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Cross-regional air pollutant spillovers aggravate air pollution in China. To

mitigate air pollution, identifying and monitoring air pollution spreaders (APS)

is a vital strategy that helps locate the source of air pollution and guides the Joint

Prevention and Control of Air Pollution. In this paper, we define an APS as a city

with a high spillover impact (CHSI) of air pollution and propose a transfer

entropy network to investigate the APS from a multi-timescale analysis

perspective. Taking the time series of PM2.5 concentration of 358 Chinese

cities from 1 January 2015 to 31 December 2020 as the sample, they are

decomposed into short, medium, and long timescales, corresponding to an

average period of 12, 111, and 530 days, respectively. Then, we use transfer

entropy networks to analyze APS’s spatial distribution and temporal variation

patterns on each timescale. The results demonstrate that air pollution spillover

widely exists in Chinese cities, and the short-term air pollution spillover

dominates all spillovers. The CHSIs form large agglomeration areas in

Central and East China on short and medium timescales, while the results of

the undecomposed data show a more discrete distribution. In addition, the

cities’ air pollution spillover impact is usually high in winter and spring and low in

summer. Moreover, the spillover impacts of half of the cities have a lead-lag

relationship between short and medium timescales. All results suggest that

combining short-term controls and longer-term strategies helps Chinamitigate

air pollution and develop sustainably.
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1 Introduction

Chinese cities have recently suffered from severe air pollution (Fan et al., 2021), which

threatens human health and limits the cities’ sustainable development (Zhao et al., 2019).

A city’s air pollution not only has local effects but can also spill to adjacent locations as it

goes airborne, which is known as air pollution spillover (Li L. et al., 2017; Liao et al., 2020).
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In extreme cases, air pollutants transported from other cities may

be more than generated locally in a city (Zeng et al., 2019). For

example, in Beijing, approximately 55% of heavy haze pollution

episodes in winter are caused by other cities’ pollution (Jiang

et al., 2015). In the Ordos, about 77% of PM2.5 pollutant is

transported long-range from other cities (Khuzestani et al.,

2017). Besides China, cities in other countries also suffer from

air pollution spillover, such as in Gothenburg, Sweden, regional

transport contributes to 48% of PM2.5 levels (Molnár et al., 2017).

Therefore, it is urgent to mitigate air pollutants spillover.

Identifying and managing the source cities of air pollutants is

an effective strategy to mitigate air pollution spillover, which has

received great concern. There are two typical streams of research.

The first stream of research focuses on single air pollution event

in specific areas (Hu et al., 2014; Fellini et al., 2019; Zhang H.

et al., 2021). They identify the source cities of air pollutants by

analyzing the transport process. However, the air pollution

transport process is complex and variable and may be

influenced by many unknown determinants with time-varying

mechanisms (Li H. et al., 2019), making the case studies have

limitations to be applied to guide air pollution management

across regions. Therefore, conducting a more holistic and

comprehensive analysis of air pollution spillover is essential.

The second stream of research, investigating the intercity

transport of air pollutants, partially solved this problem by

tracking air masses’ trajectory or the pollutants’ chemical

composition (Sun et al., 2017). For example, Hu et al. (2014)

used the HYSPLIT model to detect air pollution sources in two

regions in China, the North China Plain and the Yangtze River

Delta. Other researchers used regional chemical models to

simulate air pollutant transport in the Beijing-Tianjin-Hebei

region (Chang et al., 2018) and Nanjing (Zhang H. et al.,

2021) and located the air pollution sources. Such studies can

accurately capture the complex physical and chemical processes

of air pollutants transformation; however, they may cost

tremendous computation resources, leading to limitations in

long periods and globalized areas analysis (Chen and Taylor,

2018). Therefore, it is necessary to analyze the air pollution

spillover using a flexible method. To fill these two gaps, this paper

introduces the complex network theory and the sliding window

method to analyze air pollution spillover and its time-varying

feature to find the source cities of air pollutants in the whole

region of China.

The complex network theory has recently been widely

adopted to study inter-regional air pollution spillovers (Zhang

D. et al., 2020; Yu et al., 2021; Zhang Q. et al., 2021). From the

complex network perspective, the cities are regarded as nodes,

and the air pollutant spillovers between cities are regarded as

edges; thus, the cities in the whole region of China can be linked

to form a network capturing the direct and indirect interaction of

air pollutants comprehensively (Carmona-Cabezas et al., 2019).

Building the network provides a convenient way to study the

possible paths of air pollutant spillovers (Wang et al., 2021). For

example, Du et al. (2021) analyzed the network’s average distance

and density to unveil the pattern of the air pollution transport

process in Northeast China. More importantly, analyzing the

network’s topological properties helps to quantify the influence

of air pollution spillover. Defining a city with a high spillover

impact (CHSI) of air pollution as an air pollution spreader (APS),

it can be regarded as the source city of air pollutants (Wang et al.,

2020; Ying et al., 2022). Wang et al. (2021) used PageRank to

identify key cities in terms of both air pollution outputs and

inputs. Carmona-Cabezas et al. (2019) described tropospheric O3

dynamics using the degree centrality and the betweenness

centrality. These studies provide effective and flexible methods

for identifying air pollution spreaders. However, there are still

recurrent air pollution events outbreaks (Li Z. et al., 2017; Wu

et al., 2021). This motivates us to provide a deeper analysis of the

air pollution spreaders from a multi-timescale perspective.

To study the air pollution spreaders, most of the related

research relies on air pollutants’ concentration data. Such data

contain rich information on various time-frequency because air

pollution’s determinants are complex (Liu et al., 2017).

Specifically, the seasonal effects of natural conditions such as

wind and inverse temperature can determine the seasonal

fluctuations in air pollutant concentrations (Wu et al., 2021).

