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Worldwide, water security is adversely affected by factors such as population

growth, rural–urban migration, climate, hydrological conditions, over-

abstraction of groundwater, and increased per-capita water use. Water

security modeling is one of the key strategies to better manage water safety

and develop appropriate policies to improve security. In view of the growing

global demand for safe water, intelligent methods and algorithms must be

developed. Therefore, this paper proposes an integrated interval type-2 Fuzzy

VIseKriterijumska Optimizcija I Kompromisno Resenje (IT2FVIKOR) with

unsupervised machine learning (ML). This includes IT2FVIKOR for ranking

and selecting a set of alternatives. Unsupervised machine learning includes

hierarchical clustering, self-organizing map, and autoencoder for clustering,

silhouette analysis and elbow method to find the most optimal cluster count,

and finally Adjusted Rank Index (ARI) to find the best comparison within two

clusters. This proposed integrated method can be divided into a two-phase

fuzzy-machine learning-based framework to select the best water security

strategies and categorize the polluted area using the water datasets from the

Terengganu River, one of Malaysia’s rivers. Phase 1 focuses on the IT2FVIKOR

method to select five different strategies with five different criteria using five

decisionmakers for finding the best water security strategies. Phase 2 continues

the unsupervised machine learning where three different clustering algorithms,

namely, hierarchical clustering, self-organizingmap, and autoencoder, are used

to cluster the polluted area in the Terengganu River. Silhouette analysis is

applied along with the clustering algorithms to estimate the number of optimal

clusters in a dataset. Then, the ARI is applied to find the best comparison within

the original data with hierarchical clustering, self-organizing map, and

autoencoder. Next, the elbow method is applied to double-confirm the best

clusters for each clustering algorithm. Last, lists of polluted areas in each cluster

are retrieved. Finally, this 2-phase fuzzy-Machine learning–based framework

offers an alternative intelligent model to solve the water security problems and

find the most polluted area.
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1 Introduction

Universally, water security is beneath serious weight

because of a number of aspects that include rapid

population growth, hydrological conditions, increased per-

capita water use, rural–urban migration, pollution of water

resources, over-abstraction of groundwater, and climate

change and variability (GWP, 2000b; Jones et al., 2009;

Vörösmarty et al., 2010; Evengard et al., 2011). Over

1.1 billion individuals need to get to a secure water supply,

and 2.6 billion individuals need satisfactory sanitation

(WWC, 2000; UNESCO, 2009; Onda et al., 2012).

Worldwide, endeavors and resolutions to upgrade water

security have been taken by numerous organizations and

parties, including the World Water Forum, the Group of

Eight (G8), the United Nations, and many researchers

(Jones et al., 2009). These researchers have discussed water

security issues in many ways and areas, for example,

Chapagain et al. (2022) carried out qualified analyses of the

outcomes of the indicators and interconnected the strategies,

plans, and policies of the cities with the indicators of the

combined framework to detect policy gaps and propose steps

to enhance urban water management in the five cities.

Demerdash et al. (2022) introduced a new theory for water

security: the Irrigation Water Security Quality-based index,

where irrigation water security was offered based on quality

and quantity. In addition, they estimated the impact of water

quality parameters on soil deterioration, agriculture

productivity, and public health. Veettil et al. (2022) provided

an outline of water security assessment by concentrating on

several water security indicators and the theory of water

footprint. In addition, they also examined the application of

various physically based hydrological models, such as variable

infiltration capacity (VIC) and Soil and Water Assessment Tool

(SWAT), on water security assessment at a provincial-to-

continental rainwater level separately. Castro-Pardo et al.

(2022) calculated the composite index to assess water

security through the application of a DEA approach. The

proposed model was used to accumulate nine indicators

involving the four dimensions of water security: human

health and wellbeing; state of the water environment;

functions and responsibility of societies; and sustainability

and stability of livelihood.

Apart from these, some studies on water security issues

used multi-criteria decision-making (MCDM) for further

analysis, for example, Fetanat et al. (2021) expanded

methodology based on two multi-criteria decision-making

(MCDM) methods called linear assignment and entropy

under an intuitionistic fuzzy environment to support the

synthetic decision to highlight energy recovery from

wastewater treatment technologies. Tu et al. (2021)

developed a thorough valuation methodology for

measuring the degree of regional water resource

coordination (RWRC). First, they created a

security–equity–efficiency (SEE) evaluation indicator

system. Then, they combined VIKOR and DEMATEL

methods to rank six alternatives for the RWRC of the

appropriate regions. Namany et al. (2021) integrated an

evaluation tool based on the AHP method and the energy,

water, and food (EWF) nexus to create a decision-making

scheme that guides policymakers in creating national

priorities and sectorial strategies. Next, they applied their

developed methodology to measure the performance of the

EWF sectors in the State of Qatar. Nie et al. (2018) integrated

the best–worst method (BWM), DEMATEL, and TOPSIS to

construct the water sustainability evaluation and analyzed the

valuation results and significant factors toward the

development of water security sustainability. However,

previous studies are still limited in terms of solving

decision problems with conflicting criteria and

determining the compromise ranking list and the

compromise solution obtained with the initial (given)

weights (Qin et al., 2015). Therefore, this study will

examine two main research questions. The first question is

raised on the most important factor contributing toward the

success of water security strategies, and the second question is

whether there exists a method that can solve a maximum

group utility and a minimum individual regret of the

opponent. In response to these problems and research

questions, this study aims to carry out a better solution in

visualizing the preferences from the group of decision-

makers (DMs) and minimum individual DM regret as well

as to measure the best strategies that contribute to the success

of water security. The method used must be capable of

providing all these answers and considering different

preferences among DMs. One of the appropriate methods

purposely used to capture different preferences among

multiple strategies of decision problems is the interval

type-2 VIseKriterijumska Optimizacija I Kompromisno

Resenje (IT2FVIKOR).

Various authors have discussed the IT2FVIKOR method.

Han et al. (2021) proposed a hybrid model combining ANP,

DEMATEL, and VIKOR with type-2 fuzzy linguistic variables

in considering the fuzzy uncertainty in the procedure of the

safety assessment of rail transit operation (SARTO) and the

interrelationship and conflict among the criteria. Wan et al.

(2021) developed a combined VIKOR and trapezoidal interval

type-2 fuzzy (TrIT2F) technique on the best–worst method
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(BMW). Then, their proposed method was exhibited with a

makeshift (Fangcang) hospital selection example on COVID-

19. Gul et al. (2021) improved the Fine–Kinney occupational

risk assessment approach with IT2 FVIKOR to provide a

useful and solid approach to the occupational health and

safety risk assessment. Then, they applied their proposed

method in a gun and rifle barrel external surface oxidation

and coloring unit of a gun factory. Wang et al. (2019)

combined the VIKOR method with IT2FS, where a new

signed area function of IT2FSs was identified and the

ranking score method based on the signed area function

was proposed. Then, they converted the IT2 fuzzy number

matrix to a ranking score value matrix and proved some

theorems of the ranking score method. Then, they

conducted a comparative analysis between the VIKOR

method and the signed distance method to show the

advantages of their proposed method. Qin and Liu (2019)

defined a new distance measure for IT2FS and developed an

IT2FVIKOR method based on the prospect theory. Then, they

applied a numerical example on high-tech investment

evaluation to illustrate the practicality and validity of the

proposed method. Wu et al. (2019) proposed an integrated

method based on the best–worst method (BMW) and the

VIKOR technique in an interval type-2 fuzzy environment.

Then, they applied green supply chain management to the

proposed integrated method. Soner et al. (2017) integrated the

VIKOR technique into the AHP method under an interval

type-2 fuzzy environment. Then, they applied their proposed

method to the hatch cover design selection problem, one of the

structures of bulk carrier ships to protect cargo from external

damages and prevent water ingress. Qin et al. (2015) extended

the VIKOR method based on the interval type-2 environment

and illustrated its applicability toward a high-tech risk

evaluation case study. IT2FVIKOR has been proven to help

people make decisions according to their preferences, in cases

where there is more than one conflicting criterion. As per our

knowledge, IT2FVIKOR has not yet been applied in any

studies relating to water. However, IT2FVIKOR itself

cannot meet the requirement of the growing global water

security issue. The impact behind each decision on the

growing global water security issue is still lacking and

needs to be discussed and applied to the extended

algorithms. Therefore, there is a need to develop other

methods that can be integrated with IT2FVIKOR to achieve

an advanced intelligent method. One of the appropriate

methods suitable for the advanced intelligent method is

machine learning (ML).

Machine learning (ML) is a branch of artificial intelligence

(AI) that focuses on the use of big data and algorithms for

predicting and classifying, clustering samples through

experience and by the use of data (Tom, 1997). Two major

learning in ML are supervised and unsupervised learning

which are used in performing, or solving specific tasks, by

learning from experiences and/or the relationships between

the data. Both supervised and unsupervised learning are used

in various scenarios and with several datasets. The main

difference between supervised and unsupervised learning is

that supervised learning requires training prelabeled inputs to

predict the predetermined outputs. Supervised learning best

estimates the relationship between the output and input

observed in the data. On the contrary, unsupervised

learning deals with unlabeled data, output, and input, and

its goal is to discover relationships and patterns between the

data. Therefore, supervised learning can be used to predict the

classification, and unsupervised learning can be used to find

the optimal classification (Dong et al., 2021). Nowadays,

research in ML is in demand due to the huge amount of

data and the nature of ML itself, easy and cheap computation.

Many studies discussed ML in many applications.

Ziyadidagen et al. (2022) analyzed the factors that could

affect the risk of COVID-19 infection and death using

K-means clustering and several classification models. From

the K-means clustering, numerous significant attributes of the

COVID-19 risk were emphasized. Dong et al. (2021) extracted

16 climatic data variables to estimate the climatic

regionalization for pavement infrastructure using both

unsupervised and supervised ML, including three

unsupervised ML approaches, namely, factor analysis,

principal component analysis (PCA), and cluster analysis,

and two supervised ML approaches, namely, artificial

neural network (ANN) and Fisher’s discriminant analysis.

Ahmed et al. (2019) compared the supervised and

unsupervised approaches to extract traffic-related tweets.

They also developed a method to give the probability of

level of congestion in real-time of tweets in Chennai.

ML has also been rigorously studied in many FMCDM

methods, for example, Umar and Saraswat (2022) proposed a

divergence measure for picture fuzzy sets and applied

decision-making in ML, which were medical diagnosis,

pattern recognition, and clustering using numerical

illustration. Then, they justified their proposed method by

assessing their results using comparative analysis. Yazici et al.

(2022) identified and prioritized individual tacit knowledge

criteria using ML methods and FAHP. ML methods including

support vector machine (SVM), logistic regression, and

artificial neural network were used to extract the variable.

Their results show that the SVM and fuzzy analytic hierarchy

process (FAHP) defined communication between employees

and supervisors, time efficiency of employees, and innovative

capability of employees as the most important tacit knowledge

criteria. Then, Alazemi et al. (2022) focused on the role of

internal factors in small- and medium-scale supply chains,

where a three-phase fuzzy-based framework was proposed to

address the product completion time problem. These three

phases include supervised ML to classify the production

alternatives, quantitative research, and fuzzy-based
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heuristics to generate production. Mohsin et al. (2022) offered

a novel approach for selecting landfill sites and sustainable

solid waste management (SWM) in India using integrated

FAHP-SVM and FAHP-RF. Their findings provide a guideline

to decision-makers (DMs) and planners for optimal landfill

site selection in other cities of developing countries. Jain et al.

(2021) proposed multi-attribute decision-making (MADM)

with ML algorithms for employee churn (ECn) in solving the

revenue and brand image of the organization. MADM

methods include TOPSIS for quantifying the importance of

the employees to perform their class-based categorization. ML

algorithms include CatBoost for predicting class-wise ECn.

