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Direct emissions of soil nitrous oxide during a growing season (N2Ogs) can be

quantified with process-based models considering interactions between

management, climate, and soil moisture when key data are available. We

used an adapted “parameterized CENTURY/DAYCENT-model” (pCENTURY)

calibrated with crop growth and soil organic matter decay coefficients at the

county-level for the estimation of N2Ogs in the United States Corn Belt. Model

estimated N2O-emissions from corn-based biofuels scenarios considering

crop rotation, fertilizer inputs, tillage, and weather were compared against

meta-summary of field observations from 55 studies. Both model and meta-

summary ranked N2Ogs-emissions to be corn > wheat > soybean phase while

model likely underestimated cover crop N2Ogs-emissions. The N2Ogs-

emissions and the associated emission factors (EFs) were modeled and

summarized to be greater after anhydrous ammonia than urea application

and from conventional tilled than non-tilled fields. Modeled and observed

N2Ogs-emissions after organic and inorganic fertilizer amendment did not

differ due to high variability associated with the treatments. However, the

organic fertilizer associated EFs were greater according to meta-summary

data because of N input rates. Regionalized weather scenarios indicate

hotspots for N2Ogs-emissions can occur where crop N uptake is limited

during dry years and in eastern states also during normal or wet seasons.
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The pCENTURY-derivedN2Ogs EFs (0.91 ± 0.19%) for counties investigatedwere

only slightly lower than literature (1.07 ± 0.57%) or Tier-1 (1%) values. Our

preliminary evaluation of regional soil moisture estimates showed reasonable

agreement between monthly soil moisture estimates and the North American

Soil Moisture Dataset during the growing season, but overestimation of soil

moisture in winter-spring can influence the estimates of annual N2O emissions

so future work is needed to calibrate soil moisture-associated model

parameters. Our work provided scenario-based estimates of climate and

management impacts on soil N2Ogs-emissions together with valuable spatial

insights into EFs that will be improved by more accurate information of fertilizer

inputs and more temporally refined model evaluation.

KEYWORDS

N2O emissions, corn biofuel, parameterized CENTURY model, emission factor, soil
moisture, meta-analytical summary

1 Introduction

Many studies attempt to quantify broad-scale agriculturally-

related greenhouse gas (GHG) emissions (Mosier et al., 1998;

Lokupitiya and Paustian, 2006; Yao et al., 2006; Li, 2007; Olander

et al., 2013) and soil organic carbon (SOC) sequestration (Sleutel

et al., 2003; Stockmann et al., 2013; Nayak et al., 2019; Paustian

et al., 2019) to support policymaking and GHG accounting.

Efforts have intensified in the United States with a

recommitment to GHG reductions and the Paris Agreement

(Rumpel et al., 2018; Guenet et al., 2021). In particular, nitrous

oxide (N2O) which has a global warming potential (GWP) that is

298 times greater than carbon dioxide (CO2) (IPCC, 2006) has

gained enormous attention that leads to research on mitigating

N2O emissions through adaptive management practices (Mosier

et al., 1996; Ogle et al., 2014; Maaz et al., 2021) and quantifying

environmental impacts of N2O emissions in a future climate

(Butterbach-Bahl and Dannenmann, 2011; He et al., 2018; Ma

et al., 2018).

Improving the capacity to quantify agricultural N2O

emissions at the regional or national scales under various

management and climate scenarios is a priority for agriculture

which accounts for approximately two-thirds of the total N2O

emissions (IPCC, 2019). Broad-scale GHG inventories (Zheng

et al., 2004; Rochette et al., 2008; Mazzetto et al., 2020) and life

cycle analyses (LCA) have estimated soil N2O emissions using

IPCC emission factors (EFs), which is defined as the ratio

between N2O emissions and N input rates, at Tier-1 (global

values) (Bouwman, 1996) or Tier-2 (regionally-specific values

adjusted with covariates or classes) scales (IPCC, 2006;

Hergoualc’h et al., 2019). Model-based estimates that better

account for soil organic matter (SOM) dynamics and site-

specific environmental and management factors (Li et al.,

1992; Hansen, 2002; Gilhespy et al., 2014; Berardi et al., 2020;

Del Grosso et al., 2020) are increasingly being used for

valorization and GHG accounting (Crossman et al., 2013;

Banger et al., 2017; Sela et al., 2017; Osmond et al., 2018).

Spatially-gridded models coupled with scenario analysis

provide an important opportunity to improve GHG

inventories by revealing regional differences in N2O loss

resulting from site and management-specific interactions

(Laville et al., 2011; Iqbal et al., 2018).

Several broad (Tesfaye et al., 2021) and national-scale studies

have used process-based models (Table 1) to estimate spatial

variability of soil-based N2O emissions at fine (e.g., county)

spatial resolutions in order to inform management at a

meaningful spatial unit. Unfortunately, many of these studies

only carried out model validation by comparison with field

observations collected over a narrow range or individual site

or using Tier-1 estimates, which yielded little spatial or temporal

information. Considering that the high variability of growing

season N2O (N2Ogs) contributes to the main challenge of N2O

quantification (Werner et al., 2007; Leip et al., 2011; Smith, 2017),

Tier-2 estimates derived from strategically compiled covariates

or class-based datasets are needed to generate EFs to evaluate

regionalized estimates generated with process models (de Klein

et al., 2020).

To effectively model N2O emissions and the associated EFs, it

is necessary to calibrate and evaluate crop growth, soil moisture

and SOC (Del Grosso et al., 2011). At present, very few studies

(Table 1) have calibrated key parameters or validated

N-submodel outputs other than N2O emissions. The

performance of SOC-submodels has been improved by

adjustment of crop growth and soil decay factors using field

observations of crop yield and SOC (Meersmans et al., 2013;

Kwon et al., 2017; Gautam et al., 2020). Few broad-scale studies

of soil N2O flux have evaluated soil moisture estimates or the

influence of temporal weather variability on emissions even

though these are key drivers of N2O across scales (Weitz

et al., 2001; Wagner et al., 2003; Butterbach-Bahl et al., 2013).

Models typically rely on surrogates such as soil texture and SOM

coupled with simple water budget-based method to simulate

moisture patterns (Saxton and Rawls, 2006). Datasets like North

American Soil Moisture Dataset (NASMD) (Quiring et al., 2016;
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Yuan et al., 2021) that report uniform moisture present an

opportunity to evaluate regional and temporal estimates

needed for Tier-2 modeling of N2O.