Industrial and population activity can influence the long-term

trend of pollutant concentrations (Liu et al., 2017; Wu et al.,

2021). Moreover, Feng et al. (2020) found that long-term factors

determine the PM10 concentration levels, and short-term factors

determine the differences in pollution concentration from one

location to another. It can be seen that air pollution spillover may

have distinct features on a multi-timescale; only exploring air

pollution spillover using the original data may miss valuable

information (Wei and Meng, 2018). Recently, this issue has been

receiving increasing attention. For example, Li H. et al. (2019)

explored air pollution spillovers in the Beijing-Tianjin-Hebei

region from a multi-timescale perspective, providing

management recommendations on different timescales.

However, identifying the air pollution spreaders from a multi-

timescale perspective is less studied. Therefore, this paper

investigates the air pollution spreaders in the whole region of

China from a multi-timescale perspective by conjointly using the

complex network theory and the sliding window method. This

helps comprehensively analyze the source cities of air pollutants

and helps make targeted prevention to improve sustainable

development.

In this study, we use the daily PM2.5 time series of

358 Chinese cities from 2015 to 2020 for analysis since

PM2.5 is a primary air pollutant in China (Zhang M. et al.,

2020; Zhu et al., 2020). We first decompose the original PM2.5

time series into different timescales; then build networks for

each timescale by investigating air pollution spillovers among

the time series to identify the air pollution spreaders.

Specifically, to decompose the original PM2.5 time series,

we use the Complete Ensemble Empirical Mode
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Decomposition with the Adaptive Noise (CEEMDAN)

method (Torres et al., 2011). It is an accurate

decomposition algorithm based on the famous Empirical

Mode Decomposition (EMD) method (Huang et al., 1998).

CEEMDAN solves the pattern mixing problem of EMD to get

better decomposition results and is proven to work in

analyzing air pollutants (Jiang et al., 2021; Rahimpour

et al., 2021). Moreover, it does not have to preset any

parameter and can adaptively decompose the PM2.5 time

series compared with other methods such as Wavelet

Decomposition (WD) (Liu et al., 2020), Variational Mode

Decomposition (VMD) (Liu et al., 2018), Seasonal-trend

Decomposition Procedure Based on Loess (STL) (Jin et al.,

2019), etc. Then, to investigate air pollution spillovers among

the time series, we use the transfer entropy method (Schreiber,

2000). It is an information theory-based method that flexibly

deals with the asymmetric and nonlinear dependencies

between time series without requiring strict assumptions

and model parameter estimation (Barnett and Bossomaier,

2012; Dimpfl and Peter, 2019), compared to the traditional

statistical and econometric methods such as the Bayesian

model (Zhu et al., 2016), the Granger causality test (Zheng

et al., 2018; Zhang D. et al., 2020), and the GARCH model (Yu

et al., 2021). Recently, the transfer entropy method has been

applied to the air pollutant dataset and is verified to be feasible

and has enormous potential to quantify the direction and

extent of PM2.5 spillovers between cities (He and Luo, 2020;

Zhai et al., 2020; Seong, 2021; Zhang Q. et al., 2021).

In summary, the motivation of this paper is to provide a

holistic and comprehensive analysis of the source cities of air

pollutants in a flexible way from a multi-timescale

perspective. This paper investigates the agglomeration

characteristics and time-varying patterns of air pollution

spillover on different timescales and identifies the air

pollution spreaders as the source cities of air pollutants,

which helps make targeted management strategies from

different timescales to achieve environmental-economic

sustainable development. The main contributions of this

study are as follows. 1) We identified the most significant

source cities of air pollutants across China that worsen

regional air quality on multiple timescales. Compared

with other literature, we comprehensively analyze the

causes of their formation and their main driving factors

on multiple timescales. 2) We found spatial clustering

characteristics and time-varying patterns of APS on

multiple timescales, which helps develop a sustainable

multi-regional management strategy. 3) The multi-

timescale analytical framework we proposed can be used

in other air emissions, and we provide the most effective

network-based indicators for identifying the APS at a city

level on different timescales.

2 Materials and methods

2.1 Study area

This paper takes 358 cities in China as the sample. They

belong to 31 of 34 provincial-level administrative regions in

China, which cover the vast majority of the country. We classify

the 358 cities by geographic location and provincial

administrative district, and their correspondence is listed in

Supplementary Table S1 of Supplementary Appendix 1. To

help understand, we draw a color map of the 358 cities

according to their average PM2.5 concentrations from 2015 to

2020, as shown in Figure 1. In Figure 1, many Chinese cities have

shown severe air pollution problems in recent years. Due to their

large geographical span, these cities possess vastly different

geographical and climatic characteristics, which motivates us

to study the spatial variation of their air pollution spillover using

a flexible method from a multi-timescale perspective.

2.2 Data

This study uses the daily PM2.5 data for 358 municipalities,

prefectures, and counties (hereafter referred to as cities) in China

from 1 January 2015 to 31 December 2020 (in a total of

2192 days). The data are open access ground monitoring data

from the National Urban Air Quality Real-Time Release

Platform of the China Environmental Monitoring Station.

Furthermore, we analyzed other determinants of air

pollution to test the validity of the research. The determinants

are from two aspects, i.e., socio-economic characteristics and

natural factors. For the socio-economic characteristics, we

selected the number of industrial enterprises (NIE), the

highway freight volume (HFV), and the population density

(PD). In terms of natural factors, we selected the relief degree

of the land surface (RDLS) and the area of administrative area

(AAR). The NIE, HFV, PD, and AAR data are annual statistics

from 2015 to 2019, collected from the Statistical Yearbook of

Chinese Cities and published by the Chinese government. The

data of the RDLS was derived from the study of Feng et al. (2007).

