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Accurate representations of stomatal conductance are required to predict the

effects of climate change on terrestrial ecosystems. Stomatal optimisation

theory, the idea that plants have evolved to maximise carbon gain under

certain constraints, such as minimising water loss or preventing hydraulic

damage, is a powerful approach to representing stomatal behaviour that

bypasses the need to represent complex physiological processes. However,

while their ability to replicate observed stomatal responses is promising,

optimisation models often present practical problems for those trying to

simulate the land surface. In particular, when realistic models of

photosynthesis and more complex cost functions are used, closed-form

solutions for the optimal stomatal conductance are often very difficult to

find. As a result, implementing stomatal optimisation in land surface models

currently relies either on simplifying approximations, that allow closed-form

solutions to be found, or on numerical iteration which can be computationally

expensive. Here we propose an alternative approach, using amethodmotivated

by control theory that is computationally efficient and does not require

simplifying approximations to be made to the underlying optimisation.

Stomatal conductance is treated as the control variable in a simple closed-

loop system and we use the Newton-Raphson method to track the time-

varying maximum of the objective function. We compare the method to both

numerical iteration and a semi-analytical approach by applying the methods to

the SOX stomatal optimisation model at multiple sites across the Amazon

rainforest. The feedback approach is able to more accurately replicate the

results found by numerical iteration than the semi-analytical approach while

maintaining improved computational efficiency.
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1 Introduction

Stomata regulate gas exchange between leaf and atmosphere,

balancing carbon gain required for growth, reproduction, and

respiration, against the cost of losing excessive water through

transpiration and the associated consequences for the plant

hydraulic tissues (Cowan and Farquhar, 1977; Sperry et al.,

2017). The dynamic behaviour of stomata has a strong

influence over both the terrestrial carbon and water cycles

(Sellers et al., 1996; Cox et al., 1999; Gedney et al., 2006).

Combined with non-linear feedbacks between the land surface

and atmosphere, small changes in stomatal responses to

environmental change can cause large changes to future

projections of the climate (Betts et al., 2004). As the frequency

and severity of drought events increase across large parts of the

globe (Hartmann et al., 2013; Marengo et al., 2018), the role that

stomata play in regulating local and global climate is becoming

ever more prominent, as plant water use strategies determine the

survival of the vegetation in vulnerable ecosystems (Cox et al.,

2000; Allen et al., 2010; Ponce-Campos et al., 2013; Anderegg

et al., 2015; Hochberg et al., 2018). Despite this role, however,

current land surface models (LSMs) often fail to accurately

capture the response of vegetation to drought (Sitch et al.,

2008; Powell et al., 2013; Ukkola et al., 2016; Restrepo-Coupe

et al., 2017; Martínez-de la Torre et al., 2019). This reduces their

ability to predict both short and long term changes to the land

surface and interactions with the climate. Significant

improvement to the representation of stomatal behaviour in

LSMs is required to improve projections of future climate

change and its impacts.Stomatal optimisation theory, the idea

that plants are able to optimise carbon gain under certain

physiological constraints, such as minimising water loss

(Cowan and Farquhar, 1977) or preventing hydraulic damage

(Sperry et al., 2017), is a powerful approach to representing

stomatal behaviour that has seen renewed interest over recent

years. Optimisation approaches offer encouraging results relative

to observations (Anderegg et al., 2018; Eller et al., 2018, 2020;

Venturas et al., 2018; Wang et al., 2019; Sabot et al., 2020; 2022a)

while bypassing the need to represent complex and poorly

understood physiological processes. The central concept is

that stomata act to maximise carbon dioxide uptake for

photosynthesis while simultaneously minimising the costs

associated with excessive stomatal opening. These costs are

typically expressed in terms of water loss, but may also be

associated with non-hydrological processes such as in Prentice

et al. (2014), where the optimisation model aims to minimise the

carbon costs of transpiration and photosynthetic capacity. In

optimisation models, an objective function, typically given by the

difference between instantaneous carbon uptake and a cost

function associated with water loss is maximised either

instantaneously or over a finite period, resulting in an optimal

stomatal conductance (Cowan and Farquhar, 1977; Wolf et al.,

2016; Wang et al., 2020). Many of the observed behaviours of

stomata to changes in climatic or edaphic conditions have been

replicated by this approach (Buckley et al., 2017), making it an

attractive option for those attempting to model plant behaviour.