Model performance is greatly influenced by data quality,

and this is particularly problematic for N fertilizer input types

and rates, which are one of the most influential management

factors determining N2O (Akiyama et al., 2006; Kros et al.,

2012; Eagle et al., 2017). Unfortunately, most efforts use N

data reported at the state or regional level (Li et al., 1996; Del

Grosso et al., 2006; Del Grosso et al., 2010). Inadequacies in

the data describing N fertilizer additions to croplands that

account for as much as half of direct N2O emissions from

agricultural soils, has resulted in large uncertainty in Tier-1

and 2-based estimates of soil N2O EFs (Tian et al., 2020). A

newly available United States county-level dataset for corn

fertilizer N application rates (Xia et al., 2021) significantly

improves N input data resolution. In addition, estimates of

N2Ogs must also account for the form of N fertilizers applied

because chemical structure and organic and inorganic

materials differ in their influence on N2O emissions

(Petersen et al., 1996; Shcherbak et al., 2014; Liu S. et al.,

2017) and such differences need to be quantified to inform

decision-making regarding agricultural N management.

Default fertilizer coefficients commonly used in N2O

models can also be verified using compilations of field

observations. The same is true for model coefficients used

by N2O models to adjust rates based on agricultural

management practices. Ideally models can account for

spatial interactions that can produce variable effects of

practices such as reduced tillage (Chatskikh and Olesen,

2007; Mei et al., 2018), residue incorporation (Vinther

et al., 2004; Li et al., 2010), fertilization and irrigation

(Grant et al., 2006; Del Grosso et al., 2008; Katayanagi

et al., 2012), cover crops (Farahbakhshazad et al., 2008;

Abdalla et al., 2019; Muhammad et al., 2019), and crop

diversification on N2O emissions (Petersen et al., 2006;

TABLE 1 Process-based models applied to estimate soil N2O emissions at the national or broader scale.

Study area Modela Modeling
unitb

Observation
for calibrationc

Sensitivity or
scenario
analysisd

Uncertainty
analysise

Validation References

United Kingdom DNDC CL NRe C, M MSF Field observations of N2O
emissions with contrasting
soils, crops, and fertilizers

Brown et al. (2002)

Italy DNDC GS N2O emissions from
one site

S, M MSF Field observations of N2O
emissions from one site;
IPCC estimation

Lugato et al. (2010)

New Zealand DNDC GS NR S, M MSF Field observations of N2O
emissions with contrasting
soils; IPCC estimation

Giltrap and Ausseil
(2016)

China DNDC CL NR S, C MSF IPCC estimation Li et al. (2001)

China DNDC CL NR S, C, M MSF, MC Field observations of N2O
emissions with contrasting
soils and climate conditions

Li et al. (2004)

China DNDC CL Crop yieldf S, M MSF Field observations of N2O
emissions with contrasting
soils and climate conditions

Chen et al. (2016)

Canada DNDC ER NR NR NR IPCC estimation Smith et al. (2010)

United States DNDC SL NR S, M MSF IPCC estimation Li et al. (1996)

United States DAYCENT CL NR S, C, M MC IPCC estimation Del Grosso et al.
(2006), Del Grosso
et al. (2010)

United States DAYCENT CL NR NR MC Field observations of N2O
emissions with various soil
and management treatments;
IPCC estimation

US EPA (2021)

Europe DAYCENT GS Crop yieldf M MC IPCC estimation Lugato et al. (2017)

Global DAYCENT GS NR NR NR IPCC estimation Del Grosso et al.
(2009)

aDAYCENT, daily century; DNDC, denitrification decomposition.
bCL, county-level; SL, state-level; GS, gridded scale; ER, ecosystem-based region.
cNR , not reported.
dS, soil; C, climate; M, management.
eMSF, uncertainty analysis based on the most sensitive factors; MC, Monte-Carlo simulation.
fYield reported at the modeling unit.
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Parihar et al., 2018). Model-derived and Tier-2 summary-

based estimates of management-associated N2Ogs emissions at

the broad scale are critical to promoting the adoption or

implementation of practices that can contribute to GHG

mitigations.

Challenges for broad-scale modeling of N2Ogs remain as

we continue to strive to translate modeling concepts into

practical tools using reproducible and transparent methods.

These kinds of tools are needed to support policies like the

United States. Renewable Fuel Standards (RFS) which was first

launched in 2005 (Malmedal et al., 2007) and spurred

development of environmental assessment and LCA of corn

ethanol production (Wang et al., 2007; Hsu et al., 2010; Hong

et al., 2015; Lewandrowski et al., 2020), which accounts for

about two-thirds of the United States biofuel production

(Birol, 2018) and has accounted for the majority of the

biofuel volume required by the RFS (Bracmort, 2022).

Moreover, the complexity of management impacts, as well

as their interactions with weather conditions, suggest the need

for broad-scale modeling to better account for scenario-based

soil N2O emissions that are representative of future climate

conditions (Abdalla et al., 2010; Karimi et al., 2021; Miller

et al., 2022). This work takes advantage of a ‘surrogate or

parameterized’ version of the process-based CENTURY SOM

model (PCENTURY) developed by Kwon and Hudson (2010)

to estimate N2O emissions from corn-based management

systems in the United States Corn Belt. The model capacity

of PCENTURY was expanded here to estimate county-level

N2O emissions by drawing on N and hydrology submodels

from the daily version of CENTURY (DAYCENT) and

improved N input datasets. The objectives of this study

were to evaluate regional and temporal soil moisture

estimates and compare management scenario-based

estimates of N2Ogs-emissions against Tier-2 meta-datasets

representing dominant management practices (crop

rotation, N input type, tillage) used by corn-based systems

in major corn-producing states. The model was then used to

simulate N2Ogs-emissions under regionalized estimates of

wet, dry, and average weather conditions because future

climate scenarios are usually associated with pronounced

changes in precipitation (Sillmann et al., 2013; Liu C. et al.,

2017).

2 Materials and methods

2.1 Model expansion and simulation

This study expanded the PCENTURY model (Kwon and

Hudson., 2010; Kwon et al., 2013; Kwon et al., 2017) (SI:

Supplementary Figure D1) by adopting the main structures

and algorithms of the plant growth, water budget, soil

temperature, nitrification and denitrification modules of

DAYCENT (Parton et al., 1998) for N2O modeling (SI:

Supplementary Appendix SA). The resulting model

simulates SOC stocks, crop biomass, soil moisture, plant

available N, and soil N loss on a monthly time step. Land

use and land management change scenarios were developed

using a gridded SOC modeling framework developed by Kwon

et al. (2020) to assess GHG emissions from corn biofuel

production. The framework employs four phases of land

use history described in SI: Supplementary Appendix SA.