2.3 Methodology

2.3.1 CEEMDAN
CEEMDAN (complete ensemble empirical mode

decomposition with adaptive noise) method, developed by

Torres et al. (2011), is an adaptive decomposition method. It

avoids both the mode mixing of EMD and the residual white

noise of EEMD. Given a time series x(t) of PM2.5 concentration,

the decomposition process is outlined below.
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(a) An adaptive white noise data is added to x(t) to generate a new
time series y(t). In Eq. 1, γ denotes the adaptive coefficient and
ε(t) denotes the white noise data. This step is repeatedN times.

i is the iteration counter, from 1 to N.

yi(t) � x(t) + γεi(t), (i � 1, 2,/N). (1)

(b) yi(t) is decomposed by the EMD method. E(·) denotes the
1st component obtained from the decomposition by EMD.

The mean value of the decomposition result E(yi(t)) is

calculated to obtain the 1st intrinsic mode functions

IMF1(t) and the remaining component R1(t).

IMF1(t) � 1
N

∑N

i�1E(yi(t)), (2)
R1(t) � x(t) − IMF1(t). (3)

(c) The adaptive white noise sequence is added again to the

remaining component R1(t) to form the new data

R1(t) + γ1E(εi(t)). Then we obtain IMF2(t) and the

remaining component R2(t) as Eqs 4, 5.

IMF2(t) � 1
N

∑N

i�1E(R1(t) + γ1E(εi(t))), (4)
R2(t) � R1(t) − IMF2(t). (5)

(d) The remaining component is loop processed as in step (c)

until it can no longer be decomposed further by the EMD

method. Eventually, x(t) is decomposed intoK components,

IMF1 to IMFK, and the residual term, Res.

x(t) � ∑K

k�1IMFk(t) + Res(t). (6)

2.3.2 Sample entropy
The sample entropy (SE) developed by Richman and

Moorman (2000) can quantify the complexity of a time series.

The larger the SE, the higher the complexity and frequency of the

FIGURE 1
The study area. The 358 cities are colored according to their average PM2.5 concentrations from2015 to 2020, as shown in the legend. The gray
areas are the cities that do not include in our research.
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time series, which can help us classify IMFs. The simplified

formula for SE is as follows.

SE(N,m, r) � lnBm(r) − lnBm+1(r), (7)
whereN is the data length,m is the dimension, r is the similarity

tolerance, and B is the self-similarity probability of the sequence.

Referring to existing studies (Wu and Lin, 2019; Duan et al.,

2021),m is set to 2, and r is set to 0.2 times the standard deviation

in this study.

2.3.3 Effective transfer entropy
The transfer entropy (TE) method developed by Schreiber

(2000) can flexibly and effectively quantify the air pollution

spillover between two cities. Furthermore, to avoid spurious

correlations caused by finite samples effect (Kantz and

Schürmann, 1996), we calculate the effective transfer entropy

(ETE) (Marschinski and Kantz, 2002) based on TE method. TE

and ETE are introduced as follows.

TEY→X(k, l) � ∑P(xn, x
k
n−1, y

l
n−1)log2P(xn

∣∣∣∣xk
n−1, y

l
n−1)

P(xn

∣∣∣∣xk
n−1) . (8)

In Eq. 8, TEY→X denotes the effect of time series Y on time

series X, xk
n � {xn, xn−1, . . . , xn−k} is the kth-order time lag

subsequence of X, yl
n � {yn, yn−1, . . . , yn−l} is the l-order time

lag subsequence of Y, and P(·) is the probability value of a certain
state. We set k � l � 1 in this study referring to Hlinka et al.

(2013).

Based on the TE method, the ETE method shuffles the time

series Y to break its data structure. As a result, TEYshuffled→X is the

observation bias due to the finite sample effect. The bias is then

removed from TEY→X to obtain a bias-corrected estimate of the

transfer entropy, ETEY→X.

ETEY→X � TEY→X − TEYshuffled→X. (9)

2.3.4 Complex network
The complex network method can draw the overall picture of

air pollution spillovers between all cities. The cities are regarded

as nodes, denoted as set V. And, the air pollution spillovers

between cities are regarded as edges of the network, denoted as

set E. Then, the spillover network of air pollution (SNAP) can be

denoted as S � (V, E). For a SNAP containing n cities, it can be

represented as an n × n matrix of eij, where eij represents the

edge of the SNAP. Since the impact of air pollution within urban

areas is not considered in this study, the diagonal of the matrix is

zero, as shown in Eq. 10.

S � (V, E) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e1,2 e1,3 / e1,n
e2,1 0 e2,3 / e2,n
e3,1 e3,2 0 / e3,n
..
. ..

. ..
.

1 ..
.

en,1 en,2 en,3 / 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Furthermore, network indicators can characterize the

importance of cities in the SNAP. For a complete comparison,

seven network indicators were selected to quantify the influence

of cities in SNAP from different aspects. Among the seven

indicators, five static centrality indicators capture PM2.5

spillovers between cities. They are out-degree (OD), weighted

out-degree (WOD), betweenness centrality (BC), closeness

centrality (CLN), and cluster coefficient (CC). Besides, two

recursive centrality indicators consider the random walk

process of PM2.5 spillovers. They are eigenvector centrality

(EV) and PageRank (PR). Detailed descriptions and

formulations of the indicators can refer to Supplementary

Appendix 2 and the related studies (Li Y. et al., 2019; Wang

et al., 2020).

2.4 Modeling process

We developed a multi-timescale analytical framework to

identify the APS and explore their spatial distribution and

evolution. The entirety of the process is divided into six steps.

First, to distinguish local components with different frequencies,

the original time series of PM2.5 is decomposed into different

numbers of components adaptively by the CEEMDAN method.