Then, Nilashi et al. (2019) proposed a hybrid method for

online review analysis through MCDM, text mining, and

predictive learning techniques to find the relative

importance of factors affecting travelers’ decision-making

in selecting green hotels with spa services. ML algorithms

include a self-organizing map (SOM) for cluster analysis,

latent Dirichlet analysis (LDA) for analyzing textual

reviews, TOPSIS for ranking hotel features, and neuro-

fuzzy to reveal customer satisfaction levels. Shen and Tzeng

(2016) proposed a novel multiple attribute decision-making

model to resolve—from ranking/selection to improvement

planning—the problems of business analytics in finance, based

on the similarity with positive context (rules) and the dissimilarity

with negative ones. Their proposed method combines fuzzy-rough

machine learning including the dominance-based rough set

approach (DRSA), VIKOR, and bipolar decision model. Due to

the eligibility of ML with MCDM, our studies enhanced

IT2 FVIKOR with ML to solve the water security issue.

Therefore, this paper focuses on integrating IT2FVIKOR

with unsupervised ML. IT2FVIKOR has the ability to solve

uncertainty issues by combining the solution into a

maximum group utility and a minimum individual regret

of the opponent. In addition, IT2FVIKOR would discover the

best solution and a compromise solution by prioritizing

important factors (Moradi et al., 2002). This includes

IT2FVIKOR for ranking and selecting a set of alternatives;

unsupervised ML includes hierarchical clustering, SOM, and

autoencoder for clustering; silhouette analysis and elbow

method to find the most optimal number of clusters; and

last, Adjusted Rank Index (ARI) to find the best comparing

within two clusters. Unsupervised ML, able to determine the

relevancy based on data features (El Bouchefry and de Souza,

2020), has no attention to structured semantic relationships,

and therefore, is suitable to be applied to heterogeneous data

(Jain, 2010). This proposed integrated method can be divided

into a two-phase fuzzy-ML-based framework to select the

best water quality strategies and categorize the polluted area

in the Terengganu River, which is one of the rivers in

Malaysia. Phase 1 focuses on the IT2FVIKOR method to

select five different strategies with five different criteria using

five DMs for finding the best water quality strategies. Phase

2 continues the unsupervised ML, where three different

clustering algorithms, namely, hierarchical clustering,

SOM, and autoencoder, are used to cluster the polluted

area in the Terengganu River. Silhouette analysis is applied

along with the clustering algorithms to estimate the number

of optimal clusters in a dataset. Then, the ARI is applied to

find the best comparison within the original data with

hierarchical clustering, SOM, and autoencoder. Next, the

elbow method is applied to double-confirm the best

clusters for each clustering algorithm. Last, lists of

polluted areas in each cluster are retrieved. Finally, this

two-phase fuzzy-ML-based framework can be concluded as

the best water security strategies to be applied to the most

polluted area. The rest of this paper is organized as follows:

FIGURE 1
Conceptual framework.
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Section 2 describes the methodology framework including the

concepts of IT2FVIKOR procedures; the unsupervised ML

procedures including hierarchical clustering, autoencoder,

and SOM; and silhouette analysis and ARI. Section 3

presents an illustrative example to demonstrate the

feasibility and consistency of the integrated IT2FVIKOR

with ML algorithms. Section 4 presents the conclusion.

2 The methodology framework

The conceptual framework is illustrated in Figure 1, which

shows the entire fundamental process involved in the study.

Generally, the conceptual framework can be divided into two

different phases. Phase 1 focuses only on the MCDM method,

which is IT2FVIKOR with step-by-step flows. Phase

2 demonstrates the ML part consisting of all the preprocessing

steps and unsupervised techniques. The details of each process

are described in each subsection.

2.1 The interval type-2 fuzzy
VIseKriterijumska Optimizcija I
Kompromisno Resenje procedures

The IT2FVIKOR, with an equitable linguistic scale and

Z-Numbers method, is developed to achieve a higher rational,

systematic decision-making process to discover the best solution

and a compromise solution that considers both sides of the scale.

Then, entropy weight method is used for weighting values to greatly

reduce the decision-making burden in the subjective weighting

process and achieves a rather consistent weighting outcome. The

IT2FVIKOR procedure is explained step-by-step as follows:

Assume that there is a finite set X of alternatives, where X �
x1, x2 . . . , xn{ }, and assume that there is a finite set F attributes,

where F � f1, f2 . . . , fm{ }. Assume that there are k DMs

D1, D2, . . . , and Dk. The proposed method is now presented

as follows:

Step 1: Construction of a hierarchical diagram of the

IT2FMCDM problem.

We construct the decision matrix Yp of the pth DM and the

average decision matrix Y , shown as follows:

Yp � ~~f
p

ij[ ]
m×n

�
f 1
f 2
..
.

fm

x1 x2 / xn
~~f
p−
11 ,

~~f
p+
11( ) ; ~~z

p−
11 , ~~z

p+
11( )( ) ~~f

p−
12 ,

~~f
p+
12 ) ; ~~z( p−

12
, ~~z

p+
12( )( ) / ~~f

p−
1n ,

~~f
p+
1n) ; (~~zp−1n , ~~zp+1n( )( )

~~f
p−
21 ,

~~f
p+
21( ) ; ~~z

p−
21 , ~~z

p+
21( )( ) ~~f

p−
22 ,

~~f
p+
22( ) ; ~~z

p−
22 , ~~z

p+
22( )( ) / ~~f

p−
2n ,

~~f
p+
2n) ; ~~z( p−

2n
, ~~z

p+
2n( )( )(~~f p−m1 ,

~~f
p+
m1) ;(~~zp−m1 , ~~z

p+
m1)( ) (~~f p−m2 ,

~~f
p+
m2) ;(~~zp−m2 , ~~z

p+
m2)( ) / (~~f p−mn ,

~~f
p+
mn) ;(~~zp−mn , ~~z

p+
mn)( )
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(1)

�Y � ~~f ij[ ]
m×n

where ~~f ij � (
~~f
1

ij ⊕
~~f
2

ij ⊕...⊕
~~f
k

ij

k ), ~~(f p−ij ,~~f
p+
ij ) is the linguistic scale of

restriction of the extended IT2FVIKOR using equitable

linguistic scales and Z-Numbers, (~~zp−ij , ~~z
p+
ij ) is the linguistic

scale of reliability of the extended IT2FVIKOR using equitable

linguistic scales and Z-Numbers, 1≤ i≤m, 1≤ j≤ n, 1≤ p≤ k,

and k denotes the number of DMs.

Step 2: Construction of the weighted DM matrix.

The proposed entropy weight method based on IT2FSs is

defined as follows:

Let us assign ~~f ij � ((~~f Lij , ~~f
U

ij ); (~~z
L
ij , ~~z

U
ij )).

Thus.

E ~~A
L

ij( ) �
��������������������������∑n

i�1
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−
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+
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Step 3: Divide using maximal entropy value.

Then, all the entropy values are divided by using the maximal

entropy value, and the value of ij h is used to represent the

outcomes of the maximal entropy value. Therefore, it can be

defined as follows:
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L

i2( )( ),
E ~~A

U

i2( )
max E ~~A

U

i2( )( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ;
zE z~~A

L

i2( )
max zE z~~A

L

i2( )( ),
zE z~~A

U

i2( )
max zE z~~A

U

i2( )( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . . .
~~hin �

E ~~A
L

in( )
max E ~~A

L

in( )( ),
E ~~A

U

in( )
max E ~~A

U

in( )( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ;
zE z~~A

L

in( )
max zE z~~A

L

in( )( ),
zE z~~A

U

in( )
max zE z~~A

U

in( )( )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(3)

Then, the decision matrix, D, can be expressed as follows:
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D �

~~h11
~~h12 / ~~h1n

~~h21
~~h22 / ~~h2n

..

.

~~hm1

..

.

~~hm2

1 ..
.

/ ~~hmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Step 4: Weight of criteria.

The weight of criteria is calculated by using the fuzzy entropy

weight-based IT2FS formula. The Wj is used to present the

outcome of the weight value of criteria j. Thus, it can be

defined as follows:

~~wj � 1

F ~~wj( ) � (~~w
L

j , ~~w
U

j ); (˜̃zwL
j , ˜̃zwU

j )],[ (5)

(~~w
L

j , ~~w
U

j ); (˜̃zwL
j , ˜̃zwU

j )] � 1− ~~a
L

j

~~T
L ,

1− ~~a
U

j

~~T
U

⎛⎝ ⎞⎠, 1− z~~a
L

j

z~~T
L ,

1− z~~a
U

j

z~~T
U

⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,⎡⎢⎢⎢⎣ (6)

where (~~aj, ˜̃zaj) � (~~hi1+~~hi2+...+~~hinn ;
~~zhi1+ ~~zhi2+...+ ~~zhin

n ),
( ~̃T,z̃T) � (˜̃hi1 + ˜̃hi2 + . . . + ˜̃hin; ˜̃zhi1 + ˜̃zhi2 + . . . + ˜̃zhin) 1≤ j≤ n.

Step 5: Construct the weighted decision matrices.

x1 x2 / xn

�Yw � ~~vij[ ]m×n

�
f 1
f 2
..
.

f 1

~~v11; ˜̃zv11( ) ~~v12; ˜̃zv12( ) / ~~v1n; ˜̃zv1n( )
~~v21; ˜̃zv21( ) ~~v22; ˜̃zv22( ) / ~~v2n; ˜̃zv2n( )

..

.

~~vm1; ˜̃zvm1( ) ..
.

~~vm2; ˜̃zvm2( ) 1 ..
.

/ ~~vmn; ˜̃zvmn( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where ~~vij � ~~wj ⊗
~~f ij, 1≤ i≤m, and 1≤ j≤ n.

Step 6: Construct the fuzzy best value (FBV) and fuzzy worst

value (FWV).

Choose the FBV and FWV values using the following

equations:

~f
*

j � max
i

~~vij, ~f
−
j � min

i
~~vij, i � 1, 2, . . . , m ; j � 1, 2, . . . , n,

(8)
where ~f

*
j refers to FBV and ~f

−
j refers to FWV. Then, the values are

defuzzified. Here, ~f
*
j is the maximum value of ~~vij, which is the

maximummajority rule or maximum group utility, whereas ~f
−
j is

the minimum value of ~~vij, which is the minimum individual

regret of the opponent.

Step 7: Compute the separation measures and defuzzification.

Evaluate the following values,

Wi
~f
*

i − ~~vij( )
~f
*

i − ~f
−
i

, (9)

~Si �∑k

i�1

~wi
~f
*

i − ~~vij( )
~f
*

i − ~f
−
i

, (10)

~Ri � max
j

~wi
~f
*

i − ~~vij( )
~f
*

i − ~f
−
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

where ~S represents the utility measure and ~R represents the regret

measure. ~Si and ~Ri can be calculated using the sum of the FBV

distance with respect to all criteria.

Step 8: Defuzzify the utility measure value (~Si) and regret

measure value (~Ri) using the formula given as follows:

Defuzzif ied �
uU − lU( ) + βU.m1U − lU( ) + ∝ U.m2U − lU( )

4
+ lU + uL−lL( )+ βL . m1L−lL( )+ ∝ L .m2L−lL( )

4 + lL[ ]
2

.

(12)

Step 9: Rank the alternatives.

Calculate the following values,

~S* � min
i

~S, ~S
− � max

i
~S, (13)

where ~S* is the value for the maximum group of utility and ~S
−
is

the minimum value for the maximum group of utility.

Then,

~R* � min
i

~R, ~R
− � max

i
~R, (14)

where ~R* is the value of the minimum individual regret of the

opponent and ~R
−
is the minimum value.

Next,

~Qi � v
~Sj − ~S*( )
~S
− − ~S*( ) + 1 − v( )

~Rj − ~R*( )
~R
− − ~R*( ), (15)

where ~Qi is the index for both ~S* and ~R*, whereas v is the weight

of the strategy to be used in the maximum group of utility.

v > 0.5 refers to the maximum majority of rule, and v ≤
0.5 refers to the individual regret of the opponent. The normal

value is when v is 0.5.

Last, ~S*, ~R*, and ~Qi are sorted and ranked in a decreasing

order. The decreasing order helps decrease the gaps in the

criteria, and the best is chosen based on the lowest rank value.