The model baseline for comparison consists of a corn-

soybean rotation (CS), averaged tillage (USDA, 2019), and

synthetic N fertilizer additions (USDA, 2018) under normal

weather conditions defined by a 30-year average (1986–2015).

Model inputs including soil, climate, crop, and management

data (Table 2) and the model calibration process are described

more fully in SI: Supplementary Appendix SB. Alternative

rotation scenarios begin with the baseline conditions and

consider continuous corn (CC) and diversified cropping

systems that included a 2-year corn/rye-soybean/vetch

rotation (CCvSCv) and a 3-year corn-soybean/winter

wheat-ryegrass rotation (CSWCv) (Figure 1). Conventional

and no-tillage scenarios were run within the baseline CS
rotation. Several N input scenarios (anhydrous ammonia

(AA), urea, animal manure) were run within diversified

rotations. Finally, weather scenarios were run within the

conventionally-tilled CS rotation substituted dry and wet

average monthly weather conditions from the driest and

wettest year observed between 1986 and 2015 at the county

level. This created unique weather stress patterns for each

county. The scenario-based simulation was carried out for a 6-

year time period (2016–2021) in major United States corn-

producing states with model inputs (Table 2) and calibration

process described in SI: Supplementary Appendix SB.

2.2 Model evaluation

2.2.1 Preliminary evaluation of simulated soil
moisture using NASMD observations

Model simulated soil moisture estimated within the CS
scenario was compared to the NASMD dataset that includes

observed volumetric water content in the 0-10 and 0–100 cm

soil depths. Since PCENTURY simulates soil moisture at 0-

30 and 30–100 cm soil depths, a weighted average was used for

0–100 cm comparisons. The NASMD data were reported at

the gridded scale (0.25°) by harmonizing soil moisture

observations from 16 regional and national soil moisture

monitoring networks (Xia et al., 2015a). The data were

interpolated to the county-level for croplands identified by

the National Land Use Dataset (Homer et al., 2007; Homer

et al., 2015) to match with county-level simulations. To match

with PCENTURY time-step, monthly NASMD soil moisture

was calculated by averaging daily values for each month
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during the 10-year period (2003–2012) for which records were

available. The comparisons were carried within agroecological

zones (AEZ) that group counties with similar climate

conditions (Batjes et al., 1997). Model simulated monthly

soil moisture during this time period were also compared

directly against NASMD observations as an evaluation of

model simulated temporal pattern. Correlation between

PCENTURY anomalies (PCENTURY minus NASMD) and

key modeling factors including corn and soybean yields,

soil properties, and weather were used to explore

differences between modeled and measured results.

2.2.2 Comparison between model simulated soil
N2Ogs and a meta-analytical summary

Modeled N2Ogs-emissions under the normal weather

condition were evaluated with the Tier-2 meta-analytical

summary of 705 observations (treatment-year combinations)

of field emissions made during the growing season within

major corn-producing states. Data extraction, quality control,

distribution of study sites, and detailed management information

of the studies are presented in SI: Supplementary Appendix SC.

Soil N2Ogs-emissions were simulated in PCENTURY based on

the planting and harvest dates specified by USDA (2010) and

assumed to be representative for annual N2O emissions. Then,

we compared the modeled emissions with the meta-dataset to

evaluate PCENTURY’s capacity to estimate changes in flux

associated with management scenarios considered. The

cropping comparisons include CC versus CS or CS-based
rotations where the 2-year corn/rye-soybean/vetch simulation

was compared with observations from CCvSCv systems, and

corn-soybean/winter wheat-ryegrass simulation was compared

with CSWCv systems. Input comparisons included synthetic

versus organic (manure, effluent, composts, residues) and

anhydrous ammonia versus urea. Finally, meta-data

summaries of conventional versus reduced or no-tillage, were

compared against model simulated results.

TABLE 2 Data sources for key pCENTURY model input variables.

Category Input
variablesa

Data
sourcesb

Coverage and resolution

Temporal Spatial

Climate temp, pet, ppt CRU Monthly from 1901 to 2012. Data was gap-filled for
earlier and later periods using averages from 1901 to
1930 and 1983-2012, respectively

0.5-degree resolution worldwide. Data was resampled to
30 m resolution before being aggregated to the U.S.
county level

Soil Texture, BD,
pH, SOC

UNASM Once value in time 0.25-degree resolution worldwide. Data was resampled to
30 m resolution before being aggregated to the U.S.
county level for different land use type

Drainage class gSSURGO 10 m for conterminous U.S. Data was resampled to the
county-level by retaining the most dominant drainage
class

Crop Crop yield NASS Annually from 1866 to 2017. Data between 1951 and
2015 was used to gap-fill data from missing years

County-level for the U.S. where state-level data was used
for gap-filling

HI Literature
values

Separate values for early and modern agricultural
periods

Nationwide by crop type

RSR Once value in time
C concentration Nationwide by crop type with separate values for above-

and below-ground biomass
CNR One value in time Nationwide by crop type and separate values for crop

biomass and grains

Management Tillage and
rotation type

ERS Separate values for early and modern agricultural
periods

State-level

Dhvst, Dplant Crop Calendar
Dataset

One value in time 0.5-degree resolution worldwide. Data was aggregated to
the U.S. county level for each crop type

Nfert, Nmanu ERS/NASS/
AgC/USGS

Separate values for spin-up andmodel simulation period State-level for N rates and county-level for total N inputs.
Data fusion method was used in Xia et al. (2021) to derive
county-level N input rates for fertilizer and manure

Tfert AAPFCO One value in time County-level
Manure CNR and
moisture

NRCS/AgC One value in time Nationwide by animal type. County-level estimates were
based on proportion of animal types and the associated
manure properties

Land use history ORNL/AgC Separate values for the pristine period and the early and
modern agricultural period

State-level

aBD, bulk density; CNR = C toN ratio; Dhvst = harvest date; Dplant = planting date; HI, harvest index; Nfert = fertilizer N application rates; Nmanu =manureN application rates; pet = potential

evapotranspiration; ppt = precipitation; RSR, root to shoot ratio; SOC, soil organic C; temp = temperature; Tfert = fertilizer type.
bAAPFCO, association of american plant and food control officials; AgC = agricultural census; CRU, climatic research unit; ERS, economics research service; NASS, national agricultural

statistics service; NRCS, natural resources conservation service; ORNL, oak ridge national laboratory; UNASM, unified north american soil map; USGS = U.S. geological survey.
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2.3 Estimating regional differences in soil
N2O emissions from corn production

Considering future climate scenarios, growing season N2Ogs-

emissions were simulated for dry, normal, and wet weather

scenarios at the county-level before linear regression was

carried out in R (R Core Team, 2020) to describe regional

differences in simulated N2Ogs-emissions by AEZ and their

relationships to key model inputs (N rate, precipitation, and

yield) and outputs (soil moisture and plant available N).