Second, to unify the timescales of every city, we cluster these

components into three timescales, i.e., short-term, medium-term,

and long-term, using the sample entropy and the K-means

method. Third, to explore the evolution of APS, we use the

sliding window approach to divide the complete time series on

each timescale into multiple sample segments. Fourth, we use the

effective transfer entropy to quantify the air pollution spillover

between all cities, including the direction and extent of the

spillovers. Fifth, to draw the overall picture of air pollution

spillovers between cities in China, we use the complex

network method to construct the spillover network of air

pollution (SNAP) for all cities in every sliding window.

Finally, we use seven network indicators to identify key cities

in the SNAP, which are APSs. On this basis, we explore the spatial

distribution and evolution of APS from various timescales.

Detailed processes are listed in Supplementary Appendix 2.

3 Results and discussion

Using the above approaches, we obtained 70 SNAPs on the

short, medium, long, and original timescales (in a total of

280 networks). In this section, we first analyze the differences

in the overall properties of SNAPs on different timescales. Then,

we test the validity of the method and investigate the most

effective indicator for identifying the air pollution spreader on

each timescale. Finally, we empirically analyze the air pollution

spreader from the spatial and temporal dimensions.
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3.1 Overall properties of SNAPs on
different timescales

To perform the multi-timescale analysis, we decomposed the

time series of PM2.5 concentration for every city into short-term,

medium-term, and long-term components, corresponding to an

average period of 12, 111, and 530 days, respectively. It should be

noted that the “timescale” in this study represents the period of

one fluctuation of the PM2.5 concentration but not the time PM2.5

takes to transfer from one city to another. Taking the PM2.5

concentration time series in Beijing as an example, its

decomposition results are shown in Supplementary Appendix

3 (Supplementary Figure S3). We find that the short-term

components usually cover relatively high concentrations of air

pollutants over a short period, caused by severe local pollution

incidents or a lot of air pollutants transferred from other regions.

The medium-term components can reflect the seasonal

fluctuation of PM2.5. The long-term components are the

equilibrium trend of PM2.5, caused by driving factors with

long-term influence, such as industrial structure and the

population (Liu et al., 2017; Wu et al., 2021).

To understand the overall picture of air pollution spillover

between all cities, we calculate four overall structural properties

of every SNAP, i.e., node number, edge number, assortativity

coefficient, and average distance. They reflect the overall

situation of air pollution spillover in 358 Chinese cities from

different aspects. Specifically, node number and edge number

reflect the number of cities participating in the spillover network.

The assortativity coefficient reflects the connection preferences

between cities with different degrees. The average distance

reflects the average length of transport routes of PM2.5 in the

SNAP. The results are shown in Figure 2.

The lines of the node number and the edge number show that

there are almost no independent cities in any SNAP, which

means inter-city PM2.5 spillovers exist nationwide and

persistently (Li L. et al., 2017; Liao et al., 2020). Therefore,

multi-regional collaborative management is a necessary way to

optimize regional air quality. In addition, the overall situations of

the spillovers vary significantly on different timescales.

Specifically, the long-term SNAPs have a longer average

distance and the least edges due to the diffusion of air

pollutants attenuating with distance (Su et al., 2009). The

short-term SNAPs have the most edges, which means the

short-term air pollution spillover dominates all spillovers. This

is because heavy air pollution can greatly promote the spillover of

air pollutants, while heavy air pollution can only be maintained

for a short period due to anthropogenic control and natural

dissipation, so more spillovers can be observed on the short

FIGURE 2
The overall properties of SNAPs on multiple timescales. Panels (A–D) represent the evolution of the node number, the edge number, the
assortativity coefficient, and the average distance, respectively. In each panel, the X-axis represents the sliding window, and the Y-axis represents
each indicator’s value. The four timescales, i.e., the undecomposed data, short-term, medium-term, and long-term, correspond to blue, yellow,
green, and red lines, respectively.
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timescale rather than on other timescales. Besides, the short-term

SNAPs have a shorter average distance (about two), which

indicates that although there are more spillovers in the short

timescale, the range of its influence is usually limited to about two

cities due to the unsustainability of short-term heavy air

pollution (Su et al., 2009). The negative assortativity indicates

that many cities with a small spillover passively accept air

pollutants transferred from cities with a high spillover. The

different results on different timescales arise from the different

time-frequency information, indicating the necessity of multi-

timescale studies. Notably, the properties of the undecomposed

data seem to be a mix of the results on the other three timescales,

which is because the undecomposed time series of PM2.5

concentration contains rich but mixed information with

different frequencies (Jin et al., 2020). Furthermore, the

overall properties of SNAPs show an unstable periodicity.

Therefore, it is necessary to further analyze the temporal

variation pattern of the city’s air pollution spillover.

3.2 Validity test of the method

As found above, the SNAPs have different characteristics on

different timescales. To accurately identify the source cities of air

pollution across China, finding the most valid method of

measuring the spillover impact of cities on different timescales

is necessary. Previous studies have found that many natural and

anthropogenic factors determine spillovers of air pollutants (Liu

et al., 2017; Zhou et al., 2021). These driver factors can help verify

whether the results derived from this study are relatively

reasonable. Among them, we select six important factors as a

proxy for reasonable criteria for judging which of the seven

indicators introduced in Section 2.3.4 can efficiently measure the

spillover impact of cities. A brief introduction of the six factors is

given below.

Six determinants were selected from two aspects,

i.e., socio-economic characteristics and natural factors. In

terms of socio-economic characteristics, we selected the

number of industrial enterprises (NIE), the highway freight

volume (HFV), and the population density (PD) because

industry (Zhang et al., 2013), traffic (Lang et al., 2021), and

residential life (Zhu et al., 2019) are the three primary sources

of air pollution. In terms of natural factors, we selected the

relief degree of the land surface (RDLS) and the area of

administrative area (AAR). The RDLS represents

topographic features. The topography has an important

influence on meteorological characteristics such as wind

speed, temperature, and humidity in a region (Herfindahl

and Kneese, 2015), and the air mass movement it modulates is

an essential factor affecting the accumulation and diffusion of

air pollutants (Zhao et al., 2018; Wang et al., 2019). The AAR

reflects the absorption capacity of air pollutants in a region. A

larger regional area reduces the likelihood that local air

pollutants will spread to other regions (Su et al., 2009).