2.2 The unsupervised machine learning
procedures

Unsupervised machine learning is a type of algorithm that

learns patterns from unlabeled data. Through mimicry, the

machine is forced to build the same patterns and

characteristic representation from the important mode of

learning in each situation. Some of the most used algorithms

in unsupervised learning include clustering, anomaly detection,

and approaches for learning latent variable models. This study

only focuses on clustering algorithms with two comparison

methods. The details of each algorithm are explained in the

next subsection.
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2.2.1 Hierarchical clustering
Ward studied hierarchical clustering techniques based

on minimizing the ‘loss of information’ from joining two

groups (Ward, 1963). This method is usually implemented

with a loss of information taken to be an increase in an error

sum of squares criterion (ESS). Thus, the ESS is defined as

follows:

o t( ) �∑K

k�1∑xi ∈ Ck

∑n

j�1 xij − xkj( )2, (16)

where K is the number of clusters, j is the sample index

(1, 2,/, n), Ck is a k-th cluster, xi indicates elements in Ck,

xij denotes the i-the item in the j-th cluster Cj, and μkj is a mean

vector in Ck.

At first, each cluster comprises a single item. At each step in

the analysis, the union of every possible pair of clusters is

considered, and the two clusters whose combination results in

the smallest increase in ESS (a minimum loss of information) are

joined. When all the clusters are combined in a single group of N

items, the clustering analysis is carried out. The results of Ward’s

method can be displayed as a dendrogram. The vertical axis gives

the values of ESS at which the merges occur (Richard and Dean,

2002).

2.2.2 Autoencoder algorithms
An autoencoder is an unsupervised feed-forward multi-

layer neural network where the desired output is the input itself

(Silberer and Lapata, 2014; Zhou and Paffenroth, 2017). The

autoencoder is used to discover clusters of similar instances in

an unlabeled dataset and consists of two parts (Delgado, 2019):

Encoder f θ maps an input vector to a latent representation

y(i) � fθ′(xi) � s(Wxi + b), with s being a nonlinear activation

function.

Decoder gθ′ aims to reconstruct the input xi from yi. For that

purpose, xi � gθ′(yi) � s(W′yi + b′) is applied.
In this training, we need to determine θ̂ � W, b{ } and θ̂′ �

W′, b′{ } to minimize the reconstruction error of input vectors xi.

θ̂, θ̂′ � argmin
θ,θ′

1
n
∑n

i�1(L(xi, gθ′(f θ(xi))), (17)

where L is a loss function and θ and θ′ can be optimized by

gradient descent methods.

Moreover, all the layers used rectified linear unit (ReLU)

activation function because it is easier to train and often achieves

better performance. The optimizer selected to train the neural

network is Adam, and the metric that is going to be minimized is

the mean squared error (MSE) for loss function, which can be

described as follows:

MSE � 1
n
∑n

i�1 Yi − Ŷi( )2, (18)

where Yi is the observed values and Ŷi is the predicted values.

2.2.3 Self-organizing map algorithms
The self-organizing map (SOM) is a prominent unsupervised

neural network, considered a 2D mapping of the data group

(Kohonen, 1984). In other words, the SOM converts a non-linear

projection of n-dimensional multivariate data onto a low-

dimensional display. The SOM net is made up of a number of

nodes usually organized in a rectangular or hexagonal grid. Each

neuron in the SOM array is linked to the input vector xi, allocated

with a weight vector wi. Moreover, the nodes placed adjacent to

the cells are constantly updated via the neighborhood function.

The SOM algorithm contains two main phases: the competitive

and the cooperative (Hoffmann, 2005; Liu et al., 2008). The

former attempts to select the best matching neuron, while the

latter adjusts the weight of the winner and its immediate lattice

neighbors. During the SOM training procedure, a sample vector

x is randomly selected. Then, the Euclidean distances are

calculated between the input vector and all neurons. Based on

the minimization of the distance between a sample and other

weighted vectors, the best matching unit is computed as

x −mc‖ ‖ � min
i

x −mi‖ ‖, (19)

where c represents the winning neuron and mc is the closest

vector to x on the map.

The weight vector mc related to the best matching unit is

updated in order to attune the sample x even closer. Moreover,

the nodes around the best matching unit are updated as well. The

updated version of Eq. 1 may be reformulated as

mi t + 1( ) � mi t( ) + hci t( )* x −mi t( )( ), (20)

where hci(t) is the neighborhood kernel centered on the winner

unit and t denotes the time.

hci t( ) � a t( )* exp − rc − ri‖ ‖2
2o t( )2( ), (21)

where a(t) indicates the learning rate considered the degree of

matching, and it lessens monotically with regression steps (time).

o(t) is the radius of expansion of the neighborhood function.

rc, ri are locations of neurons c and i on the SOM grid,

respectively.

2.2.4 Silhouette analysis
Silhouette is used to evaluate how well clustering results are

clearly separated. In order to construct a silhouette, we only need

two things: the partition and collection of all proximities between

objects. For each object i, we need to introduce a certain value s(i)
and take any object i in the dataset and denote by A the cluster to

which it has been assigned. Also, a(i) is the average Euclidean

distance of object i to all other objects of A, and b(i) is the

minimum of the average Euclidean distance between i and the

objects in other clusters to which the object i does not belong.

Then, s(i) is obtained by combining a(i) and b(i) as follows in
Eq. 2. Finally, the silhouette index takes the average of s(i) for all
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samples to evaluate the clustering result, as in Eq. 10 (Rousseeuw,

1987). The silhouette index ranges from −1 to 1, where a high

value indicates better clustering accuracy.

s i( ) � b i( ) − a i( )
max a i( ), b i( ){ }.

Silhouette � 1
n
∑n

i�1s i( ). (22)

Silhouette analysis can be used for two purposes: 1) to check

the validity of the obtained clustering solution and 2) to use along

with a clustering algorithm to estimate the number of clusters in a

dataset.

2.2.5 Adjusted Rank Index algorithms
Adjusted Rank Index (ARI) is the best-performing method

for comparing two partitions. The ARI obtains a value of unity

when the two partitions perfectly agree (in the current situation,

when two nodes are connected to the same set of other nodes)

and a value of zero when there is only chance agreement between

the partitions. At face value, while the ARI might be known to

outperform other methods of partition agreement, it still suffers

from the problem of establishing an arbitrary threshold to decide

if a pair of nodes should be linked or remain unlinked.

Fortunately, we can take advantage of a clever proof given

by Warrens (2008) that demonstrates that the ARI is

equivalent to Cohen’s K (1960) when there are two

partitions, and the cluster labels are known a priori. Both

of those conditions are met as the two partitions are defined by

the edge sets of nodes ni and nj, while the labels are static

across all nodes as either “connected” or “not connected,”

avoiding the problem of unknown cluster labels discussed in

Steinley (2004). Under these two constraints, the ARI (and K)

can be computed as

ARIij � 2 ad − bc( )
a + b( ) b + d( ) + a + c( ) c + d( ). (23)

In this application, the ARI gives each potential link a score

between -1 and 1, where a score greater than 0 indicates that the

probability of a link being there is greater than random chance.

Using 0 as a defined cutoff value to defect links is an inherent

benefit of ARI over other methods where the cutoff must be

determined ahead of time.

This section successfully discusses the method formulation

involving step-by-step systematic procedures of the IT2FVIKOR.

Then, it follows with the unsupervised machine learning

algorithms. Later, the next section discusses the evaluation of

these algorithms with real application.

3 Experiment and results

This section relies on MCDM which is IT2FVIKOR and

unsupervised ML algorithms, hierarchical clustering,

autoencoder, and SOM. The schematic diagram of the

proposed method is shown in (Figure 2). In phase 1, we used

IT2FVIKOR to discover the best water security strategies

using the data in the form of linguistic variables collected

from DMs. All the human and non-human factors that are

normally linked with water security strategies are considered

for the best ranking. Then, in phase 2, using the data from the

Department of Environment, Malaysia, we applied three

different clustering algorithms along with silhouette

analysis to obtain a list of clusters and the best optimal

number of clusters. The ARI is used to compare the extent

of agreement between the assignment of clusters for different

algorithms. This method calculates the extent of agreement

between two sets of groupings and outputs a representative

score between 1 and −1. The elbow method is applied to

double-confirm the best clusters for each clustering

algorithm. Last, lists of polluted areas in each cluster are

retrieved.

3.1 Application of water security using
interval type-2 fuzzy VIseKriterijumska
Optimizcija I Kompromisno Resenje

A real application for searching the best strategies to enhance

water supply security is used to illustrate the procedures and

feasibility of the IT2FVIKOR. Six alternatives

(A1, A2, A3, A4, A5, andA6), namely, strengthening the

protection of water source areas (A1), improving

infrastructure to safeguard urban and rural water security

(A2), developing a water-saving system (A3), fully

implementing the river chief system (A4), reinforcing

groundwater monitoring and protection (A5), and

strengthening the policy on water security (A6), are proposed

according to five criteria, namely, household water security (C1),

economic water security (C2), urban water security (C3),

environmental water security (C4), and resilience to water-

related disasters (C5) to select the most suitable alternative for

enhance water security. The five decision makers

(DM1, DM2, DM3, DM4, andDM5) used the linguistic scales

of restriction and reliability (from Table 1 and Table 2) to

evaluate the rating of alternatives with respect to each

criterion in the form of a decision matrix.

Next, the computational procedure is summarized as follows:

Step 1: Construction of a hierarchical structure of weight

factors associated with the strategies to enhance water supply

security.

The hierarchical structure of evaluating the best strategies

to enhance water supply security in Malaysia is given in

Figure 3.

The comparison results involve six strategies as the alternatives

and five criteria based on water supply security. The rating of each

alternative for each criterion is presented by DMs.
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The data that consider negative and positive sides with restriction

and reliability and its conversion (using Table 1 and Table 2) are

referred in order to construct a matrix of attributes. Therefore, let us

take an example of calculating the ~~f 11. The average for
~~f 11 ;

(VG, L) = ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)),

((0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1))

(G, SWL) = ((0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1)),

((0.1, 0.2, 0.4, 0.5; 0.8, 0.8), (0, 0.2, 0.4, 0.6; 1, 1))

(VG, SLL) = ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)),

((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))

(VG, SLL) = ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)),

((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))

(VG, SLL) = ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)),

((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))

Then, the average for (VG, L), (G, SWL), (VG, SLL), (VG,

SLL), and (VG, SLL) is

((0.64, 0.74, 0.94, 0.96; 0.8, 0.8) (0.54, 0.74, 0.94, 0.98; 1, 1)).

((0.52, 0.62, 0.82, 0.86; 0.8, 0.8) (0.42, 0.62, 0.82, 0.9; 1, 1)).

FIGURE 2
A process of integrated IT2FVIKOR with machine learning to the real application.
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Apply the same calculation as ~~f 11; thus, the whole results

for the matrix of alternatives are summarized (Table 3) as

follows:

Step 2: Construct the weighted DM matrix.

Use the fuzzy entropy with IT2FS formulas (Eq. 2) to

calculate each of the entropy values in the decision matrix.

Therefore, the entropy value for E(~~A11) is represented as

follows:

TABLE 1 Linguistic scale of restriction for the extended IT2FVIKOR.

Linguistic terms Linguistic scale

Very poor (VP) [(−1.0, −0.9, −0.8, −0.7; 0.8, 0.8), (−1.0, −1.0, −0.8, −0.6; 1, 1)]

Poor (P) [(−0.8, −0.7, −0.5, −0.4; 0.8, 0.8), (−0.9, −0.7, −0.5, −0.3; 1, 1)]

Medium poor (MP) [(−0.5, −0.4, −0.2, −0.1; 0.8, 0.8), (−0.6, −0.4, −0.2, 0; 1, 1)]

Medium (M) [(−0.2, −0.1, 0.1, 0.2; 0.8, 0.8), (−0.3, −0.2, 0.2, 0.3; 1, 1)]

Medium good (MG) [(0.1, 0.2, 0.4, 0.5; 0.8, 0.8), (0, 0.2, 0.4, 0.6; 1, 1)]

Good (G) [(0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1)]

Very good (VG) [(0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)]

TABLE 2 Linguistic scale of reliability for the extended IT2FVIKOR.