Soil N2O EF was calculated with Eq. 1 for different modeling

scenarios and the simulation results of the baseline scenario were

compared against IPCC Tier-1 estimates (both the 2006 and the

revised 2019 versions) and Tier-2 meta-analytical summary. We

considered the contribution of crop residue inputs for the

calculation of N2O EFs using both the modeling and the

meta-analysis approach in order to align with the definition of

the IPCC method.

EF � N2O emissions under fertilized treatment − background N2O emissions
Total organic and inorganic N inputs

× 100%

(1)

3 Results and discussion

3.1 Preliminary evaluation on model
simulated temporal and regional soil
moisture

Our attempt to evaluate soil moisture estimates of

PCENTURY is only preliminary considering that the model

currently generated results at a monthly time-step which is

much coarser than the actual soil moisture changes in time.

However, since the evaluation of model simulated soil moisture

has been largely ignored by previous broad-scale N2O modeling

work (Table 1), we hope that our preliminary efforts can lead to a

more standardized, rigorous model calibration and validation

scheme for future work aiming to provide spatial and temporal

insights into soil N2O modeling at the regional or national scale.

Monthly soil moisture patterns for NASMD and PCENTURY

estimates were similar during the growing season (R2 = 0.68)

when monthly averages were calculated based on a 10-year time

period (SI: Supplementary Figure D2). This is consistent with Xia

et al. (2015b), who found agreement between warm-season soil

moisture estimates (NASMD) and land-surface model

simulations. Our temporal match was slightly better for whole

profile (0–100 cm) comparisons than those made for the near-

surface. The tendency for NASMD estimates to be drier and less

variable in surface depths during winter was observed for all

AEZs. This differs from Abdalla et al. (2020) where

DeNitrification-DeComposition (DNDC) significantly

underestimated field-scale soil moisture. The observed

difference is likely due in part to the fact that NASMD data

represent the 0–10 cm and not the 0–30 cm depth simulated by

PCENTURY. In our study, model overestimation of soil moisture

was observed during the cool season in soils with higher clay

contents when a crop was not present (SI: Supplementary Table

D1). Overestimation also increased with precipitation and

temperature, although such trends would have been better

reflected by finer simulation resolution (e.g., daily or hourly)

than the current monthly time-step of the model. Greater ability

to model evaporation, snow cover, and frozen status is likely to

improve non-season moisture estimates (Chantigny et al., 2016).

The temporal variation in monthly soil moisture during the

10 years was moderately captured by PCENTURY (Figure 2),

FIGURE 1
Management and weather scenarios used for pCENTURY-based simulation of soil N2O emissions for 2016-2021 from corn fields. The baseline
rotation and tillage scenario marked in red is considered the most common practice within major corn growing states in the United States The
normal weather condition is defined with a 30-year average (1986–2015) before the simulation period. Dry and wet weather conditions were
simulated by replacing monthly weather data inputs with the driest and wettest months between 1986 and 2015.
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with Pearson correlation between NASMD and PCENTURY

calculated to be 0.67 and 0.80 for the top and whole soil

layers, respectively. Unfortunately, the correlation was very

weak for the winter-spring non-growing season for the top

soil layer (R = 0.3). It might be the case that our monthly

PCENTURY model was not able to fully capture the impact of

precipitation or snow events in terms of their timing and

duration on soil moisture dynamics. Soil moisture can be

influential on inter-annual variations in soil N2O emissions

(Skiba and Smith, 2000; Smith et al., 2004; Oorts et al., 2007)

so further improvement of model structure and calibration on

parameters for calculating soil hydraulic properties (e.g.,

hydraulic conductivity, wilting point, field capacity) is needed

to better simulate soil moisture dynamics. Our work did not

directly compare the influence of soil moisture estimates on the

accuracy of N2O simulation. Ideally future work will investigate

the influence of calibrating soil hydraulic parameters on

simulated soil N2O emissions against field measurements. Our

preliminary results showed the need to focus on the evaluation

using measures from non-growing season N2O emissions

because of the poor model performance on soil moisture

estimates during this time period.

Spatially, while PCENTURY estimates are driven by

characteristics of the dominant soil type within a county, the

NASMD estimates capture field-to-field variability and likely

provide a better representation of average conditions. Because

county-level NASMD estimates are based on extrapolations of

station-based observations that may have smoothed out spatial

differences, the variances of monthly soil moisture vary less than

PCENTURY-based estimates. Moreover, the variance of

interpolated datasets can be affected by the number of

samples (Beguería et al., 2016) and by the number of counties

within an AEZ (Hofstra et al., 2010). Soil moisture estimates in

AEZs with fewer counties and/or measuring sites are expected to

be less variable.

3.2 Evaluating simulated soil N2O
emissions influenced by management
factors

3.2.1 Soil N2Ogs-emissions influenced by crops
and rotation

Both modeled and database-derived Tier-2 estimates of

N2Ogs-emissions were greatest in the corn phase (2.7 ± 0.6 kg

N2O ha−1) of the rotation (Table 3). The greater N inputs used to

produce corn increase direct soil N2Ogs-emissions (Jarecki et al.,

2009; Millar et al., 2010; Nan et al., 2016). The database-derived

estimates of corn phase background soil N2O emissions

(1.16 kg ha−1, Table 3) are consistent with other studies

(Bouwman et al., 2002; Yan et al., 2003). Reported corn N

fertilizer input rates (177 kg N ha−1) were only 6% lower than

rates used in PCENTURY scenarios (187 kg N ha−1), making it

possible to covert corn N2O emissions to associated EFs for

comparison of the two methods. While our EFs calculated during

the growing season likely underestimate annual emissions, data

FIGURE 2
Comparison of monthly volumetric soil moisture from 2003 to 2012 estimated with pCENTURY simulation and reported by the North American
Soil Moisture Dataset (NASMD) for the (A) top and (B) whole soil layer. The moisture contents were calculated as corn planting area weighted-
averages for the United States Corn Belt counties investigated in this study. Surface depth soil moisture was calculated at 0–30 cm for pCENTURY
and 0–10 cm for NASMD) observations and whole soil layer comparison was carried out at 0–100 cm depth. Pearson correlations between

pCENTURY and NASMD were calculated for the whole dataset and for the datasets containing corn growing season (April to September) and non-
growing season observations, respectively.
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suggest the majority of losses occur within the cropping system.