However, despite this promising ability to replicate observed

stomatal responses, many global LSMs still use empirical

representations of stomatal conductance such as the Leuning

(1995) and Ball et al. (1987) models. The use of optimisation

models, in particular for large scale and long term simulations is

currently limited, in part due to the practical difficulties involved

in solving for the optimal stomatal conductance (Buckley, 2017).

Generally, closed-form analytical solutions are difficult or even

impossible to find, in particular when sophisticated leaf

photosynthesis models are used (e.g., Farquhar et al., 1980;

Collatz et al., 1991). As a result, stomatal optimisation models

are typically solved through numerical iteration. Unfortunately

this can be impractical for large scale simulations of the climate

where computational efficiency is desirable. Simplifying

assumptions can sometimes be made about the functional

form of either photosynthesis or the water loss cost equation

that reduce the complexity of the problem, such that analytical

solutions can be found (e.g., Medlyn et al., 2011; Eller et al., 2020).

However, these simplifications are not always possible and can

often misrepresent some of the fundamental assumptions in the

model (Buckley et al., 2017; Sabot et al., 2022b). There is therefore

a need for an alternative method to solve stomatal optimisation

models that avoids the need for numerical iteration yet can still

produce accurate solutions of the analytically optimal gs.An area

of promise that has yet to be extensively explored in the context

of stomatal modelling is feedback control. A basic control

problem consists of a system with an input and an output.

The objective is to feed an input into the system that causes it

to track some desired reference signal. In feedback control,

measurements of the system output are compared against the

reference signal through time, and the difference between them is

used to design an input that is fed back into the system, guiding it

is subsequent evolution through time (Figure 1). A simple

example is the regulation of room temperature by a

household boiler and thermostat (Franklin et al., 2011).

Measurements of room temperature relative to the desired

room temperature, which acts as the reference signal, provide

information to the thermostat that allows the boiler to be turned

on or off, maintaining the temperature of the house at, or near,

the desired reference temperature. Feedback control methods

have many applications across various fields of science and

engineering, including, in particular, biological sciences

(Cosentino and Bates, 2011) and generic optimisation

problems (Hauswirth et al., 2021). Since the maximum of a

function corresponds to a first derivative of zero, by setting the

system output to be the first derivative of an objective function,

and the reference signal to zero, we can reformulate the basic

feedback control problem into an optimisation problem. This

type of feedback optimisation is commonly applied in fields of

engineering (e.g., Krishnamoorthy and Skogestad, 2022).
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Applying it to stomatal optimisation we can use the same

methods to find a governing equation for the rate of change

of stomatal conductance that causes the objective function to

track the optimum through time. Such an effort could

significantly increase the viability of stomatal optimisation

models in LSMs, which in turn would improve our ability to

capture responses of vegetation to changing water availability in

the future.In this study we apply feedback optimisation

techniques to the Stomatal Optimisation based on Xylem

hydraulics (SOX) model (Eller et al., 2018, 2020). We

implement SOX within the Joint United Kingdom Land

Environment Simulator (JULES: Best et al., 2011; Clark et al.,

2011) and use three different methods: numerical iteration; an

approximate analytical solution; and feedback optimisation. We

run JULES-SOX using these three approaches at four sites across

the Amazon.

2 Methods

2.1 SOX

The Stomatal Optimisation based on Xylem hydraulics

(SOX) model is a stomatal optimisation model designed to

run within the JULES LSM (Best et al., 2011; Clark et al.,

2011). Below we provide a brief introduction to the model,

however, a full description and detailed evaluations of the

model can be found in Eller et al. (2018) and Eller et al.

(2020).SOX assumes that stomata act to maximise the

instantaneous product of leaf photosynthesis (A) and the

normalised xylem hydraulic conductance (K). The optimal

stomatal conductance (gs,opt) is found as the solution to the

following equation:

z A · K( )
zgs

gs,opt( ) � 0 (1)

The normalised xylem hydraulic conductance (K) is a

function of leaf water potential (Ψl), which itself is a function

of stomatal conductance. This K is given by the vulnerability

curve (Eller et al., 2020):

K Ψ( ) � 1

1 + Ψ
Ψ50
( )a[ ] (2)

where Ψ50 is Ψ when K = 0.5 and the parameter a gives the shape

of the vulnerability curve.Due to the complexity of the

photosynthesis model used in JULES, and the functional form

of the hydraulic conductivity equation used, a closed-form

solution for gs has not been found, and the model can only be

solved by numerical iteration (Eller et al., 2018) or by simplifying

some of its premises to produce a semi-analytical approximation

(Eller et al., 2020).