Linguistic terms Linguistic scale

Strongly unlikely (SU) [(−1.0, −0.9, −0.8, −0.7; 0.8, 0.8), (−1.0, −1.0, −0.8, −0.6; 1, 1)]

Unlikely (U) [(−0.8, −0.7, −0.5, −0.4; 0.8, 0.8), (−0.9, −0.7, −0.5, −0.3; 1, 1)]

Somewhat unlikely (SWU) [(−0.5, −0.4, −0.2, −0.1; 0.8, 0.8), (−0.6, −0.4, −0.2, 0; 1, 1)]

Neutral (N) [(−0.2, −0.1, 0.1, 0.2; 0.8, 0.8), (−0.3, −0.2, 0.2, 0.3; 1, 1)]

Somewhat likely (SWL) [(0.1, 0.2, 0.4, 0.5; 0.8, 0.8), (0, 0.2, 0.4, 0.6; 1, 1)]

Likely (L) [(0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1)]

Strongly likely (SLL) [(0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)]

FIGURE 3
Water security decision attributes hierarchy.
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E ~~A
L

11( ) � ������������������������������������������
1 − 0.64( )2 + 1 − 0.74( )2 + 1 − 0.94( )2 + 1 − 0.96( )2

√������������������������������������������
0 − 0.64( )2 + 0 − 0.74( )2 + 0 − 0.94( )2 + 0 − 0.96( )2

√
� 0.27

E ~~A
U

11( ) � ������������������������������������������
1 − 0.54( )2 + 1 − 0.74( )2 + 1 − 0.94( )2 + 1 − 0.98( )2

√������������������������������������������
0 − 0.54( )2 + 0 − 0.74( )2 + 0 − 0.94( )2 + 0 − 0.98( )2

√
� 0.32

zE ~̃zA
L

11( ) � ������������������������������������������
1 − 0.52( )2 + 1 − 0.62( )2 + 1 − 0.82( )2 + 1 − 0.86( )2

√������������������������������������������
0 − 0.52( )2 + 0 − 0.62( )2 + 0 − 0.82( )2 + 0 − 0.86( )2

√
� 0.45

zE ~̃zA
U

11( ) � �����������������������������������������
0 − 0.42( )2 + 1 − 0.62( )2 + 1 − 0.82( )2 + 1 − 0.9( )2

√�����������������������������������������
1 − 0.42( )2 + 0 − 0.62( )2 + 0 − 0.82( )2 + 0 − 0.9( )2

√
� 0.41

E ~~A11( ) � 0.27; 0.8, 0.8( ) 0.32; 1, 1( )( ), 0.45; 0.8, 0.8( ) 0.41; 1, 1( )( ).

Using a similar calculation, the entropy value for other

attributes is calculated and listed in Table 4.

Step 3: Divide using the maximal entropy value.

All the entropy values are divided by using the maximal

entropy value followed by Eq. 3.

E ~~A11( ) � 0.27; 0.8, 0.8( ) 0.32; 1, 1( )( ), 0.45; 0.8, 0.8( ) 0.41; 1, 1( )( )

E ~~A12( ) � 0.20; 0.8, 0.8( ) 0.26; 1, 1( )( ), 0.27; 0.8, 0.8( ) 0.32; 1, 1( )( )

E ~~A13( ) � ( 0.20; 0.8, 0.8( ) 0.26; 1, 1( )), ( 0.27; 0.8, 0.8( ) 0.32; 1, 1( ))

E ~~A14( ) � 0.20; 0.8, 0.8( ) 0.26; 1, 1( )( ), 0.35; 0.8, 0.8( ) 0.38; 1, 1( )( )

E ~~A15( ) � 0.53; 0.8, 0.8( ) 0.45; 1, 1( )( ), 0.58; 0.8, 0.8( ) 0.49; 1, 1( )( ).

Let us take E(~~A1j) as an example on calculating the maximal

entropy value, where the maximal value for E(~~A1j) is
max (E(~~A15)) = [(0.53; 0.8, 0.8) (0.45; 1, 1)], [(0.58; 0.8, 0.8)

(0.49; 1, 1)].

Thus,

~~h11 � [( ~~E(~~AL

11)
max(~~E(~~AL

15))
),( ~~E(~~AU

11)
max(~~E(~~AU

15))
)], [( ~~E(~~ZL

11)
max(~~E(~~ZL

15))
), ( ~~E(~~ZU

11)
max(~~E(~~ZU

15))
)]

TABLE 3 Judgement matrix.

C1 C2 C3 C4 C5

A1 [(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)],
[(0.52, 0.62, 0.82, 0.86; 0.8, 0.8)
(0.42, 0.62, 0.82, 0.90; 1, 1)]

[(0.70, 0.80, 1.00, 1.00; 0.8, 0.8)
(0.60, 0.80, 1.00, 1.00; 1, 1)],
[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)]

[(0.70, 0.80, 1.00, 1.00; 0.8, 0.8)
(0.60, 0.80, 1.00, 1.00; 1, 1)],
[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)]

[(0.70, 0.80, 1.00, 1.00; 0.8, 0.8)
(0.60, 0.80, 1.00, 1.00; 1, 1)],
[(0.58, 0.68, 0.88, 0.92; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.96; 1, 1)]

[(0.46, 0.56, 0.76, 0.80; 0.8,
0.8) (0.36, 0.56, 0.76, 0.84; 1,
1)], [(0.40, 0.50, 0.70, 0.76;
0.8, 0.8) (0.30, 0.50, 0.70,

0.82; 1, 1)]

A2 [(0.40, 0.50, 0.70, 0.78; 0.8, 0.8)
(0.30, 0.50, 0.70, 0.86; 1, 1)],
[(0.40, 0.50, 0.70, 0.74; 0.8, 0.8)
(0.30, 0.50, 0.70, 0.78; 1, 1)]

[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)],
[(0.58, 0.68, 0.88, 0.92; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.96; 1, 1)]

[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)],
[(0.52, 0.62, 0.82, 0.86; 0.8, 0.8)
(0.42, 0.62, 0.82, 0.90; 1, 1)]

[(0.52, 0.62, 0.82, 0.86; 0.8, 0.8)
(0.42, 0.62, 0.82, 0.90; 1, 1)],
[(0.34, 0.44, 0.64, 0.70; 0.8, 0.8)
(0.24, 0.42, 0.66, 0.76; 1, 1)]

[(0.58, 0.68, 0.88, 0.92; 0.8,
0.8) (0.48, 0.68, 0.88, 0.96; 1,
1)], [(0.52, 0.62, 0.82, 0.88;
0.8, 0.8) (0.42, 0.62, 0.82,

0.94; 1, 1)]

A3 [(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)],
[(0.52, 0.62, 0.82, 0.86; 0.8, 0.8)
(0.42, 0.62, 0.82, 0.90; 1, 1)]

[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)],
[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)]

[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)],
[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)]

[(0.52, 0.62, 0.82, 0.86; 0.8, 0.8)
(0.42, 0.62, 0.82, 0.90; 1, 1)],
[(0.40, 0.50, 0.70, 0.76; 0.8, 0.8)
(0.30, 0.50, 0.70, 0.82; 1, 1)]

[(0.40, 0.50, 0.70, 0.74; 0.8,
0.8) (0.30, 0.48, 0.72, 0.78; 1,
1)], [(0.28, 0.38, 0.58, 0.64;
0.8, 0.8) (0.18, 0.34, 0.62,

0.70; 1, 1)]

A4 [(0.34, 0.44, 0.64, 0.72; 0.8, 0.8)
(0.24, 0.42, 0.66, 0.8; 1, 1)],

[(0.04, 0.14, 0.34, 0.42; 0.8, 0.8)
(−0.06, 0.14, 0.34, 0.50; 1, 1)]

[(0.24, 0.34, 0.52, 0.58; 0.8, 0.8)
(0.16, 0.32, 0.52, 0.64; 1, 1)],
[(0.52, 0.62, 0.82, 0.88; 0.8, 0.8)
(0.42, 0.62, 0.82, 0.94; 1, 1)]

[(0.12, 0.22, 0.40, 0.46; 0.8, 0.8)
(0.04, 0.20, 0.40, 0.52; 1, 1)],
[(0.34, 0.44, 0.64, 0.70; 0.8, 0.8)
(0.24, 0.42, 0.66, 0.76; 1, 1)]

[(0.70, 0.80, 1.00, 1.00; 0.8, 0.8)
(0.60, 0.80, 1.00, 1.00; 1, 1)],
[(0.58, 0.68, 0.88, 0.92; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.96; 1, 1)]

[(0.46, 0.56, 0.76, 0.82; 0.8,
0.8) (0.36, 0.56, 0.76, 0.88; 1,
1)], [(0.40, 0.50, 0.70, 0.76;
0.8, 0.8) (0.30, 0.50, 0.70,

0.82; 1, 1)]

A5 [(0.64, 0.72, 0.88, 0.88; 0.8, 0.8)
(0.56, 0.72, 0.88, 0.88; 1, 1)],
[(0.64, 0.72, 0.88, 0.88; 0.8, 0.8)
(0.56, 0.72, 0.88, 0.88; 1, 1)]

[(0.64, 0.72, 0.88, 0.88; 0.8, 0.8)
(0.56, 0.72, 0.88, 0.88; 1, 1)],
[(0.64, 0.72, 0.88, 0.88; 0.8, 0.8)
(0.56, 0.72, 0.88, 0.88; 1, 1)]

[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)],
[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)]

[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)],
[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)]

[(0.58, 0.68, 0.88, 0.92; 0.8,
0.8) (0.48, 0.68, 0.88, 0.96; 1,
1)], [(0.58, 0.68, 0.88, 0.92;
0.8, 0.8) (0.48, 0.68, 0.88,

0.96; 1, 1)]

A6 [(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)],
[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)]

[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)],
[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)]

[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)],
[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)]

[(0.64, 0.74, 0.94, 0.96; 0.8, 0.8)
(0.54, 0.74, 0.94, 0.98; 1, 1)],
[(0.58, 0.68, 0.88, 0.90; 0.8, 0.8)
(0.48, 0.68, 0.88, 0.92; 1, 1)]

[(0.70, 0.80, 1.00, 1.00; 0.8,
0.8) (0.60, 0.80, 1.00, 1.00; 1,
1)], [(0.70, 0.80, 1.00, 1.00;
0.8, 0.8) (0.60, 0.80, 1.00,

1.00; 1, 1)]
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~~h11 � 0.27; 0.8, 0.8
0.53; 0.8, 0.8
( ), 0.32; 1, 1

0.45; 1, 1
( )[ ], 0.45; 0.8, 0.8

0.58; 0.8, 0.8
( ), 0.41; 1, 1

0.49; 1, 1
( )[ ]

~~h11 � 0.52; 0.8, 0.8( ) 0.72; 1, 1( )( ), (0.79; 0.8, 0.8)(0.82; 1, 1)).

Using the same calculation, the maximal entropy value is

shown (Table 5) as follows:

Step 4: Weight of criteria.

Next, calculate theweight of the criteria by using theweight formula

from Eqs. 5, 6. The whole entropy-based weights are listed as follows:

~~w1 � 0.04; 0.8, 0.8( ) 0.02; 1, 1( )( ), 0.03; 0.8, 0.8( ) 0.02; 1, 1( )( )

~~w2 � 0.09; 0.8, 0.8( ) 0.04; 1, 1( )( ), 0.08; 0.8, 0.8( ) 0.05; 1, 1( )( )
~~w3 � 0.07; 0.8, 0.8( ) 0.04; 1, 1( )( ), 0.05; 0.8, 0.8( ) 0.03; 1, 1( )( )
~~w4 � 0.09; 0.8, 0.8( ) 0.06; 1, 1( )( ), 0.04; 0.8, 0.8( ) 0.02; 1, 1( )( )
~~w5 � 0.03; 0.8, 0.8( ) 0.02; 1, 1( )( ), 0.02; 0.8, 0.8( ) 0.02; 1, 1( )( ).

