst Afirst Afirst Afirst

ωfirst SYMS ωfirst ωfirst HEavg ωRf_fl SYMS Srise

nHEavg ωfirst nHEavg HEavg RAω ωfirst ωfirst SYMS

RAω Srise HEavg SYMS nHEavg SYMS Srise ωfirst

ωRf_fl ωRf_fl RAω RAω ωRf_fl HEavg HEavg ωRf_fl

HEavg RAω SYMS Srise ωfirst nHEavg RAω RAω

TABLE 4 Confusion matrix of the urban land cover classification results using a random forests classifier with waveform LiDAR features.

Reference data Classified data Total Producer’s
accuracy (%)

Impervious
ground

Bare
soil

Grass Crop Tree High
building

Low
building

Water

Impervious ground 1,108 55 32 3 0 0 0 2 1,200 92.3

Bare soil 12 369 13 2 0 0 0 4 400 92.3

Grass 5 16 373 4 1 0 1 0 400 93.3

Crop 1 3 6 187 3 0 0 0 200 93.5

Tree 0 0 0 4 1,163 12 21 0 1,200 96.9

High building 4 0 0 0 15 679 2 0 700 97.0

Low building 3 2 0 5 21 7 662 0 700 94.6

Water 2 3 1 0 0 0 0 194 200 97.0

Total 1,135 448 425 205 1,203 698 686 200 5,000

User’s accuracy (%) 97.6 82.4 87.8 91.2 96.7 97.3 96.5 97.0

Overall accuracy (%) 94.7

Kappa coefficient 0.94
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5 Discussion

This study explored the ability of small-footprint full-

waveform LiDAR data for urban land cover classification. Our

results showed that the overall classification accuracy was

94.7%, and the kappa coefficient was 0.94. Therefore, the

waveform LiDAR features proposed in this study provide

an effective means for urban land cover classification using

a random forest classifier. Among all waveform LiDAR

features, the amplitude of the first echo plays the most

important role in distinguishing all urban land cover types,

which is consistent with a previous study (Mallet et al., 2011).

Different land cover types have different reflection

characteristics, so they have different amplitudes. The two

new proposed amplitude-related variables, nAfirst and ARf_fl,

slightly influence urban land cover classification. Therefore,

nAfirst and ARf_fl cannot reflect the difference between the

reflection characteristics of objects.

Echo width indicates surface roughness, object

distribution, and surface slope due to the pulse

broadening that occurs under these conditions. Large echo

width corresponds to vegetation or other rough objects since

they spread the LiDAR pulse. Small echo width is likely to

correspond to flat ground and building. Among the three

echo-width-related metrics, ωfirst has the highest explanatory

in classifying the eight urban land cover types, ωRf_fl also

plays an important role in classifying bare soil, crop, grass,

impervious ground, low building, and water. The ratio of the

amplitude and width of the first echo (RAω) is first proposed

in this study. It can describe the waveform shape,

representing the geometric and scattering characteristics

of different land cover types. For example, vegetation

often has smaller RAω than building and impervious

ground. Therefore, RAω is an effective feature in

classifying different urban land cover types.

Symmetry-related features can describe the symmetric of

echoes, which are closely related to the spatial distribution and

scattering characteristics of objects. These metrics were all first

proposed in this study, and results showed that they have

significant influences on identifying all urban land cover

types. Vegetation and rough ground always have obvious

asymmetries, whereas flat building, water, and impervious

FIGURE 5
The urban land cover classification map of the study region.

FIGURE 6
A comparison of Google Earth image (A) and LiDAR-derived land cover classification results (B).
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ground often have apparent symmetry. Height-related metrics

can describe the height of an object, which can be used to

distinguish objects with different heights effectively. HEavg and

nHEavg are the two most important height features. Vertical-

distribution-related variables can identify different land cover

types to some degree, but they do not play an important role in

urban land cover classification.

Previous studies have classified urban land cover types

using airborne LiDAR data (Antonarakis et al., 2008; Yan

et al., 2015). Zhou et al. (2013) classified four urban land

cover types using height and intensity features derived from

discrete-return LiDAR data and yielded an overall accuracy of

90.7%. Zhou et al. (2015) extracted distance, amplitude,

waveform width, and backscattering cross-section from

airborne full-waveform LiDAR data and used them to

classify four land cover types, obtaining an overall accuracy

of 79.57%. Tseng et al. (2015) extracted a series of individual

echo and multi-echo features from full-waveform LiDAR data

to classify five land cover types and achieved an overall accuracy

of 86.01%. Compared with these studies, our study

distinguished more urban land cover types and obtained

higher classification accuracy. This may be because our study

proposes many new features related to amplitude, echo width,

mixed ratio, height, symmetry, and vertical distribution, which

can provide more abundant object information.

Several studies have achieved higher classification accuracy

than this study (Mallet et al., 2011; Azadbakht et al., 2018). For

example, Mallet et al. (2011) extracted a series of features from

waveform LiDAR data to classify building, ground, and

vegetation and obtained an overall accuracy of 95.3%. The

classification accuracy of this study is higher than that of our

study because they only distinguished three land cover types,

which was significantly less than that of our study. In addition,

Azadbakht et al. (2018) combined sampling techniques and

ensemble classifiers to classify 11 land cover types using full-

waveform LiDAR data and obtained an overall accuracy of

97.4%. The higher classification accuracy obtained by this

study is due to the higher density of LiDAR data they used,

and the extracted features can be more refined in terms of object

features.

Multi-return LiDAR can only record several echoes and obtain

the three-dimensional coordinates and amplitude of each point.

These features contain limited information, leading to insufficient

classification types and low classification accuracy. In contrast, full-

waveform LiDAR can record the entire waveform of the targets and

obtain more features that can reflect the inherent characteristics of

the target, such as the echo width, waveform shape, symmetry, and

vertical distribution characteristics, which is helpful in improving its

ability to classify urban land cover. These explanations have beenwell

verified in this study. Therefore, it is necessary to continue to develop

full-waveform LiDAR data acquisition and processing technology in

the future to improve its ability in urban land cover classification and

other applications.

6 Conclusion

In this study, we explored the ability of airborne small-

footprint full-waveform LiDAR data for urban land cover

classification. Eight land cover types were considered in this

research: high building, low building, tree, grass, crop,

impervious ground, bare soil, and water. We first proposed

and extracted 22 waveform features from waveform LiDAR

data, which are related to amplitude, echo width, mixed ratio,

height, symmetry, and vertical distribution. Then, we assessed

the feature importance and performed the urban land cover

classification using a random forests classifier. In general, the

urban land covers were well classified by these waveform features,

resulting in an overall accuracy of 94.7% and a kappa coefficient

of 0.94. We also found that Afirst was the most important feature,

and seven other features, namely, ωfirst, HEavg, nHEavg, RAω,

SYMS, Srise, and ωRf_fl, also played important roles in urban

land cover classification. Overall, airborne full-waveform LiDAR

can accurately classify urban land cover types, and our proposed

waveform features can improve the classification accuracy.

Whether fusing full-waveform LiDAR and hyperspectral

remote sensing imagery can improve the accuracy of urban

land cover classification should be explored in the future.
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