Considering that the pollutant concentration levels also

impact air pollution spillover, we also use the PM2.5

concentration as a criterion.

To test the validity of the seven network indicators, we

conducted cross-sectional linear regression for seven network

indicators and six determinants on each timescale to test the

correlation. The correlations between PM2.5, RDLS, and network

indicators were detected in each sliding window to get more

accurate results. Since NIE, HFV, PD, and AAR data are annual,

we test the correlation between these annual data and the annual

mean value of seven network indicators. We calculated the mean

correlation coefficient (MCC) and the mean absolute correlation

coefficient (MACC) for all of these indicators in each cross-

section to measure the performance of the network indicators.

The more significant the MCC is, the more effective the method

is. Moreover, the more significant both the MCC and MACC are,

the more robust the method is. The test results are listed in a table

with four panels, as shown in Table 1.

When judging the validity of the network indicators, we focus

on the significant correlations in Table 1. The most effective

network indicators formeasuring the city’s spillover impact differ

on different timescales. Specifically, the network indicators that

correlate most with all determinants are CC, WOD, and WOD

on the undecomposed-data timescale, short timescale, and

medium timescale, respectively. Thus, we take them as the

proxy for the city’s spillover impact. Unfortunately, there is

no appropriate proxy on the long timescale because all the

correlations between network indicators and determinants are

too weak (less than 0.1).

One reason for the superior performance of CC and WOD

is that they measure the local and direct influence of nodes in

the network, which fits the fact that the diffusion of air

pollutants attenuates with distance (Su et al., 2009).

Moreover, the cities’ spillover impacts cannot be effectively

reflected on the long timescale may be because the long-term

components of pollutants concentration have slower

fluctuations and smaller amplitudes, which indicates that

they contain so little useful information that it is not easily

detectable.

In addition, on any timescale, the cities’ spillover impacts

were positively correlated with PM2.5, the number of industrial

enterprises (NIE), the highway freight volume (HFV), and the

population density (PD). In contrast, they were negatively

correlated with the relief degree of the land surface (RDLS)

and the area of administrative area (AAR). It means a high

terrain and a large area of a region limit the spillover of air

pollutants (Su et al., 2009; Zhao et al., 2018), while industry

(Zhang et al., 2013), population (Zhu et al., 2019), and traffic

(Lang et al., 2021) promote the spillover, which was in line with

existing literature. Specifically, NIE and PD are the most

important factors affecting the cities’ spillover impacts on the

undecomposed-data timescale, which is consistent with the study

Frontiers in Environmental Science frontiersin.org07

Hu et al. 10.3389/fenvs.2022.970267

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.970267


of Zhu et al. (2019). On short and medium timescales, the most

important factor determining a city’s spillover impact is AAR,

followed by PD and NIE, and their correlations are more

significant on the medium timescale than on the short

timescale. It should be noted that because the purpose of this

section is to verify the validity of the methodology in this study,

we only selected several representative determinants related to

the external influence of urban air pollution. Therefore, there

may still be more important determinants that are not discussed

here, and a detailed analysis of the drivers of air pollutants

concentrations on different timescales will be carried out in

future work.

3.3 Cities with a high spillover impact of air
pollution

3.3.1 Spatial distribution of CHSIs
In geospatial, locations with similar characteristics may occur

in clusters, exhibiting spatial dependence. To analyze the spatial

distribution characteristics of the APSs on multiple timescales,

we plot the hotspot maps of all cities based on the proxies for

cities’ spillover impacts (SI) according to Section 3.2, as shown in

Figure 3.

In Figure 3, each red-shaded area can be regarded as an APS.

They vary by timescale. Moreover, they have agglomeration

TABLE 1 Correlation coefficient matrix of network indicators and determinants on multiple timescales.

Panel A: Undecomposed data Panel B: Short timescale

PM2.5 NIE HFV PD RDLS AAR PM2.5 NIE HFV PD RDLS AAR

BC 0.02
(0.06)

0.11
(0.11)

−0.03
(0.06)

−0.04
(0.08)

−0.01
(0.05)

0.02
(0.04)

0.01
(0.05)

−0.07
(0.07)

−0.05
(0.05)

−0.04
(0.05)

0.00
(0.07)

0.00
(0.03)

CLN 0.09
(0.11)

0.13
(0.13)

0.09
(0.10)

0.14
(0.14)

−0.08
(0.11)

−0.13
(0.13)

0.11
(0.12)

0.06
(0.06)

0.08
(0.10)

0.11
(0.11)

−0.10
(0.12)

−0.15
(0.15)

CC 0.13
(0.13)

0.21
(0.21)

0.09
(0.09)

0.21
(0.21)

−0.14
(0.14)

−0.18
(0.18)

0.07
(0.11)

0.07
(0.10)

0.11
(0.11)

0.11
(0.11)

−0.08
(0.10)

−0.16
(0.16)

EV 0.02
(0.04)

0.07
(0.11)

0.04
(0.06)

0.04
(0.07)

0.00
(0.05)

−0.02
(0.05)

0.00
(0.05)

−0.02
(0.03)

−0.01
(0.02)

−0.01
(0.04)

0.01
(0.04)

0.00
(0.04)

OD 0.07
(0.10)

0.10
(0.11)

0.04
(0.06)

0.10
(0.10)

−0.05
(0.08)