The meta-analysis of Shang et al. (2020) found annual EFs for

corn fields were only slightly (0.03%) higher than growing season

values. Nevertheless, regions with snowfall and multiple freeze-

thaw cycles would likely differ more (Wagner-Riddle et al., 2017)

and this ties to our preliminary results showing moisture in

winter was not well simulated (Figure 2), in which case the

modeling of winter soil N2O emissions and subsequently annual

EF can be associated with large uncertainty. In particular, the

relationship between soil N2O emissions and water filled pore

space, which is highly influenced by soil moisture, has been

modeled to be a non-linear curve that increases to a degree due to

maximum denitrification before dropping down caused by N2O

consumption (Van Der Weerden et al., 2012; Rabot et al., 2015).

This, coupled with low nitrate availability in winter favoring N2O

consumption (Davidsson and Leonardson, 1997; van Groenigen

et al., 2015) pose challenges to accurate estimation of non-

growing season N2O emissions. Relatively few data are

available for evaluation of non-growing season N2O emissions

since many studies reported either annual or growing season

cumulative N2O emissions. Ideally model validation can be

carried out at a monthly or finer temporal resolution with

new data describing relationship between N2O and soil

moisture in winter-spring.

Reported average N input rates were about 20% lower for

corn within CS (161 kg N ha−1) than CC (199 kg N ha−1)

rotations (Table 3). While data-derived estimates suggest

N2Ogs-emissions during the corn phase were reduced by 24,

41, and 51% within CS, CCvSCv, or CSWCv rotations compared

to CC (3.7 kg N2O ha−1), differences among rotations were not

statistically significant due to high variability in field observations

(Table 3). This variability resulted from edaphic factors and

variability in both the quantity and quality of residues returned

by cover crops and organic amendments applied before corn.

Lower corn phase N2O emissions observed following soybean

likely reflect adjustment of N inputs based on rotation and N

credits (Sawyer et al., 2006; Castellano et al., 2018; Morris et al.,

2018) that can reduce N2O flux. The PCENTURY-based corn

N2O EF for the CS baseline scenario was 0.91 ± 0.19% when

results from all counties considered were pooled and weighted

based on corn planting area. This estimate was slightly lower than

database-derived Tier-2 estimates (1.07%) and the IPCC (2006)

Tier-1 estimate for agricultural soils (1%). The PCENTURY-

based estimates for N2Ogs-emissions from the corn phase of CS,
CSWCv and, CCvSCv rotations were significantly greater than

from the CC rotation (Table 3). Statistical separation is due to

lower variability of simulated estimates and to the fact that N

rates were not altered for different rotation scenarios.

Discrepancies between the observed results and simulated

results suggest simulations may exaggerate feedbacks that

increase flux from diversified rotations associated with return

of low C/N residues (Chen et al., 2013), increased organic matter

TABLE 3 Fertilizer N input rates and cumulative growing season soil N2O emissions from pCENTURY simulation and field measurements used for
validation. The results are reported as model simulated county or field measured averages followed by standard deviations Different lower- and
upper-case letters represent significant differences at p < 0.05 for corn and soybean phases, respectively.

Crop rotationa
pCENTURY simulation Evaluation dataset (field measurements)

Corn with N fertilizer inputs Corn without N fertilizer

Fertilizer N
rate

Cumulative N2O No. obs Fertilizer rate Cumulative N2O No. obs Cumulative N2O

kg ha−1 kgN ha−1 kg ha−1 kgN ha−1 kgN ha−1

Corn phase 187 2.68 ± 0.60 462 177 3.07 ± 1.62 79 1.16 ± 0.39

CC 2.49 c ± 0.60 188 199 3.68 a ± 1.97 27 1.40 a ± 0.24

CS 2.83 a ± 0.56 210 161 2.83 a ± 1.31 36 1.15 a ± 0.54

CCvSCv 2.72 b ± 0.57 36 159 2.24 a ± 0.86 5 0.91 a ± 0.43

CSWCv 2.86 a ± 0.57 28 193 1.81 a ± 2.45 11 0.31 a ± 0.25

Soybean phase 0 0.05 ± 0.04 122 21 0.81 ± 0.40

CS 0.06 A ± 0.04 76 0.86 A ± 0.39

CCvSCv 0.03 B ± 0.02 19 0.83 A ± 0.31

CSWCv 0.07 A ± 0.04 27 0.35 A ± 0.50

Cover crop phase 0 0.40 ± 0.56 15 95 1.56 ± 0.50

Wheat phase 110 1.44 ± 0.70 22 72 1.44 ± 1.54

aCC, continuous corn; CS, Corn-soybean; CCvSCv, corn-cover crop-soybean-cover crop or small grain; CSWCv, corn-soybean-wheat-cover crop.
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(Varvel, 2006; Mitchell et al., 2013) and plant available N (Kuo

and Sainju, 1998; Peyrard et al., 2016).

Non-corn phase N2O flux was generally tied to N input rates.

The magnitude of modeled and estimated N2Ogs-emissions was

almost identical for the wheat phase, but the variance was again

greater for database-derived estimates (Table 3). While the

relatively low estimates of flux from the soybean phase

(<0.1 kg N2O ha−1) resulted from simulations that add no N

fertilizer to that crop phase, field observations reporting use of N

fertilizers or manures in 28% of observations produced estimates

that were least ten-fold higher. Both direct fertilizer additions and

N applied to the previous crop might contribute to enhanced

N2O emissions following corn (Iqbal et al., 2015).

The pCENTURY simulated N2Ogs-emissions for the cover

crop phase were much lower (74%) than estimates derived from

field observations (Table 3). Similarly, Jiang et al. (2020) also

showed that soil N2O emissions during the cover crop phases

were modeled with much lower accuracy than those from the

corn years. Our assumption that cover crops were unfertilized

likely reduced model estimates. Additionally, the model may

have overestimated cover crop N uptake and diminished

associated N2O loss. Alternatively, our simulations may have

overestimated soil moisture during winter (Figure 2) and so

created redox conditions that promoted full reduction to N2

(Chapuis-lardy et al., 2007; Wu et al., 2013). Foltz et al. (2021)

also found that the DNDCmodel failed to capture field-observed

decreases in N2Ogs-emissions caused by winter cover crops.

Improvements to soil moisture estimates and temporal

interactions are needed to successfully capture ‘hot’ moments

registered in the field. Improvement in PCENTURYmodeling for

non-corn crop phases will require more detailed data inputs and

model calibration. Ideally, such data can be acquired from long-

term cover crop experiments that measured yield, SOC changes,

and the associated GHG emissions.