Step 5: Construct the weighted decision matrices.

The weighted DM matrix with respect to aggregated matrix

comparison of each criterion and alternatives is constructed by

using Eq. 7.

For example, let the value of the weighted matrix for ~~v11 be

TABLE 4 IT2 fuzzy entropy.

C1 C2 C3 C4 C5

A1 [(0.27; 0.8, 0.8) [(0.20; 0.8, 0.8) [(0.20; 0.8, 0.8) [(0.20; 0.8, 0.8) [(0.53; 0.8, 0.8)

(0.32; 1, 1)] (0.26; 1, 1)] (0.26; 1, 1)] (0.26; 1, 1)] (0.45; 1, 1)]

[(0.45; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.35; 0.8, 0.8) [(0.58; 0.8, 0.8)

(0.41; 1, 1)] (0.32; 1, 1)] (0.32; 1, 1)] (0.38; 1, 1)] (0.49; 1, 1)]

A2 [(0.57; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.45; 0.8, 0.8) [(0.59; 0.8, 0.8)

(0.48; 1, 1)] (0.32; 1, 1)] (0.32; 1, 1)] (0.41; 1, 1)] (0.49; 1, 1)]

[(0.59; 0.8, 0.8) [(0.35; 0.8, 0.8) [(0.45; 0.8, 0.8) [(0.58; 0.8, 0.8) [(0.57; 0.8, 0.8)

(0.51; 1, 1)] (0.38; 1, 1)] (0.41; 1, 1)] (0.49; 1, 1)] (0.44; 1, 1)]

A3 [(0.36; 0.8, 0.8) [(0.36; 0.8, 0.8) [(0.36; 0.8, 0.8) [(0.45; 0.8, 0.8) [(0.59; 0.8, 0.8)

(0.39; 1, 1)] (0.39; 1, 1)] (0.39; 1, 1)] (0.41; 1, 1)] (0.49; 1, 1)]

[(0.45; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.58; 0.8, 0.8) [(0.57; 0.8, 0.8)

(0.41; 1, 1)] (0.32; 1, 1)] (0.32; 1, 1)] (0.49; 1, 1)] (0.44; 1, 1)]

A4 [(0.56; 0.8, 0.8) [(0.60; 0.8, 0.8) [(0.46; 0.8, 0.8) [(0.20; 0.8, 0.8) [(0.52; 0.8, 0.8)

(0.44; 1, 1)] (0.51; 1, 1)] (0.44; 1, 1)] (0.26; 1, 1)] (0.44; 1, 1)]

[(0.36; 0.8, 0.8) [(0.45; 0.8, 0.8) [(0.57; 0.8, 0.8) [(0.35; 0.8, 0.8) [(0.58; 0.8, 0.8)

(0.39; 1, 1)] (0.40; 1, 1)] (0.46; 1, 1)] (0.38; 1, 1)] (0.49; 1, 1)]

A5 [(0.31; 0.8, 0.8) [(0.31; 0.8, 0.8) [(0.36; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.35; 0.8, 0.8)

(0.36; 1, 1)] (0.36; 1, 1)] (0.39; 1, 1)] (0.32; 1, 1)] (0.38; 1, 1)]

[(0.31; 0.8, 0.8) [(0.31; 0.8, 0.8) [(0.36; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.35; 0.8, 0.8)

(0.36; 1, 1)] (0.36; 1, 1)] (0.39; 1, 1)] (0.32; 1, 1)] (0.38; 1, 1)]

A6 [(0.36; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.36; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.20; 0.8, 0.8)

(0.39; 1, 1)] (0.32; 1, 1)] (0.39; 1, 1)] (0.32,1,1)] (0.26; 1, 1)]

[(0.36; 0.8, 0.8) [(0.27; 0.8, 0.8) [(0.36; 0.8, 0.8) [(0.36; 0.8, 0.8) [(0.20; 0.8, 0.8)

(0.39; 1, 1)] (0.32; 1, 1)] (0.39; 1, 1)] (0.39; 1, 1)] (0.26; 1, 1)]
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~~v11 � ~~f 11 × ~~w1
~~v11 � 0.64, 0.74, 0.94, 0.96; 0.8, 0.8( ) 0.54, 0.74, 0.94, 0.98; 1, 1( )( ),

0.52, 0.62, 0.82, 0.86; 0.8, 0.8( ) 0.42, 0.62, 0.82, 0.9; 1, 1( )( )
× 0.04; 0.8, 0.8( ) 0.02; 1, 1( )( ), 0.03; 0.8, 0.8( ) 0.02; 1, 1( )[ ]

� 0.02, 0.03, 0.03, 0.04; 0.8, 0.8( ) 0.01, 0.02, 0.02, 0.02; 1; 1( )( ),
0.02, 0.02, 0.02, 0.03; 0.8, 0.8( ) 0.08, 0.01, 0.02, 0.02; 1, 1( )( ).

Thus, the remaining values of weighted DM’s matrix are

shown (Table 6) as follows:

Step 6: Construct the fuzzy best value (FBV) and fuzzy worst

value (FWV).

Values for FBV and FWV are chosen using Eq. 8 and

combined (Table 7) as follows:

Step 7: Compute the separation measures and

defuzzification.

The utility measure ~Si and regret measure ~Ri are calculated

using the sum of the FBV distance with respect to all criteria

based on Eq. 9 till Eq. 11. The result of calculation is listed in

Table 8.

Step 8: Defuzzification of the utility measure value (~Si) and

regret measure value (~Ri)

This defuzzification step is needed to further proceed with

the next calculation in Step 9. Therefore, each utility measure

value (~Si) and regret measure value (~Ri) from Table 8 is

defuzzified using Eq. 12. Let us take the example for ~S1 upper

boundary:

~S1 �

0.05 − 0.07( ) + 0.8 × 0.05 − 0.07( )( ) + 0.8 × 0.06 − 0.07( )( )
4

+ 0.07+
0.04 − 0.05( ) + 1 × 0.03 − 0.05( )( ) + 1 × 0.04 − 0.05( )( )

4
+ 0.05[ ]

2

~S1 � 0.05.

TABLE 5 Maximal entropy value.

C1 C2 C3 C4 C5

A1 [(0.52; 0.8, 0.8) [(0.39; 0.8, 0.8) [(0.39; 0.8, 0.8) [(0.39; 0.8, 0.8) [(1.00; 0.8, 0.8)

(0.72; 1, 1)] (0.57; 1, 1)] (0.57; 1, 1)] (0.57; 1, 1)] (1.00; 1, 1)]

[(0.79; 0.8, 0.8) [(0.47; 0.8, 0.8) [(0.47; 0.8, 0.8) [(0.61; 0.8, 0.8) [(1.00; 0.8, 0.8)

(0.82; 1, 1)] (0.66; 1, 1)] (0.66; 1, 1)] (0.77; 1, 1)] (1.00; 1, 1)]

A2 [(1.00; 0.8, 0.8) [(0.48; 0.8, 0.8) [(0.48; 0.8, 0.8) [(0.80; 0.8, 0.8) [(0.62; 0.8, 0.8)

(1.00; 1, 1)] (0.68; 1, 1)] (0.68; 1, 1)] (0.85; 1, 1)] (0.79; 1, 1)]

[(1.00; 0.8, 0.8) [(0.60; 0.8, 0.8) [(0.77; 0.8, 0.8) [(0.96; 0.8, 0.8) [(0.76; 0.8, 0.8)

(1.00; 1, 1)] (0.74; 1, 1)] (0.80; 1, 1)] (0.90; 1, 1)] (0.78; 1, 1)]

A3 [(0.61; 0.8, 0.8) [(0.61; 0.8, 0.8) [(0.61; 0.8, 0.8) [(0.77; 0.8, 0.8) [(1.00; 0.8, 0.8)

(0.80; 1, 1)] (0.80; 1, 1)] (0.80; 1, 1)] (0.83; 1, 1)] (1.00; 1, 1)

[(0.79; 0.8, 0.8) [(0.47; 0.8, 0.8) [(0.47; 0.8, 0.8) [(1.00; 0.8, 0.8) [(0.98; 0.8, 0.8)

(0.82; 1, 1)] (0.66; 1, 1)] (0.66; 1, 1)] (1.00; 1, 1)] (0.89; 1, 1)]

A4 [(0.93; 0.8, 0.8) [(1.00; 0.8, 0.8) [(0.77; 0.8, 0.8) [(0.34; 0.8, 0.8) [(0.86; 0.8, 0.8)

(0.86; 1, 1)] (1.00; 1, 1)] (0.86; 1, 1)] (0.50; 1, 1)] (0.85; 1, 1)]

[(0.62; 0.8, 0.8) [(0.78; 0.8, 0.8) [(0.98; 0.8, 0.8) [(0.61; 0.8, 0.8) [(1.00; 0.8, 0.8)

(0.79; 1, 1)] (0.80; 1, 1)] (0.93; 1, 1)] (0.77; 1, 1)] (1.00; 1, 1)]

A5 [(0.87; 0.8, 0.8) [(0.87; 0.8, 0.8) [(1.00; 0.8, 0.8) [(0.76; 0.8, 0.8) [(0.99; 0.8, 0.8)

(0.92; 1, 1)] (0.92; 1, 1)] (1.00; 1, 1)] [((0.84; 1, 1)] (0.98; 1, 1)]

[(0.87; 0.8, 0.8) [(0.87; 0.8, 0.8) [(1.00; 0.8, 0.8) [(0.76; 0.8, 0.8) [(0.99; 0.8, 0.8)

(0.92; 1, 1)] (0.92; 1, 1)] (1.00; 1, 1)] [((0.84; 1, 1)] (0.98; 1, 1)]

A6 [(1.00; 0.8, 0.8) [(0.76; 0.8, 0.8) [(1.00; 0.8, 0.8) [(0.76; 0.8, 0.8) [(0.57; 0.8, 0.8)

(1.00; 1, 1)] (0.84; 1, 1)] (1.00; 1, 1)] (0.84; 1, 1)] (0.67; 1, 1)]

[(1.00; 0.8, 0.8) [(0.76; 0.8, 0.8) [(1.00; 0.8, 0.8) [(1.00; 0.8, 0.8) [(0.57; 0.8, 0.8)

(1.00; 1, 1)] (0.84; 1, 1)] (1.00; 1, 1)] (1.00; 1, 1)] (0.67; 1, 1)]
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Thus, the remaining defuzzification results for ~Si and ~Ri are

listed in Table 9:

Step 9: Rank the alternatives.

Here, we listed all the values for 1) the maximum group of

utility ~S*, 2) the minimum value for the maximum group of

utility ~S, 3) the minimum individual regret of the opponent ~R*,

and 4) the minimum value ~R using Eq. 15.

~S* � 0( ) 0( )
~S
− � 0.12( ) 0.09( )
~R* � 0( ) 0( )

~R
− � 0.07( ) 0.06( )

The final indexes for both ~S* and ~R*, which is Qi, are A1 =

0.38, A2 = 0.88, A3 = 0.63, A4 = 0.70, A5 = 0.56, and A6 = 0. That

is, the best alternative is A6, and the ranking order of the

alternatives is A6>A1>A5>A3>A4>A2, which is listed as in

Table 10.

Thus, after taking into account the five criteria, six

alternatives, and the opinion from the five DMs, a single

measurement for the best strategies to enhance water supply

security in Malaysia is obtained. The results showed that the first

rank is strengthening the policy on water security at 0, followed

by strengthening the protection of water source areas, reinforcing

groundwater monitoring and protection, developing a water-

saving system, and fully implementing the river chief system.

Improving infrastructure to safeguard urban and rural water

security is ranked last. This ranking proved that the IT2FVIKOR

method can carry out a better solution in visualizing the

preferences from the group of DMs and can measure the best

strategies that contribute to the success of water security. Next,

this study was further continued with the identification of the

polluted areas to implement the water security strategies. Usually,

studies on IT2FVIKOR only focus on the analysis of various

available choices in certain situations or research areas to find the

most preferred alternatives (our target or objectives) and present

them in ranking order. If the results from IT2FVIKOR can be

addressed for a specific polluted area, it will bring huge benefits to

public health, economic growth, and environmental

sustainability, and at the same time reduce disaster risk. The

identification of specific polluted areas is a very important issue

and needs intelligent techniques that are more convincing.