−0.08
(0.08)

0.06
(0.08)

0.15
(0.15)

0.10
(0.11)

0.16
(0.16)

−0.07
(0.08)

−0.18
(0.18)

WOD 0.10
(0.11)

0.14
(0.14)

0.07
(0.08)

0.14
(0.14)

−0.08
(0.10)

−0.12
(0.12)

0.11
(0.12)

0.12
(0.12)

0.10
(0.12)

0.16
(0.16)

−0.10
(0.11)

−0.19
(0.19)

PR 0.07
(0.11)

−0.05
(0.14)

0.01
(0.08)

0.03
(0.14)

−0.02
(0.10)

−0.05
(0.12)

0.01
(0.06)

−0.16
(0.16)

−0.10
(0.10)

−0.16
(0.16)

0.03
(0.08)

0.13
(0.13)

Panel C: Medium timescale Panel D: Long timescale

PM2.5 NIE HFV PD RDLS AAR PM2.5 NIE HFV PD RDLS AAR

BC 0.05
(0.06)

0.07
(0.07)

0.06
(0.06)

0.11
(0.11)

−0.03
(0.06)

−0.12
(0.12)

−0.01
(0.05)

−0.02
(0.04)

0.00
(0.04)

−0.02
(0.04)

0.01
(0.06)

0.04
(0.07)

CLN 0.11
(0.13)

0.14
(0.14)

0.10
(0.10)

0.21
(0.21)

−0.12
(0.13)

−0.25
(0.25)

0.01
(0.06)

−0.01
(0.06)

0.06
(0.06)

0.04
(0.07)

−0.02
(0.06)

−0.05
(0.06)

CC 0.08
(0.11)

0.17
(0.18)

0.12
(0.12)

0.21
(0.23)

−0.11
(0.11)

−0.21
(0.21)

0.02
(0.08)

0.06
(0.06)

−0.06
(0.06)

0.06
(0.06)

−0.02
(0.07)

−0.01
(0.05)

EV 0.00
(0.04)

−0.05
(0.05)

−0.02
(0.04)

−0.01
(0.03)

0.00
(0.04)

−0.01
(0.05)

0.02
(0.05)

−0.05
(0.05)

0.00
(0.02)

−0.04
(0.04)

0.01
(0.05)

−0.02
(0.06)

OD 0.08
(0.11)

0.16
(0.16)

0.10
(0.11)

0.18
(0.19)

−0.11
(0.13)

−0.22
(0.22)

0.01
(0.05)

0.02
(0.03)

0.04
(0.05)

0.03
(0.06)

−0.01
(0.05)

−0.04
(0.05)

WOD 0.11
(0.13)

0.16
(0.16)

0.10
(0.11)

0.21
(0.21)

−0.13
(0.14)

−0.24
(0.24)

0.01
(0.05)

0.02
(0.03)

0.07
(0.07)

0.04
(0.06)

−0.01
(0.05)

−0.04
(0.05)

PR 0.05
(0.08)

0.11
(0.11)

0.11
(0.11)

0.13
(0.13)

−0.05
(0.07)

−0.15
(0.15)

−0.03
(0.07)

−0.04
(0.05)

−0.01
(0.04)

−0.09
(0.09)

0.03
(0.07)

0.02
(0.06)

Note: Panels (A–D) represent the test results on the four timescales. In every panel, we listed the correlation coefficient between the seven network indicators and six determinants.

Specifically, it contains the mean correlation coefficient (MCC) and the mean absolute correlation coefficient (MACC), with the MCC in the upper layer and MACC in the lower layer (in

brackets). For example, in the panel of the undecomposed data, the MCC and MACC of BC and PM2.5 are 0.02 and 0.06, respectively. Network indicators and their abbreviations:

betweenness centrality (BC), closeness centrality (CLN), cluster coefficient (CC), eigenvector centrality (EV), out-degree (OD), weighted out-degree (WOD), PageRank (PR).
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characteristics, demonstrating spatial dependence for APSs. In

other words, cities surrounding the APS may also have higher

spillover impact, forming agglomerations of the APS. This is

because the adjacent areas usually share similar industrial

characteristics, geomorphology, and climates. The

agglomerations of APSs differ on the three timescales, which

are described in detail below.

The APSs identified on the undecomposed data cover

many important cities in urban agglomerations, such as the

Beijing-Tianjin-Hebei (BTH), the Central Plains (CP), the

Shandong Peninsula (SP), the Yangtze River Delta (YRD), and

the Middle Reaches of the Yangtze River (MRYR), the

classification of the cities is listed in Supplementary

Appendix 1. The top 10 cities with the greatest spillover

impacts are Zhuzhou, Suzhou, Cangzhou, Jintan, Jiaozhou,

Jiangyin, Nantong, Zhengzhou, Yantai, and Anyang. They are

mainly in Jiangsu, Shandong, and Henan provinces. On the

short timescale, the APSs are mainly in the CP and the

Hohhot-Baotou-Ordos (HBO) urban agglomeration, and

the top 10 cities with the greatest spillover impacts are

Baotou, Jining, Zhumadian, Taiyuan, Xiangyang, Luohe,

Wuhu, Suizhou, Suzhou, and Liaocheng. On the medium

timescale, the APSs are mainly in the MRYR and BTH

urban agglomerations, and the top 10 cities with the

greatest spillover impacts are Xiangxi, Fuzhou, Liaocheng,

Shaoyang, Huaihua, Cangzhou, Pingxiang, Hengyang,

Quzhou, and Hengshui. They are mainly in Hunan

province and adjacent areas of Hebei and Shandong.