2.2 Numerical iteration

The default method for solving the SOX model is by

numerical iteration. An array of leaf internal carbon dioxide

partial pressure (ci) values is used to calculate the objective

function, (J = A · K). The value of ci that gives the greatest

value of the objective function is then used to calculate the

optimum stomatal conductance using the equilibrium

diffusion equation:

gs,opt �
A ci,opt( )
ca − ci,opt( ) (3)

where ca is atmospheric carbon dioxide partial pressure.The

difference between the solution found by numerical iteration

and the “true” solution depends on the number of different ci
values, or iterations used. For a sufficiently large number of

iterations we can neglect differences between the numerical

solution and the true analytical solution, and so for the

remainder of this study we consider the solution found by

numerical iteration to represent the true solution of the

model. When SOX has been run using this method we refer

to it as the “numerical version of SOX”.

2.3 Semi-analytical approximation

Eller et al. (2020) also present a semi-analytical

approximation to SOX:

gs,opt � 0.5
zA

zci

�����
4ξ
zA
zci

+ 1

√
− 1⎛⎝ ⎞⎠ (4)

with

ξ � 2
1
K

zK
zψ rp1.6D

where ψ is leaf water potential; rp is plant hydraulic resistance;

and D is vapur pressure deficit.This is referred to as “semi-

analytical” since it is not a true closed-form solution. For most

realistic models of photosynthesis, including those typically used

in JULES (Farquhar et al., 1980; Collatz et al., 1991), zA
zci

is not

independent of gs. Similarly, the cost function (K) in SOX

FIGURE 1
A basic feedback control system.
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depends on leaf water potential and therefore also on gs. As a

result the expression requires simplifying assumptions to be used.

Eller et al. (2020) estimate both zA
zci

and 1
K

zK
zψ numerically,

assuming both terms are constant with respect to gs and

within a model time-step. For the remainder of this study we

refer to the combination of this semi-analytical expression and

the approximations of the gradients of photosynthesis and the

cost function as the “semi-analytical version of SOX”.

2.4 Applying feedback control to stomatal
optimisation

A basic negative feedback control system consists of a system

which takes a control input (u(t)) and produces an output

(y(t)) (Figure 1). In the simplest case this output is given by

a function of the input:

y � F u t( )( ) (5)

The objective of feedback control is to design a governing

equation for the input such that the output of the system tracks a

reference signal (r(t)). This is achieved by measuring the error

between the system output and the reference signal, e(t) = r(t) −

y(t), and designing a controller that minimises this error through

time, often with the additional objectives of minimising

convergence time and overshoot, while maintaining

stability.The aim of stomatal optimisation models is to

maximise an instantaneous objective function (J). We want to

control this objective function by varying stomatal conductance

through time and hence stomatal conductance is our control

variable:

u t( ) � gs t( ) (6)

Setting the system output function (F) of our feedback

problem to be the first derivative of the objective function:

F u t( )( ) � zJ

zgs
gs t( )( ) (7)

and setting the reference signal to zero:

r t( ) � 0 (8)

we now have a feedback optimisation problem. The aim is to

design a governing equation for the rate of change of stomatal

conductance that guides our objective function towards its

maximum, and can use methods from feedback control to do so.

2.4.1 Applying feedback control to SOX
To apply feedback control to SOX it is first convenient to

non-dimensionalise the objective function by defining a

maximum value for photosynthesis (Amax). The non-

dimensional objective function is given by:

Ĵ � Â · K (9)

where

Â � A

Amax
(10)

We define Amax as the rate of photosynthesis when

intercellular leaf CO2 concentration is equal to atmospheric CO2:

Amax � A ci � ca( ) (11)

The cost function, K, in SOX is already normalised with

respect to a maximum hydraulic conductance and so this is left

unchanged.In order to apply the principle of feedback control,

the objective function must be evaluated by the control variable.