Therefore, this paper offers further investigation on

IT2FVIKOR problems with integrated ML techniques.

TABLE 6 Weighted decision matrix.

C1 C2 C3 C4 C5

A1 [(0.02, 0.03, 0.03, 0.04; 0.8, 0.8)
(0.01, 0.02, 0.02, 0.02; 1, 1)],
[(0.02, 0.02, 0.03, 0.03; 0.8, 0.8)
(0.01, 0.01, 0.02, 0.02; 1, 1)]

[(0.05, 0.06, 0.08, 0.08; 0.8, 0.8)
(0.02, 0.03, 0.04, 0.04; 1, 1)],

[(0.06, 0.06, 0.08, 0.08; 0.8, 0.8)
(0.03, 0.04, 0.05, 0.05; 1, 1)]

[(0.05, 0.06, 0.07, 0.07; 0.8,
0.8) (0.02, 0.03, 0.04, 0.04; 1,
1)], [(0.03, 0.03, 0.04, 0.04;
0.8, 0.8) (0.02, 0.02, 0.03, 0.03;

1, 1)]

[(0.07, 0.08, 0.09, 0.09; 0.8,
0.8) (0.04, 0.05, 0.06, 0.06; 1,
1)], [(0.02, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02, 0.02;

1, 1)]

[(0.01, 0.02, 0.02, 0.03; 0.8,
0.8) (0.01, 0.01, 0.02, 0.02; 1,
1)], [(0.01, 0.01, 0.02, 0.02;
0.8, 0.8) (0.01, 0.01, 0.02,

0.02; 1, 1)]

A2 [(0.01, 0.02, 0.03, 0.03; 0.8, 0.8)
(0.01, 0.01, 0.02, 0.02; 1, 1)],
[(0.01, 0.02, 0.02, 0.02; 0.8, 0.8)
(0.01, 0.01, 0.01, 0.02; 1, 1)]

[(0.05, 0.06, 0.07, 0.07; 0.8, 0.8)
(0.02, 0.03, 0.04, 0.04; 1, 1)],

[(0.05, 0.06, 0.08, 0.08; 0.8, 0.8)
(0.02, 0.03, 0.04, 0.05; 1, 1)]

[(0.04, 0.05, 0.06, 0.07; 0.8,
0.8) (0.02, 0.03, 0.03, 0.04; 1,
1)], [(0.02, 0.03, 0.04, 0.04;
0.8, 0.8) (0.01, 0.02, 0.03, 0.03;

1, 1)]

[(0.05, 0.06, 0.08, 0.08; 0.8,
0.8) (0.02, 0.04, 0.05, 0.05; 1,
1)], [(0.01, 0.02, 0.02, 0.02;
0.8, 0.8) (0.01, 0.01, 0.02, 0.02;

1, 1)]

[(0.02, 0.02, 0.03, 0.03; 0.8,
0.8) (0.01, 0.02, 0.02, 0.02; 1,
1)], [(0.01, 0.01, 0.02, 0.02;
0.8, 0.8) (0.01, 0.01, 0.02,

0.02; 1, 1)]

A3 [(0.02, 0.02, 0.03, 0.03; 0.8, 0.8)
(0.01, 0.02, 0.02, 0.02; 1, 1)],
[(0.02, 0.02, 0.03, 0.03; 0.8, 0.8)
(0.01, 0.01, 0.02, 0.02; 1, 1)]

[(0.04, 0.05, 0.07, 0.07; 0.8, 0.8)
(0.02, 0.03, 0.04, 0.04; 1, 1)],

[(0.06, 0.06, 0.08, 0.08; 0.8, 0.8)
(0.03, 0.04, 0.05, 0.05; 1, 1)]

[(0.04, 0.05, 0.06, 0.07; 0.8,
0.8) (0.02, 0.03, 0.03, 0.03; 1,
1)], [(0.03, 0.03, 0.04, 0.04;
0.8, 0.8) (0.01, 0.02, 0.03, 0.03;

1, 1)]

[(0.05, 0.06, 0.08, 0.08; 0.8,
0.8) (0.02, 0.04, 0.05, 0.05; 1,
1)], [(0.01, 0.02, 0.02, 0.03;
0.8, 0.8) (0.01, 0.01, 0.01, 0.02;

1, 1)]

[(0.01, 0.02, 0.02, 0.02; 0.8,
0.8) (0.01, 0.01, 0.02, 0.03; 1,
1)], [(0.01, 0.01, 0.01, 0.01;
0.8, 0.8) (0.00, 0.01, 0.01,

0.02; 1, 1)]

A4 [(0.01, 0.02, 0.02, 0.03; 0.8, 0.8)
(0.01, 0.01, 0.01, 0.02; 1, 1)],
[(0.00, 0.00, 0.01, 0.01; 0.8, 0.8)
(0.00, 0.00, 0.01, 0.01; 1, 1)]

[(0.02, 0.03, 0.04, 0.04; 0.8, 0.8)
(0.01, 0.01, 0.02, 0.03; 1, 1)],
[(0.05, 0.05, 0.07, 0.08; 0,8,0.8)
(0.02, 0.03, 0.04, 0.05; 1, 1)]

[(0.01, 0.02, 0.03, 0.03; 0.8,
0.8) (0.00, 0.01, 0.01, 0.02; 1,
1)], [(0.02, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.01, 0.02, 0.02;

1, 1)]

[(0.07, 0.08, 0.09, 0.09; 0.8,
0.8) (0.04, 0.05, 0.06, 0.06; 1,
1)], [(0.02, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02, 0.02;

1, 1)]

[(0.01, 0.02, 0.02, 0.03; 0.8,
0.8) (0.01, 0.01, 0.02, 0.02; 1,
1)], [(0.01, 0.01, 0.02, 0.02;
0.8, 0.8) (0.01, 0.01, 0.02,

0.02; 1, 1)]

A5 [(0.02, 0.03, 0.03, 0.03; 0.8, 0.8)
(0.01, 0.02, 0.02, 0.02; 1, 1)],
[(0.02, 0.02, 0.03, 0.03; 0.8, 0.8)
(0.01, 0.01, 0.02, 0.02; 1, 1)]

[(0.05, 0.06, 0.07, 0.07; 0.8, 0.8)
(0.02, 0.03, 0.04, 0.04; 1, 1)],

[(0.06, 0.06, 0.08, 0.08; 0.8, 0.8)
(0.03, 0.04, 0.04, 0.04; 1, 1)]

[(0.04, 0.05, 0.06, 0.06; 0.8,
0.8) (0.02, 0.03, 0.03, 0.03; 1,
1)], [(0.03, 0.03, 0.04, 0.04;
0.8, 0.8) (0.02, 0.02, 0.03, 0.03;

1, 1)]

[(0.06, 0.07, 0.09, 0.09; 0.8,
0.8) (0.03, 0.04, 0.06, 0.06; 1,
1)], [(0.02, 0.03, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02, 0.02;

1, 1)]

[(0.02, 0.02, 0.03, 0.03; 0.8,
0.8) (0.01, 0.02, 0.02, 0.02; 1,
1)], [(0.01, 0.01, 0.02, 0.02;
0.8, 0.8) (0.01, 0.01, 0.02,

0.02; 1, 1)]

A6 [(0.02, 0.02, 0.03, 0.03; 0,8,0.8)
(0.01, 0.02, 0.02, 0.02; 1, 1)],
[(0.02, 0.02, 0.03, 0.03; 0.8, 0.8)
(0.01, 0.01, 0.02, 0.02; 1, 1)]

[(0.05, 0.06, 0.07, 0.07; 0.8, 0.8)
(0.02, 0.03, 0.04, 0.04; 1, 1)],
[(0.06, 0.06, 0.08, 0.08,8,0.8)
(0.03, 0.04, 0.05, 0.05; 1, 1)]

[(0.04, 0.05, 0.06, 0.06; 0.8,
0.8) (0.02, 0.03, 0.03, 0.03; 1,
1)], [(0.03, 0.03, 0.04, 0.04;
0.8, 0.8) (0.02, 0.02, 0.03, 0.03;

1, 1)]

[(0.06, 0.07, 0.09, 0.09; 0.8,
0.8) (0.03, 0.04, 0.06, 0.06; 1,
1)], [(0.02, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02, 0.02;

1, 1)]

[(0.02, 0.03, 0.03, 0.03; 0.8,
0.8) (0.01, 0.02, 0.02, 0.02; 1,
1)], [(0.02, 0.02, 0.02, 0.02;
0.8, 0.8) (0.01, 0.02, 0.02,

0.02; 1, 1)]

Frontiers in Environmental Science frontiersin.org14

Zamri et al. 10.3389/fenvs.2022.971129

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.971129


3.2 Application of the pollution using
machine learning

This section focuses on continuing the investigation on river

water problems from the previous section and selecting a set of

polluted areas based on the Terengganu River dataset to be

implemented with the results of the water security strategies

from Section 4. This section includes the description of the

research location in Subsection 3.2.1, preprocessing of the

datasets in Subsection 3.2.2, and applying the machine

learning algorithms which includes three different

unsupervised learning in Subsection 3.2.3.

3.2.1 Description of the research location
The Terengganu River originating from the Terengganu

state, one of the states in Peninsular Malaysia, is chosen as

the main research location for this study. This river flows

through the Kenyir Dam (Empangan Tasik Kenyir) located in

Hulu Terengganu and ends in Kuala Terengganu (downstream

part) toward the South China Sea. This river basin is situated

between a latitude of 4°40′N-5°20′N and a longitude of 102°30′E-

103°09′E in the North Eastern coastal region of Peninsular

Malaysia. There are sixteen main tributaries of the

Terengganu River Basin, with a total catchment area of about

TABLE 7 Fuzzy best value and fuzzy worst value.

Fuzzy best value Fuzzy worst value

C1 [(0.02, 0.03, 0.03, 0.04; 0.8, 0.8) [(0.01, 0.02, 0.02, 0.03; 0.8, 0.8)

(0.01, 0.02, 0.02, 0.02; 1, 1)] (0.01, 0.01, 0.01, 0.02; 1, 1)]

[(0.02, 0.02, 0.03, 0.03; 0.8, 0.8) [(0.00, 0.00, 0.01, 0.01; 0.8, 0.8)

(0.01, 0.01, 0.02, 0.02; 1, 1)] (−0.00, 0.00, 0.01, 0.01; 1, 1)]

C2 [(0.05, 0.06, 0.08, 0.08; 0.8, 0.8) [(0.02, 0.03, 0.04, 0.04; 0.8, 0.8)

(0.02, 0.03, 0.04, 0.04; 1, 1)] (0.01, 0.01, 0.02, 0.03; 1, 1)]

[(0.06, 0.06, 0.08, 0.08; 0.8, 0.8) [(0.05, 0.05, 0.07, 0.08; 0.8, 0.8)

(0.03, 0.04, 0.05, 0.05; 1, 1)] (0.02, 0.03, 0.04, 0.04; 1, 1)]

C3 [(0.05, 0.06, 0.07, 0.07; 0.8, 0.8) [(0.01, 0.02, 0.03, 0.03; 0.8, 0.8)

(0.02, 0.03, 0.04, 0.04; 1, 1)] (0.00, 0.01, 0.01, 0.02; 1, 1)]

[(0.03, 0.03, 0.04, 0.04; 0.8, 0.8) [(0.02, 0.02, 0.03, 0.03; 0.8, 0.8)

(0.02, 0.02, 0.03, 0.03; 1, 1)] (0.01, 0.01, 0.02, 0.02; 1, 1)]

C4 [(0.07, 0.08, 0.09, 0.09; 0.8, 0.8) [(0.05, 0.06, 0.08, 0.08; 0.8, 0.8)

(0.04, 0.05, 0.06, 0.06; 1, 1)] (0.02, 0.04, 0.05, 0.05; 1, 1)]

[(0.02, 0.03, 0.03, 0.03; 0.8, 0.8) [(0.01, 0.02, 0.02, 0.02; 0.8, 0.8)

(0.01, 0.02, 0.02, 0.02; 1, 1)] (0.01, 0.01, 0.02, 0.02; 1, 1)]

C5 [(0.02, 0.03, 0.03, 0.03; 0.8, 0.8) [(0.01, 0.02, 0.02, 0.02; 0.8, 0.8)

(0.01, 0.02, 0.02, 0.02; 1, 1)] (0.01, 0.01, 0.02, 0.02; 1, 1)]

[(0.02, 0.02, 0.02, 0.02; 0.8, 0.8) [(0.01, 0.01, 0.01, 0.01; 0.8, 0.8)

(0.01, 0.02, 0.02, 0.02; 1, 1)] (0.00, 0.01, 0.01, 0.02; 1, 1)]

TABLE 8 ~Si and ~Ri.