The APSs show a discrete distribution on the undecomposed

data and do not form large-scale agglomerations. In contrast,

they show obvious urban agglomerations on short and medium

timescales, indicating that the short and medium timescales can

better reveal spatial dependencies, which can help find regions

requiring the Joint Prevention and Control of Air Pollution

(JPCAP). In addition, we find that almost all the APSs have

high economic and industrial levels and large populations on any

FIGURE 3
The hotspotmaps of spillover impact (SI) of air pollution. All cities’ SIs on each timescale are drawn as a hotspotmap. Panels (A–C) are the results
of the undecomposed data, the short timescale, and the medium timescale, respectively, where we use CC, WOD, and WOD as proxies for SI values
of cities, respectively. The value of each city is the average value of SI across all windows for the city. To better display the discrete point objects in the
map, we apply an inverse distanceweightingmethod to interpolate the SI values spatially. The values are normalized to a range of 0–1.We divide
the SI values into 15 segments using the Jenks natural breaks classification method and set a different color for each segment, with regions having a
large SI represented in red and a small SI in green.
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timescale, which is in line with the macroscopic laws between air

pollution and economic activities (Yan et al., 2022).

On the one hand, cities with close economic ties are more

likely to form agglomerations of APSs. On the other hand, the

APSs agglomerations differ from the urban agglomerations

divided by economic ties. Taking the BTH region as an

example, Chengde and Zhangjiakou exchange less air

pollution with other cities because of the Yanshan Mountains

and Taihang Mountains, and thus they do not belong to the APS

agglomeration. Therefore, to mitigate air pollution more

effectively, the government should conduct the JPCAP based

on the urban agglomerations formed by APSs rather than urban

agglomerations divided by economic ties.

The changes (appearance and disappearance) of APS

agglomerations on different timescales can reflect potential

information, as illustrated by the following four points.

First, a few APSs show a scattered distribution around the CP

urban agglomeration on the undecomposed and the medium

timescale. However, many APSs appear and form particularly

large-scale agglomerations around the CP urban agglomeration

on the short timescale, which indicates serious air pollution

spillovers exist within the area (Xiong et al., 2018). Therefore,

governments involved in these agglomerations should pay more

attention to preventing short-lived heavy pollution episodes,

considering that it results from the short timescales.

Second, some of the cities in Inner Mongolia, Shaanxi, and

Shanxi provinces were identified as APSs on the short timescale.

It is because these areas are China’s main coal-producing regions

and locations of heavy industry.

Third, it should be noted that cities surrounding Beijing and

Shanghai have lower spillover impacts on the short timescale

than the undecomposed data. Beijing (in BTH) and Shanghai (in

YRD) are the two most important cities in China, and they are

prior areas for the JPCAP set by the central government. This

result confirms the positive effects of air pollution prevention and

control in these cities on the short timescale. Regrettably, the air

pollution spillovers in these cities are still serious on the medium

timescale. It demonstrates that the JPCAP in these regions is in a

“task-driven” collaborative mode, and the effect is unsustainable.

Existing studies have also confirmed this (Wei and Meng, 2018).

Therefore, in addition to short-term actions, longer-lasting

solutions are also essential, such as reducing the proportion of

heavy industry in the APS agglomerations and avoiding excessive

population density by maintaining moderate urbanization. It

should be reminded that the results are derived over a 6-year

period overall, which does not mean that short-term air pollution

spillovers will not occur in the above-mentioned areas.

Therefore, it is necessary to maintain a timely control of

heavy pollution episodes.

Fourth, many cities in Hunan province are identified as APSs

on the medium timescale, such as Xiangxi, Huaihua, Shaoyang,

and Hengyang, forming a large-scale aggregation. It is because

cold air masses from the north are blocked by the mountains

surrounding Hunan in winter (Dai et al., 2019), which leads to

the accumulation of air pollutants, causing these cities to become

APSs on the medium (about a season) timescale. Therefore, to

reduce the cost of comprehensive air pollution management, the

Hunan provincial government should adjust the spatial layout of

their heavy industries within the province while minimizing the

emission intensity of upwind cities in winter, according to the

unique topographic and climatic characteristics in the area.

3.3.2 Evolution of CHSIs
Although the air pollution transports are complex, we try to

explore the frequent patterns of air pollutant spillover in this

section. We plotted heatmaps of cities’ spillover impacts on three

timescales, as shown in Figure 4.

In every panel of Figure 4, the top half is redder, and the

bottom half is bluer, indicating that the spillover impact varies by

city because different cities have different pollution levels and

natural conditions. Moreover, this contrast is pronounced at any

time in the short term. Nevertheless, in the medium term, this

contrast is more pronounced in winter and spring but weaker in

summer. This may be because medium-term air pollution

spillovers are more affected by seasons, while short-term

spillovers are more affected by stochastic influences, such as

air pollution outbreaks or sudden windy weather.

In addition, the temporal variation of air pollution spillover

has a periodicity. Specifically, on the original timescale [in panel

(a)], the air pollution spillover is more significant in winter and

spring and weaker in summer, which is consistent with the

pattern of PM2.5 concentrations (Wu et al., 2021), as the

amount of air pollutants is fundamental for the air pollution

spillover from a city to surrounding areas. However, in the short

andmedium term [in panels (b) and (c)], in contrast to cities with

high spillover impact, the cities with low spillover impact do not

show a pronounced periodicity. It may be because the cities with

low spillover impact have lower air pollution levels; thus, fewer

pollutants can be transported, and they can maintain few air

pollution spillovers even if natural conditions such as

meteorology change over time. In the short term, the

periodicity of air pollution spillovers is not very stable and

shows a high degree of stochasticity on the top half of panel

(b). Especially in the summer of 2017, the top 10 CHSIs showed

significant air pollution spillover because of the massive and

intense dust and sand weather that occurred in Northwest and

North China from May 3 to May 5. The strongest winds during

the event reached 75 km/h. The winds swept up dust particles,

causing heavy air pollution and transfer of air pollutants across

regions, making the cities through which the winds passed

highlighted in the heatmap corresponding to the short term.