3.2.2 Soil N2O emissions influenced by N
fertilizer type

The simulated N2Ogs-emissions from corn plots amended

with inorganic and or organic fertilizers did not differ (p > 0.05)

and were slightly lower than field observations. Means derived

from the field observations were 16% greater after organic

amendments were used (Figure 3A), but the difference

between organic and inorganic sources was non-significant

(p > 0.05). Elevated N2Ogs- emissions are rate sensitive and

expected where manure additions deplete oxygen by stimulating

heterotrophic activity (Petersen et al., 1996; Decock, 2014).While

our simulations used the same rates for fertilizer and manure

treatments to compare the effects of N forms, the average N input

rates used for field trials were 58% greater for organic (261 kg N

ha−1) than inorganic N (165 kg N ha−1) applications. More

information about farming systems might be needed to justify

assumptions about manure application rates to ensure that the

database-derived EFs for organic (1.16%) and synthetic fertilizers

(0.92%) (Table 4) are meaningful for making management

recommendations. Only 16% of field observations were

measured from soils treated with organic fertilizers so more

FIGURE 3
Comparison of means and standard deviations of growing season cumulative soil N2O emissions from corn phase under different (A) N input
types (synthetic versus organic), (B)N fertilizer types (anhydrous ammonia (AA) versus urea), and (C) tillage practices (conventional (CT) versus no-till
(NT)). The results are reported for pCENTURY-based model simulation and summarized from the meta-dataset of field observations. Number of
observations within each category of the field dataset used for validation are shown within the columns. Paired and unpaired t-tests were used
to compare treatment differenceswith p values shownwith labels on the X-axis. Different letters represent significant difference at p < 0.05 identified
with the t tests.
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data must be collected from diversified cropping systems. For

example, a meta-analysis by Skinner et al. (2014) found lower N

rates were applied in certified organic farming systems than in

their conventional counterparts and that could be translated into

reduced N2O emissions. Nevertheless, a different comparison

result might be expected for concentrated feeding operations. N

rate assumptions are also complicated by organic fertilizer

availability that can significantly influence soil N2O emissions

over time (Pang and Letey, 2000; Eghball et al., 2002; Shakoor

et al., 2021). Accurate manure activity data is needed to

effectively model GHG emissions for specific sites (Walling

and Vaneeckhaute, 2020). For broad-scale modeling and

policy-making, we must be aware of the influence that rate

assumptions may exert on outcomes.

Both PCENTURY and database-derived estimates showed

N2Ogs-emissions were greater after use of AA than urea used at

similar rates (Figure 3B), but differences were only statistically

significant for modeled results. The meta-analyses of Bouwman

(1996) and Eagle et al. (2017) concur. This indicates that

fertilizer-based scalers used by models like CENTURY

effectively represent the mechanistic influences inorganic N

forms exert on N2O production rates as suggested by

Breitenbeck and Bremner (1986) that AA is more commonly

applied through the injection method which induces highly

alkaline soil zones that can accumulate a large amount of

NH4
+ as substrates for N2O production. Another explanation

is that the enhanced NO2
− level under AA treatment could

promote subsequent soil N loss (Venterea et al., 2010).

Because N rates are similar between the AA and urea

treatments according to the meta-database, both PCENTURY

and meta-analytical summary found higher EFs for AA (1.28 and

0.92%) than urea treatment (0.89 and 0.75%; Table 4). Since AA

and urea are the two major sources of synthetic N inputs in the

United States Corn Belt (Snyder et al., 2014), their different

impacts on N2O should be evaluated with other environmental

consequences (e.g., CO2 emissions, N leaching) in order to

inform better management practices at the broad scale.

3.2.3 Soil N2O emissions influenced by tillage
Model simulation suggested soil N2Ogs-emissions are

significantly greater from fields using conventional than no-

tillage (p < 0.001, Figure 3C). This agreed with database-

derived estimates showing average N2Ogs-emissions were

increased 37% by tillage. The metadata-derived EFs were also,

on average, higher under conventional (1.24%) than no-tillage

(0.71%) because N rates were shown to be similar between the

treatments (Table 4). Again, differences in field-based

comparisons were non-significant due to inter-field variability

(Figure 3C). Increased N2O flux has been shown to result from

better aeration that permits more N2O to escape the soil rather

than being converted to N2 (Chatskikh and Olesen, 2007). Use of

no-till has variable effects on bulk density (Blanco-Canqui and

TABLE 4 Management and climate associated emission factors (EFs) of cumulative growing season soil N2O emissions (N2Ogs) calculated from

pCENTURY simulation and field measurements used for evaluation. The EF results are reported as model simulated county or field measured
averages followed by standard deviations.

Scenario for comparison Meta-dataset summary pCENTURY model simulation

N input rate EF N input rate EF

kg ha−1 % kg ha−1 %

N input type

Synthetic fertilizer 165 1.16 ± 0.66 187 0.94 ± 0.19

Organic fertilizer 261 0.92 ± 0.47 0.92 ± 0.16

N fertilizer type

Anhydrous ammonia 166 1.28 ± 0.49 187 0.92 ± 0.20

Urea 162 0.89 ± 0.48 0.75 ± 0.17

Tillage practice

Conventional tillage 167 1.24 ± 0.68 187 0.95 ± 0.19

No-tillage 173 0.71 ± 0.43 0.85 ± 0.20

Climate scenario

Dry NA 187 1.19 ± 0.32

Normal 0.95 ± 0.19

Wet 0.88 ± 0.19

Management region divided into Agroecological zones (AEZs)

AEZ 7, 8, and 9 196 0.26 ± 0.15 183 0.89 ± 0.17

AEZ 10 158 1.06 ± 0.59 182 0.97 ± 0.19

AEZ 11 207 1.62 ± 0.86 194 0.97 ± 0.17
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Ruis, 2018) but can commonly increase N2Ogs-emissions when

used in poorly drained soils (Rochette et al., 2008). On the other

hand, use of no-tillage or conservation tillage most often reduces

N2O emissions when practiced long-term where soil structure is

improved to decrease anaerobic soil microsites conductive to

N2O production (Six et al., 2004; van Kessel et al., 2013). Because

tillage can have mixed impacts on soil N2O emissions depending

upon how practices influence substrate availability, aeration,

yield, and soil water status (Linn and Doran, 1984; Smith

et al., 2001; Mei et al., 2018), development or use of a tillage-

based N2O scaler or coefficient could be unwise. Therefore, there

is a need to highlight effective modeling of soil moisture and the

soil redox environment to better predict tillage associated N2O

emissions.