~Si ~Ri

A1 ((0.05,0.05,0.06,0.08;0.8,0.8)
(0.04,0.03,0.04,0.05;1,1)),

((0.05,0.05,0.04,0.04;0.8,0.8)
(0.04,0.03,0.03,0.02;1,1))

((0.04,0.04,0.04,0.04;0.8,0.8)
(0.02,0.02,0.02;1,1)),

((0.03,0.03,0.03,0.03;0.8,0.8)
(0.02,0.02,0.02,0.02;1,1))

A2 ((0.11,0.12,0.13,0.13;0.8,0.8)
(0.06,0.06,0.07,0.07;1,1)),

((0.09,0.10,0.13,0.17;0.8,0.8)
(0.08,0.06,0.07,0.07;1,1))

((0.08,0.08,0.08,0.08;0.8,0.8)
(0.04,0.04,0.04,0.04;1,1)),

((0.09,0.09,0.09,0.09;0.8,0.8)
(0.05,0.05,0.05,0.05;1,1))

A3 ((0.11,0.11,0.11,0.11;0.8,0.8)
(0.06,0.06,0.06,0.06;1,1)),

((0.06,0.06,0.06,0.07;0.8,0.8)
(0.04,0.04,0.05,0.05;1,1))

((0.07,0.07,0.07,0.07;0.8,0.8)
(0.04,0.04,0.04,0.04;1,1)),

((0.05,0.05,0.05,0.05;0.8,0.8)
(0.03,0.03,0.03,0.03;1,1))

A4 ((0.16,0.16,0.16,0.15;0.8,0.8)
(0.10,0.10,0.10,0.08;0.8,0.8)),
((0.06,0.06,0.06,0.05;0.8,0.8)
(0.04,0.03,0.04,0.03;1,1))

((0.09,0.09,0.09,0.09;0.8,0.8)
(0.06,0.06,0.06,0.06;1,1)),

((0.03,0.03,0.03,0.03;0.8,0.8)
(0.02,0.02,0.02,0.02;1,1))

A5 ((0.12,0.12,0.12,0.11;0.8,0.8)
(0.09,0.08,0.09,0.07;1,1)),

((0.08,0.08,0.08,0.08;0.8,0.8)
(0.07,0.07,0.08,0.06;1,1))

((0.03,0.03,0.03,0.03;0.8,0.8)
(0.02,0.02,0.02,0.02;1,1)),

((0.02,0.02,0.02,0.03;0.8,0.8)
(0.02,0.02,0.02,0.02;1,1))

A6 ((0,0,0,0;0.8,0.8)
(0,0,0,0;1,1)),

((0,0,0,0;0.8,0.8)
(0,0,0,0;1,1))

((0,0,0,0;0.8,0.8)
(0,0,0,0;1,1)),

((0,0,0,0;0.8,0.8)
(0,0,0,0;1,1))

TABLE 10 Rating of Qi and rank of each alternative.

m ~Qi Qi Rank

A1 (0.38) (0.38) 0.38 2

A2 (0.76) (1) 0.88 6

A3 (0.68) (0.57) 0.63 4

A4 (1) (0.40) 0.70 5

A5 (0.58) (0.54) 0.56 3

A6 (0) (0) 0 1

TABLE 9 Defuzzified values of ~Si and ~Ri.

~Si ~Ri

A1 (0.05) (0.04) (0.03) (0.02)

A2 (0.09) (0.09) (0.06) (0.06)

A3 (0.08) (0.05) (0.05) (0.04)

A4 (0.12) (0.04) (0.07) (0.02)

A5 (0.09) (0.07) (0.03) (0.02)

A6 (0) (0) (0) (0)
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FIGURE 4
Terengganu river map (Source: https://uniqorne.wordpress.com/2009/05/16/uniquely-marang/).
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5,000 km2 (11, 46, 47) (Wahab et al., 2019). The largest basin

among the sixteen basins is the Nerus River Basin. All rivers pass

through different socio-economic activity zones such as

aquacultures, agricultural, commercial industries, farming,

urban and rural settlements, tourism, reserves, and forests

(Taman Negara). This study involves 14 main sampling

stations with 24 water quality parameters, including

405 water samples. These 405 water samples were taken

from all around the Terengganu River Basins, whereas the

24 water quality parameters include dissolved oxygen (DO),

biochemical oxygen demand (BOD), chemical oxygen

demand (COD), suspended solids (SS), pH, ammonia

nitrates (NH3-N), temperature (TEMP), nitrogen nitrates

(NO3), chloride (CI), phosphate (PO4), arsenic (As),

Mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb),

zinc (Zn), calcium (Ca), iron (Fe), potassium (K), sodium

(Na), oganesson (OG), surfactant (MBAS), E-coli, and total

coliform. Detailed description of the research location is

summarized in Figure 4.

3.2.2 Preparing for datasets and tools
The discovery of novel groupings within a dataset requires

unsupervised methods. This study used unsupervised ML, which

does not require class labels associated with pre-defined groups

to allocate targets to. This unsupervised ML can be achieved

through data clustering. Before applying the clustering

algorithms, these datasets went through a process called

preprocessing. The 24 water quality parameters have a variety

of data types with different scales. Direct usage of data without

preprocessing leads to poor performance of the learning

FIGURE 5
Hierarchical maps.

TABLE 11 ~Si and ~Ri.

~Si ~Ri

A1 [(0.05, 0.05, 0.06, 0.08; 0.8, 0.8) [(0.04, 0.04, 0.04, 0.04; 0.8, 0.8)

(0.04, 0.03, 0.04, 0.05; 1, 1)] (0.02, 0.02, 0.02; 1, 1)]

[(0.05, 0.05, 0.04, 0.04; 0.8, 0.8) [(0.03, 0.03, 0.03, 0.03; 0.8, 0.8)

(0.04, 0.03, 0.03, 0.02; 1, 1)] (0.02, 0.02, 0.02, 0.02; 1, 1)]

A2 [(0.11, 0.12, 0.13, 0.13; 0.8, 0.8) [(0.08, 0.08, 0.08, 0.08; 0.8, 0.8)

(0.06, 0.06, 0.07, 0.07; 1, 1)] (0.04, 0.04, 0.04, 0.04; 1, 1)]

[(0.09, 0.10, 0.13, 0.17; 0.8, 0.8) [(0.09, 0.09, 0.09, 0.09; 0.8, 0.8)

(0.08, 0.06, 0.07, 0.07; 1, 1)] (0.05, 0.05, 0.05, 0.05; 1, 1)]

A3 [(0.11, 0.11, 0.11, 0.11; 0.8, 0.8) [(0.07, 0.07, 0.07, 0.07; 0.8, 0.8)

(0.06, 0.06, 0.06, 0.06; 1, 1)] (0.04, 0.04, 0.04, 0.04; 1, 1)]

[(0.06, 0.06, 0.06, 0.07; 0.8, 0.8) [(0.05, 0.05, 0.05, 0.05; 0.8, 0.8)

(0.04, 0.04, 0.05, 0.05; 1, 1)] (0.03, 0.03, 0.03, 0.03; 1, 1)]

A4 [(0.16, 0.16, 0.16, 0.15; 0.8, 0.8) [(0.09, 0.09, 0.09, 0.09; 0.8, 0.8)

(0.10, 0.10, 0.10, 0.08; 0.8, 0.8)] (0.06, 0.06, 0.06, 0.06; 1, 1)]

[(0.06, 0.06, 0.06, 0.05; 0.8, 0.8) [(0.03, 0.03, 0.03, 0.03; 0.8, 0.8)

(0.04, 0.03, 0.04, 0.03; 1, 1)] (0.02, 0.02, 0.02, 0.02; 1, 1)]

A5 [(0.12, 0.12, 0.12, 0.11; 0.8, 0.8) [(0.03, 0.03, 0.03, 0.03; 0.8, 0.8)

(0.09, 0.08, 0.09, 0.07; 1, 1)] (0.02, 0.02, 0.02, 0.02; 1, 1)]

[(0.08, 0.08, 0.08, 0.08; 0.8, 0.8) [(0.02, 0.02, 0.02, 0.03; 0.8, 0.8)

(0.07, 0.07, 0.08, 0.06; 1, 1)] (0.02, 0.02, 0.02, 0.02; 1, 1)]
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methods. In this study, we used the StandardScaler method to

standardize all the parameters. The StandardScaler is used to

standardize a feature by subtracting the mean and then scaling to

unit variance. Unit variance means dividing all the values by the

standard deviation.

All the algorithms are executed using the Python

programming language. ML algorithms and preprocessing

modules are executed using scikit-learn libraries (Pedregosa

et al., 2011; Komer et al., 2014). Meanwhile, all the images are

created using Matplotlib modules (Hunter, 2007).

3.2.3 The pollution area using machine learning
The purpose of this investigation is to identify clusters of

polluted areas using the Terengganu River data. Our

investigation is extended to the IT2FVIKOR, which discovers

the best water security strategy and applies it to the polluted area

clusters. After data preprocessing, the discovery of novel

groupings within a dataset requires unsupervised algorithms.

These do not require class labels associated with pre-defined

groups to allocate items to. This can be achieved through data

clustering. In this study, we focus on three different clustering

algorithms which are hierarchical clustering, autoencoder, and

SOMs. These three methods are the most popular unsupervised

ML techniques that can solve different types of applications.

Hierarchical clustering methods are the simplest and most

fundamental methods and famously play an important role in

statistical data analysis (Johnson, 1967). They are relatively fast

and easy to understand and implement (Zhu et al., 2022). The

autoencoder has the ability to reduce the dimension of the input in a

hierarchical way, leading to high-quality reconstructions of data

(Tewari et al., 2017; Zhao et al., 2017). SOMs are frequently used

to reveal complex correlations between samples that can be conveyed

by a single map. It simplifies the analysis and enables multi-variate

exploratory comparisons between samples via direct visual

separation (Wongravee et al., 2020). Next, K-means was run in

each of the clustering algorithms in line with the silhouette analysis to

FIGURE 6
Silhouette with n_clusters = 2 for Hierarchical clustering.

FIGURE 7
Visualization of SOM.
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find the optimal number of clusters. The silhouette methodmeasures

the average distance between the data points of a cluster’s members

compared to those of alternative clusters (Rousseeuw, 1987). This

silhouettemethod ismeasured differently for each clusteringmethod.

In this analysis, we set the range of clusters as [2, 3, 4, . . . , 10]. The

details are explained as follows.

Using the preprocessing data, we carried out hierarchical

clustering to visualize the intrinsic clusters in the Terengganu

River data and determine which areas are polluted in which

clusters. The algorithm of hierarchical clustering works as

follows. Initially, the algorithm considers each data point

belonging to its own cluster. In this case, clusters are the

FIGURE 8
Silhouette with n_clusters = 4 for SOM.

FIGURE 9
Silhouette with n_clusters = 2 for Autoencoder.
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polluted areas. At each step, the algorithm merges the most

appropriate pair of clusters based on their level of pollution. The

iterative merging process continues until there is only one cluster.

The appropriateness of a pair merging is decided by a criterion.