Similarly, in the medium term, some unstable periodicity is

observed in the top half of the panel. The inter-city air

pollution spillover is a complex system; therefore, the inter-

city air pollution spillover contains chaotic features, which is

one of the reasons for the unstable periodicity.
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FIGURE 4
Heatmaps of cities’ spillover impacts. Panels (A–C) represent the results of the undecomposed data, the short term, and the medium term,
respectively. The X-axis represents the sliding window, and the Y-axis is the city. Only 20 representative cities are presented in each panel, where the
ten most influential cities are on the top half of each panel, and the ten least influential cities are on the bottom half of each panel. The full-size and
high-resolution figure was placed in Appendix 4, and interested readers can zoom in for more details.

FIGURE 5
Lead-lag relationships in the Sis between the short and medium timescale for 358 Chinese cities in 31 provinces. The X-axis is the province
where the city is located, and the Y-axis is the lead-lag relationship between the two timescales. Specifically, the top bar code represents that the
short-term spillover impacts are ahead of the medium-term spillover impacts, and the bottom bar code represents that the medium-term spillover
impacts are ahead of the short-term spillover impacts. A blue or red narrow bar is displayed if there is a lead-lag relationship, and a light gray
narrow bar is displayed if there is no lead-lag relationship. The thick color bars are formed by the narrow bars ofmultiple cities next to each other. The
green line is used to separate the cities of different provinces.
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Furthermore, to understand the difference in the spillover

impact on different timescales, we calculated the Kendall

correlation coefficient of the city rankings between the short

and medium timescales, and the result was 0.45. It indicates that

the spillover impacts on the two timescales have similarities as

well as large differences. To further detect the relationships

between the two timescales, we examined the lead-lag

relationship of spillover impacts on short and medium

timescales for each city by using the Granger Causality. The

results are shown in Figure 5.

Figure 5 shows a lead-lag relationship between the spillover

impacts on short and medium timescales for 180 cities (a total of

358 cities). They are relatively evenly distributed across all cities,

and the medium-term spillover impact has more influence on the

short-term spillover impact. It indicates that the medium-term

spillover impacts may be the leading indicators of the short-term

spillover impacts for some cities, which can help us identify

potential problems. It can be explained by an example: a city’s air

quality was good most of the time, and only 1-2 occasional air

pollution spillovers occurred per month, which was not

considered a problem from the short-term perspective. But

from the medium-term perspective, air pollution spillover

occurred monthly, which was a sign of hidden problems. In

addition, the short-term spillover impacts are ahead of the

medium-term spillover impacts for some of the cities, such as

Shijiazhuang, which indicates that severe pollution outbreaks

may frequently occur in these cities (Yao et al., 2021), and due to

the lack of timely control, they form longer-term problems. In

summary, these lead-lag relationships contribute to identifying

the potential managerial problems of air pollution in the regions,

which helps better prevent air pollution.

4 Conclusion

This study uses transfer entropy networks to analyze the air

pollution spreaders in the whole of China over 6 years from amulti-

timescale perspective. We identify the air pollution spreaders (APS)

across China on different timescales and further analyze their spatial

distribution and temporal variation patterns, which can assist the

government in developing targeted short-term controls and longer-

term strategies for multi-regional air pollution control. The main

conclusions are as follows.

First, air pollution spillovers occur in almost all Chinese

cities. Especially short-term air pollution spillovers dominate all

spillovers. In addition, the medium-term spillovers are also

significant, but the spillover is weak from the perspective of

long-term fluctuations of air pollutant concentrations.

Second, the APSs identified are mainly in central and eastern

China. Moreover, the cities with close economic ties are more

likely to form agglomerations of APSs. However, it should be

noted that the APS agglomerations differ from the urban

agglomerations divided by economic ties. Specifically, the

APSs are mainly in the CP urban agglomeration (on the short

timescale) and the MRYR and BTH urban agglomerations (on

the medium timescale). In contrast, the APSs on the

undecomposed data were scattered in eastern and central China.

Third, the cities’ spillover impacts exhibit periodicity in the short

and medium term, usually high in winter and spring and low in

summer. These patterns are generally significant only for cities with

high air pollution levels. More importantly, the spillover impacts of

half of the 358 cities show a lead-lag relationship on the short and

medium timescale. The effect of JPCAP is unsustainable for many

regions. Although positive results from timely control have been

confirmed in the short term, significant air pollution spillovers still

occur frequently in the medium term.

Fourth, the best network indicator for identifying the APS in

the complex network varies by the timescales. Specifically, the

weighted out-degree is best on the short and medium timescales,

the clustering coefficient suits the undecomposed data, and there

is no suitable indicator on the long timescale.

According to the above results, this paper provides two main

policy recommendations to assist the government in mitigating

multi-regional air pollution more effectively. 1) Collaborative

management across cities is necessary for improving regional air

quality since air pollution spillovers occur in almost all Chinese

cities. Moreover, the government should pay more attention to the

urban agglomerations formed by the APSs rather than the urban

agglomerations divided by economic ties because they do not exactly

overlap. 2) Due to the short-term air pollution spillover dominating

all spillovers and the results affirming the effectiveness of timely

control in the short term, the timely control of heavy pollution

episodes in source cities should bemaintained by the government. In

addition, adopting longer-term management strategies can help

further prevent air pollution and meet air quality standards

because medium-term spillovers still occur frequently.

Finally, although we obtained the results on different

timescales, there are still many unknown mechanisms about

them due to few related studies, and we expect to fill these

gaps in future studies. In addition, the multi-timescale analytical

framework we proposed can also apply to other diffusible

atmospheric emissions (such as SO2, NOx, and CO2).
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