3.3 Spatial N2O emissions influenced by
weather scenarios

Our regional assessment of N2Ogs-emissions revealed

variability within and across regions in the United States Corn

Belt (Figure 4). While the PCENTURY simulations for the

normal weather scenario (Figure 4B) are similar to state-level

N2O emissions patterns reported by McNunn et al. (2020), we

identify potential for notable variability within states using

county-level weather records. Spatial differences considered

using normal weather data found the highest N2O emissions

occurred in Iowa and Indiana (Figure 4), which is driven by the

relatively high N input rates reported in Xia et al. (2021).

Weather scenarios exploring dry and wet conditions suggested

cumulative N2Ogs-emissions from the corn phase of the CS
baseline would be greater under dry (3.3 kg N2O ha−1) and

similar under wet (2.7 kg N2O ha−1) weather conditions when

compared to results from normal (2.8 kg N2O ha−1) weather

scenarios (SI: Supplementary Table D2). The ranking for EFs

remains dry (1.19%) > normal (0.95%) > wet (0.88%) for model

simulation because we assumed the same N input rates (Table 4).

In reality, N input rates can vary because corn yield would change

according to climate change scenarios, in which case yield-scaled

EF that considers both N inputs and crop productivity (Aguilera

et al., 2013; Iqbal et al., 2018) may better reflect the interaction

between climate change and human activities.

Regression-based exploration of the spatial distribution of

N2Ogs-emissions suggested increased flux with soil moisture,

fertility, and plant available N and decreased emissions with

precipitation, water filled pore space, and corn yield (p < 0.05)

(Table 5). Precipitation, plant available N, and corn yields were

found lowest in the dry years, and plant available N and crop

FIGURE 4

pCENTURY-based county-level estimates for: corn growing season N2O emissions under (A) dry, (B) normal, and (C) wet weather scenarios;
annual precipitation under (D) dry, (E) normal, and (F)wet weather scenarios; corn yield under (G) dry, (H) normal, and (I)wet weather scenarios. The
model estimates are based on baseline scenario (corn-soybean rotation, conventional tillage) for a 6-year (2016–2021) simulation period for the
major United States corn states.
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yields were greatest in the normal weather years (SI:

Supplementary Table D2). Lower yields that resulted in

reduced N uptake by crops created hotspots for N2O

emissions. Average crop yield was also reduced by 13% in wet

years compared to the normal weather but did not cause

increased N2Ogs-emissions. Loss of N2O occurring outside of

the growing season, the conversion of N2O to N2 under

prolonged wet conditions, or increased leaching losses could

all account for reduced level of available N in wet weather

scenarios (Hernandez-Ramirez et al., 2009). In addition, the

reduction in N2Ogs caused by wet conditions could also be

attributed to pCENTURY using a monthly time-step, which

could not capture rapid changes in water filled pore space and

N2O emissions following rainfall events (Schmidt et al., 2000;

Beheydt et al., 2007; Xia and Wander, 2022). Soil N2O changes

can occur at a sub-daily time step so studies have attempted to

capture high temporal resolution N2O dynamics (Laville et al.,

2011; Lognoul et al., 2017; Su et al., 2021) using data collected

with advanced techniques such as automated chamber and

micrometeorological measurements (Hensen et al., 2013;

Bréchet et al., 2021). However, such calibration data would be

too expansive to collect at the broad scale for N2O modeling. In

the future, the evolving networks such as GRACEnet (Del Grosso

et al., 2013) and COntinuous SOil REspiration network COSORE

(Bond-Lamberty et al., 2020) could be used for more detailed

calibration of model nitrification and denitrification parameters

(e.g., a maximum fraction of N2O to nitrified N at field capacity,

adjustment coefficient on effect of moisture on denitrification,

maximum fraction of ammonia nitrified during nitrification) at a

finer temporal resolution if data collection and reporting can be

further standardized.

The pCENTURY derived N2O EF for the CS scenario under

normal weather conditions was approximately 60% lower than

the revised IPCC (2019) Tier-1 estimate (1.6 ± 0.3%) proposed

for wetter climate conditions. This may be partially explained by

the fact that several counties within AEZs 7 and 8 do not fit

within the wet climate category as their annual precipitation >

potential evapotranspiration (Stocker et al., 2018). IPCC’s ‘dry’

value (EF = 0.5%) (Hergoualc’h et al., 2019) is much closer to our

average for those AEZs (Table 4). Even though the definition of

“dry” and “wet” conditions is different in IPCC and that used for

our model simulation in that the IPCC definition is based on

spatial variability under current climate conditions, both results

support the implications of Shang et al.‘s meta-analysis (2020)

that suggests regional N2O EFs are needed.

The average EFs derived from our study (0.9% from model

and 1.1% frommeta-database) under normal weather conditions

were lower than that (1.7% for well-drained soils and 3.9% for

poorly drained soils) estimated by Lawrence et al. (2021) for the

United States Corn Belt. This difference might be partially

explained by the fact that Lawrence et al. (2021) investigated

annual cumulative N2O while ours focused on N2Ogs-emissions.

The difference in data coverage concerning both N2O emissions

and N input rates can also cause varied estimates of N2O EFs. In

addition, the method of estimating background emissions and

organic N inputs based on rates and/or availability can result in

uncertainty associated with reported EFs, which emphasizes the

cautions needed to interpret direct soil N2O EFs. Ideally

comparison of EFs can be carried out at finer time-step.

3.4 Implications on future agricultural
management and climate adaptations

The increased atmospheric N2O concentration has been

closely associated with food production system and fertilizer

use (Kroeze et al., 1999; Mosier and Kroeze, 2000) and is

projected to continue rising if no mitigation strategies are

adopted to improve agricultural nitrogen use efficiency

(Montzka et al., 2011; Kanter et al., 2016). Studies have shown

significant differences in estimated atmospheric N2O

concentration based on IPCC’s representative concentration

pathways (RCPs) representing scenarios from little mitigation

efforts to aggressive goals (Davidson, 2012). Accurate estimation

TABLE 5 Linear regressionmodel built on estimating pCENTURY simulated growing season corn N2O emissions using fertilizer N rate (FERT), growing
season moisture (MOS) and water filled pore space (WFPS), corn-year average plant available N (PAN), annual precipitation (PPT), and corn yield
(YLD). TheN2O emissionswere estimated for normal, dry, andwetweather scenarios for corn-soybean baseline scenario during the simulation period
of 2016–2021. The results are summarized by agroecological zone (AEZ).