Hierarchical clustering has many variants which differ from one

another in the merge criterion employed. For this hierarchical

clustering, we used the Ward method. According to the

framework, one can use an objective function of searching for

the most polluted area that reflects the chosen criterion for

selecting the pair of polluted area clusters for merging. The

pair which leads to the maximal value for the objective

function is selected for merging at each step. Ward suggested

using the total within-cluster sum of squared errors (TWSSE) as

an objective function.

Initially, as each data point is considered belonging to its

own polluted area cluster, the cluster mean point coincides

with the data point of the cluster for each cluster. So, the

TWSSE at this stage is 0. The TWSSE increases at each

subsequent step when two polluted area clusters are

merged, leading to the minimum increase in the TWSSE,

for actual merging. Figure 5 shows the hierarchical maps

for 405 water samples. These 405 water samples are well-

separated into three groups (based on their different colors).

For the best number of clusters, we next run K-means with

silhouette analysis.

Then, K-means was set to run ten times setting k = 10 to get

ten clusters. For each k, the clustering solution which has the

maximum average silhouette analysis was selected. From among

these ten clustering, the one with the maximum average

silhouette analysis was taken as the final clustering solution.

Based on Table 11 and Figure 6, silhouette analysis suggested two

clusters for polluted areas with hierarchical clustering with

0.5349.

Kohonen self-organizing maps (SOMs) are a type of

unsupervised ANN (Kohonen, 1984). SOMs work by using a

2D grid of map units, which are each represented by a prototype

vector, and are connected to their neighboring units by the

neighborhood relation (Vesanto and Alhoniemi, 2000). The

map is built up iteratively, so, for each sample which is a

polluted area, the distance between the input vector (water

quality parameters) and each of these prototype vectors is

computed to identify the best matching unit (BMU). Then,

the BMU and its neighboring units are adjusted to be closer

to the input vector. The resulting grid of map units includes the

samples assigned to them. When there is a high number of these

map units (MUs), clustering can be performed on the MUs

themselves (Vesanto and Alhoniemi, 2000). As the samples are

mapped to MUs, the clustering of the samples can be extracted

from this. The optimal number of clusters was identified as 4

(Figure 7), covering all 405 water samples.

Then, K-means was set to run ten times, setting k = 10 to get

ten clusters. For each k, the clustering solution which has the

maximum average silhouette analysis was selected. From among

these ten clustering, the one with the maximum average

silhouette analysis was taken as the final clustering solution.

Based on Figure 8, silhouette analysis suggested four clusters for

polluted areas with SOM of 0.3971.

Autoencoders are another form of ANN, operating in a

three-layer structure. The first layer consists of the input data

which undergo an encoding step. Thus, as where the original set

of features is converted into a smaller set, called a latent feature

representation of the dataset, there is necessarily data loss in this

process, followed by a decoding step which converts this

reduced feature set back into a dataset with the same

number of features as the original, the reconstructed layer.

By training the network to minimize the data loss between the

input and reconstructed layers, the maximum information can

be encapsulated in this latent feature set. Once the autoencoder

has been trained on a subset of the dataset, it can be used to

convert the full dataset into its latent features. The results of this

feature extraction can then be clustered. These latent features

are non-linear combinations of the original measurement, so

they cannot be used to make inferences about them. The

optimal clustering of a dataset divides it into groups that

maximize the similarity within the clusters, while

minimizing the similarity between them (Vesanto and

Alhoniemi, 2000).

Then, K-means is set to run ten times, setting k = 10 to get ten

clusters. For each k, the clustering solution which has the

maximum average silhouette analysis is selected. From among

these ten clustering, the one with the maximum average

silhouette analysis is taken as the final clustering solution.

Based on Figure 9, silhouette analysis suggested two clusters

for polluted areas with autoencoder with 0.8578.

FIGURE 10
Adjusted rand index for all clusters.
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The original Terengganu River dataset proposedly divided

this water polluted area into three different clusters which were

clean, slightly polluted, and polluted, based on the Water Quality

Index (WQI) analysis. This original data cluster information is

used for the performance analysis. Therefore, an external cluster

validity index is employed for assessing the quality of the

clustering analysis. Specifically, we used the ARI. The ARI is a

commonly used index proposed by Hubert and Arabie (1985).

This method calculates the extent of agreement between two sets

of groupings and outputs a representative score between

1 and −1. On this scale, 1 is identical, with 0 being the

equivalent of a random association (Gates and Ahn, 2017).

The highest achievable ARI score is 1. This score is achieved

when the cluster membership computed by the clustering

algorithm is the same as the true agreement of the clustering

result with the true cluster memberships. Negative scores indicate

against clustering.

Although silhouette analysis achieved a high index with two

clusters for hierarchical clustering, four clusters for SOM and two

clusters for autoencoder, this study suggested running the ARI for

six different numbers of clusters for all the algorithms. These six

clusters for the algorithms include hierarchical clustering with two

clusters, hierarchical clustering with three clusters, SOM with three

clusters, SOMwith four clusters, autoencoder with two clusters, and

autoencoder with three clusters. We chose six different number

clusters due to suggested clusters from the original data.

The ARI scores show that (original data and hierarchical

clustering with two clusters: 0.0370) is lower than between

(original data and hierarchical clustering with three clusters:

0.3147). Next, (original data and autoencoder with two clusters:

0.0793) is lower than between (original data and autoencoder with

three clusters 0.4094). Last, (original data and SOMwith three clusters:

0.0950) are higher than between (original data and SOM with four

clusters: 0.0359). These results are also illustrated in Figure 10.

Based on the observed samples (water polluted area) and

features (water quality parameters), we would expect our

algorithms to be equivalent with the original data. Comparing

these algorithms with different numbers of clusters with the

original data, our results are contradicted with the silhouette

analysis’ results. Water polluted area samples in hierarchical

FIGURE 11
Optimal k using Elbow method.
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clustering with three clusters, autoencoder with three clusters,

and SOM with three clusters are more similar with the water

polluted area samples from the original data.

Determining the optimal cluster number is always a difficult

part, especially for a dataset with different types of parameters. In

addition, estimating the potential optimal cluster number for the

analyzed dataset is a fundamental issue in clustering algorithms.

Therefore, to double-confirm the best clusters for each method

(based on our ARI results), the elbow method is used. The elbow

method (part of the silhouette analysis) can determine the

number of clusters in a data set. This method consists of

plotting the explained variation as a function of the number

of clusters and picking the elbow of the curve as the number of

clusters to use. Based on the subplot of elbow in Figure 11, we

know that the estimated potential optimal cluster number

obtained by the elbow method for each algorithm is three,

which is consistent with the real cluster number from the

original data and in line with the ARI results for all the

algorithms. Figure 11 suggests that the optimal number of

clusters for the Terengganu River dataset is three for each

clustering algorithm. This result seems in line with that of the

original Terengganu River dataset that suggested three different

clusters for polluted areas, which are clean, slightly polluted, and

polluted.

Last, the proportion of samples with the final presence of

summary water polluted area identification is plotted in

Figure 12. It shows that the original data are of 303 water

samples in cluster 1, 101 water samples in cluster 2, and

11 water samples in cluster 3. Hierarchical clustering has

236 water samples in cluster 1, 174 water samples in cluster 2,

and four water samples in cluster 3. The autoencoder has

356 water samples in cluster 1, 56 water samples in cluster 2,

and four water samples in cluster 3. Last, SOM has 152 water

samples for cluster 1, 147 water samples for cluster 2, and

116 water samples for cluster 3. Thus, cluster 1 can be stated

as clean, cluster 2 as slightly polluted, and cluster 3 as

polluted.

Therefore, these three ML algorithms (hierarchical

clustering, autoencoder, and SOM) can become the alternative

algorithms to offer extensions to further solve decision-making

problems. Previous studies on MCDM usually focused on the

analysis of various available choices in certain situations or

research areas to find the most preferred alternatives (our

target or objectives) and present them in ranking order. This

paper offers further investigation on the MCDM problems with

the integrated ML techniques.

4 Conclusion and discussion

The main objective of this study is to develop an intelligent

model for finding the best strategies for water security. The

intelligent model includes integrating the IT2FVIKOR method

with ML algorithms. IT2FVIKOR can capture different

preferences among DMs and multiple strategies for decision

problems. However, IT2FVIKOR itself only focuses on

ranking and selecting from a set of alternatives only. Due to

that, unsupervised ML was introduced to further analyze and

solve the decision problems. This paper presented a two-phase

fuzzy-ML–based framework, where in phase 1, we carried out

experiments on solving the water security problems in Malaysia

using IT2FVIKOR to evaluate six different strategies to find the

best ways to enhance water supply security in Malaysia toward

the five main criteria. It was found that strengthening the

protection of water source areas is the best strategy for water

security, reinforcing groundwater monitoring and protection in

the second place, developing a water-saving system in the third

place, and fully implementing the river chief system in the fourth

place. Improving infrastructure to safeguard urban and rural

water security was ranked last. Further steps after retrieving the

FIGURE 12
Proportion for each samples in each algorithms.
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ranking and selecting the best alternatives were continued in the

second phase.

Phase 2 continued with the unsupervised ML, where three

different clustering algorithms, namely, hierarchical

clustering, SOM, and autoencoder, were used to cluster the

polluted area in the Terengganu River. Silhouette analysis was

applied along with the clustering algorithms to estimate the

number of optimal clusters in a dataset. Silhouette analysis

suggested two clusters for polluted areas with hierarchical

clustering with 0.5349, four clusters for polluted areas with

SOM with 0.3971, and two clusters for polluted areas with

autoencoder with 0.8578. Then, the ARI was applied to find

the best comparison within original data with hierarchical

clustering, SOM, and autoencoder. The ARI scores show that

(original data and hierarchical clustering with two clusters:

0.0370) was lower than between (original data and

hierarchical clustering with three clusters: 0.3147). Next,

(original data and autoencoder with two clusters: 0.0793)

was lower than between (original data and autoencoder with

three clusters 0.4094). Last, (original data and SOM with

three clusters: 0.0950) were higher than between (original

data and SOM with four clusters: 0.0359). Based on the

observed samples (water polluted area) and features (water

quality parameters), we would expect our algorithms to be

equivalent with the original data. Comparing these

algorithms with different numbers of clusters with the

original data, our results contradicted the silhouette

analysis’ results.

Thus, the elbow method was applied to double-confirm

the best clusters for each clustering algorithm. The elbow

method suggested that water-polluted area samples in

hierarchical clustering with three clusters, autoencoder

with three clusters, and SOM with three clusters were

more similar to the water-polluted area samples from the

original data. This result seems in line with that of the original

Terengganu River dataset that suggested three different

clusters for polluted areas which were clean, slightly

polluted, and polluted. Last, lists of polluted areas in each

cluster were retrieved. It shows that the original data are of

303 water samples in cluster 1, 101 water samples in cluster 2,

and 11 water samples in cluster 3. Hierarchical clustering has

236 water samples in cluster 1, 174 water samples in cluster 2,

and four water samples in cluster 3. Autoencoder has

356 water samples in cluster 1, 56 water samples in cluster

2, and four water samples in cluster 3. Last, SOM has

152 water samples for cluster 1, 147 water samples for

cluster 2, and 116 water samples for cluster 3. It can be

concluded that cluster 1 can be stated as clean, cluster 2 as

slightly polluted, and cluster 3 as polluted. Finally, the two-

phase fuzzy-ML-based framework can be concluded as the

best water security strategies to be applied to the most

polluted area. We can also conclude that integrated

IT2FVIKOR with unsupervised ML offers a new alternative

to solving decision-making problems. For future work, we

aim to integrate steps in IT2FVIKOR with ML to reach higher

levels of uncertainty in the decision-making system. In

addition, we also aim to integrate steps in IT2FVIKOR

with ML using a large group of DM opinions. Moreover, it

is suggested that it might be possible to closely look into

different unsupervised ML techniques, develop a better

technique that can retrieve better clustering, retrieve the

best number of optimal clusters, reduce the noise or

unnecessary data, and later improve the generalizability of

the model.
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