AEZ Linear regression model
estimating growing season
N2O emissions

Model
fit (adjusted R2)

All AEZs N2O = 1.7*** + 0.01 FERT*** + 1.6 MOS*** - 0.07 WFPS - 0.03 YLD*** - 0.005 PPT*** + 0.03 PAN*** 0.68

7 N2O = -4.9 + 0.02 FERT + 49.4 MOS*** - 9.2 WFPS - 0.07 YLD* + 0.001 PPT + 0.08 PAN* 0.82

8 N2O = 0.4 + 0.01 FERT*** + 14.6 MOS*** - 3.8 WFPS*** - 0.02 YLD*** + 0.0003 PPT + 0.02 PAN*** 0.75

9 N2O = 0.6* + 0.01 FERT*** + 7.9 MOS*** - 1.8 WFPS*** - 0.04 YLD*** - 0.0006 PPT*** + 0.04 PAN*** 0.72

10 N2O = 1.8*** + 0.01 FERT*** + 1.0 MOS* + 0.5 WFPS* - 0.03 YLD*** - 0.0008 PPT*** + 0.03 PAN*** 0.71

11 N2O = 2.2*** + 0.01 FERT*** + 1.4 MOS* - 0.9 WFPS*** - 0.03 YLD*** - 0.0007 PPT*** + 0.03 PAN*** 0.80

*Significant at the 0.05 probability level. **Significant at the 0.01 probability level. ***Significant at the 0.001 probability level.
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of N2O emissions from different management practices is

therefore critical for selecting and promoting practices that

can alleviate climate change risks for the future. Our study

showed an example of comparing management associated

N2O emissions and EFs at the broad scale through both

process-based modeling and meta-analytical summary. Future

work is needed to compare more management scenarios that are

not included in this study but are known to influence soil N2O

emissions including irrigation (Scheer et al., 2013; Maharjan

et al., 2014), drainage (Datta et al., 2013; Fernández et al.,

2016; Grossel et al., 2016), and the timing and method for

fertilizer incorporation (Smith et al., 1997; Yan et al., 2001;

Ma et al., 2010).

The study of Tesfaye et al. (2021) showed that soil N2O

mitigation potential can be mostly fulfilled with the reduction

of excessive N inputs. This is in line with our finding that

N2Ogs-emissions were mostly observed and simulated to be

higher under crop rotations incorporating a large amount of N

inputs. According to Xia et al. (2021), excessive corn N inputs

were calculated to be prevalent in the United States Corn Belt,

meaning that there is great potential for management

associated N2O mitigation within the region. Although our

model assumed zero or only a small amount of N inputs in

non-corn phases and therefore generated lower estimates of

N2Ogs-emissions, our meta-dataset demonstrated studies with

excessive N inputs during the cover crop phases which can

lead to greater N losses through N2O and N leaching.

However, if cover crops were managed properly, meta-

analysis found that soil N2O emissions would be reduced or

not affected compared to non-cover crop treatments

considering the balance between increased SOC and

reduced nitrate contents (Basche et al., 2014; Kaye and

Quemada, 2017). The key to N2O mitigation in a diversified

cropping system is, therefore, to avoid the overapplication of

fertilizers by better estimating N balance that takes into

account N credits from cover crops, which can be achieved

through the use of remote sensing (Xia et al., 2020) and N

calculators (Gaskin et al., 2019).

We investigated the impacts of N input, fertilizer type, and

tillage on N2Ogs-emissions but none of the comparisons were

identified to be significant according to the meta-database due to

high variability. This cautions the interpretation of management

associated N2O mitigation potential by considering only a single

management factor. Likely the interaction of management practices

can lead to various N2O responses among different sites. Our model

simulation illustrated significant differences in N2Ogs-emissions

caused by N input and fertilizer types, but such results are

heavily influenced by the model coefficients derived based on

previous studies. Ideally, the coefficients should be updated to

reflect findings from meta-databases and developed to reflect

interactions with site-specific management (fertilizer

incorporation method) and soil factors (e.g., texture and soil

drainage class).

Our modeling of N2Ogs-emissions under various climate

scenarios showed a potential of increased N2O emissions under

future drought conditions. We did not investigate the impacts of

raised temperature and CO2 concentration on N2O emissions, but

studies have reported increasedN2O emissions under such scenarios

because of enhanced microbial activity and denitrification

(Butterbach-Bahl and Dannenmann, 2011; Li et al., 2020; Wang

et al., 2021). IncreasedN2O emissions under projected future climate

conditions, especially those with higher levels of RCP (Riahi et al.,

2011), can then contribute to a feedback loop that aggravates climate

change. The regional differences in pCENTURY-modeled soil N2O

emissions under dry and wet weather scenarios could be tied to soil

pH and drainage class, which were identified as key factors

explaining the spatial variability of observed annual N2O

emissions (Lawrence et al., 2021). Likewise, the modeling study

of Zhang et al. (2020) also emphasized regional differences in SOC

changing trend under future climate scenarios that is influenced by

soil properties and management in the United States Corn Belt.

These findings suggest that management adaptations to a changing

climate should consider regional differences, in which case it would

be critical to use modeling tools to simulate site-based management

and climate interactions.

4 Conclusion

A parameterized CENTURY model (pCENTURY) was used

to estimate direct soil N2O emissions under various management

and climate scenarios from United States corn fields. The

pCENTURY model adequately predicted the magnitude of

growing season N2O (N2Ogs) emissions from corn (N2Ogs =

2.68 kg/ha) and wheat (N2Ogs = 1.44 kg/ha) crop phases based on

comparison with a Tier-2 meta-analytical summary. Model

estimated N2Ogs emissions and emission factors (EFs) differed

by N fertilizer type (AA > urea) and tillage practice

(conventional > no-tillage), which matched with the

comparison of average values under these treatments from the

meta-database. Differences between modeled and measured

results for scenarios including soybean or cover crops were

tied to model assumptions of N inputs and the greater variety

of inputs and practices summarized within categories contained

in the meta-database. Comparison with Tier-1 values for corn

suggests that broad-scale process-based modeling can

successfully generate regionalized EFs that are representative

of generalized management scenarios. Discrepancies between

Tier-2 and pCENTURY-derived EFs on synthetic versus

organic N inputs revealed not only the importance of N input

data but also data describing the quantity and quality of organic

inputs for estimating N2O emissions from non-corn phases and

complex rotations. Weather scenarios determined that decreases

in corn yields in dry years reduced crop N uptake and created

N2O hotspots. Yield reductions occurring in wet years did not

increase N2O flux. Regional differences in weather and soil N2O
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flux justify need for model-based (Tier-3) EFs that consider

interactions between management and climate; however, we

find improvements in the model’s ability to accurately

simulate soil moisture during the winter and capture crop N

uptake are needed to successfully estimate soil N2O emissions

and develop regional EFs that can better inform management

decisions in a future climate.
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