However, due to the co-limitation part of the photosynthesis

model used in JULES it is not possible to rearrange A in terms of

gs. We therefore, re-formulate the control problem in terms of ci
using Fick’s Law (Eq. 3). In order to maintain non-

dimensionality when differentiating the objective function, we

differentiate with respect to the ratio intercellular leaf, to

atmospheric CO2 concentration:

fi � ci
ca

(12)

SOX (Eq. 1) is subsequently rewritten as:

z Â · K( )
zfi

fi,opt( ) � 0 (13)

The control variable is now fi and its optimum value is

tracked by the feedback system. The optimum ci is found using

Equation 12. As with the numerical iteration solution to SOX, the

optimal stomatal conductance can be found from the optimal ci
value using the equilibrium diffusion equation (Eq. 3). Non-

dimensionalising and reformulating SOX in this way does not

alter the biological assumptions and has no effect on the

optimum gs, but they are implemented here to ensure that the

objective function (Eq. 9) and the optimised variable (fi) both

occupy the range from zero to unity.We define the rate of change

of fi using a control equation analogous to the Newton-Raphson

root finding algorithm:

dfi

dt
� − z2Ĵ

zf2
i

( )−1
zĴ

zfi
( ) 1 − exp −Δt

τ
{ }( ) (14)

where τ is a tunable time-scale parameter representing the

response time of the stomata (set to τ = 900 s by default), and

the 1 − exp −Δt
τ{ } term accounts for model timesteps (Δt) which

are non-negligible compared to τ.The derivatives for the

Newton-Raphson increment are found by first expressing

them in terms of Â and K:

zĴ

zfi
� Â

zK

zfi
+K

zÂ

zfi
(15)

z2Ĵ

zf2
i

� Â
z2K

zf2
i

+ 2
zÂ

zfi

zK

zfi
+K

z2Â

zf2
i

(16)
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The derivatives of Â and K are found numerically. It is

possible to derive analytical derivatives for both Â and K which

would allow an analytical calculation of the Newton-Raphson

increment, however by using numerical derivatives we maintain

greater generality as the photosynthesis model and cost function

can be readily changed without requiring them to have analytical

derivatives.

zX

zfi
� X fi + h( ) −X fi − h( )

2h
(17)

z2X

zf2
i

� X fi + h( ) − 2X fi( ) +X fi − h( )
h2

(18)

where h is the numerical step-size in fi (set equal to 0.0002), and

variable X is either Â or K.

2.4.2 Additional constraints
The Newton-Raphson control equation is not sufficient by

itself to track the optimum ci. In addition to the above rate

equation we implement three additional constraints.

The first is to limit the value of the second derivative of the

objective function. The Newton-Raphson algorithm is not robust

when the second derivative of the function being optimised

changes sign anywhere within the optimisation domain (i.e.

the function is not strictly convex or concave). In the case of

attempting tomaximise an objective function, this means that the

method will break down if the second derivative becomes positive

(the function is not concave). Unfortunately, the objective

function in SOX is not strictly concave with respect to fi for

all environmental conditions, and the second derivative can

become positive. To solve this, we set a maximum value for

the second derivative that prevents it both approaching zero and

becoming positive. We relate this limit to a maximum allowed

rate of change in fi:

z2Ĵ

zf2
i

( )
max

� − Ĵ′
dfi

dt( )
max

dt

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ (19)

where Ĵ′ � zĴ
zfi
, and (dfi

dt )max is a plant functional type (PFT)

dependent parameter with default values of 1.67 × 10−4 s−1 for

C3 and 1.67 × 10−5 s−1 for C4 respectively. These equate to a

maximum allowed change in fi of 0.15 and 0.015 per 15 minute

time-step, for C3 and C4 plants respectively.The second is to set a

condition for when leaf photosynthesis is limited by light and

equal to zero. In this case the objective function is equal to zero

for all values of fi, resulting in a zero first derivative and rate of

change of fi. When photosynthesis is completely limited by light,

there is no benefit for a plant to keep it is stomata open and so we

implement the condition that when absorbed photosynthetically

active radiation (APAR) is zero the rate of change of fi is given by:

dfi

dt
� − dfi

dt
( )

max

1 − exp −Δt
τ

{ }( ) (20)

Finally, the control variable, fi, is kept within the range (0,1) i.e.

intercellular leaf CO2 concentration cannot drop below 0, and

cannot exceed atmospheric CO2 concentration.

2.5 An improved big leaf model within
JULES

There are currently two options for canopy photosynthesis in

JULES, both described fully in Clark et al. (2011). The first option

is a big leaf approach, in which top of the canopy leaf

photosynthesis is scaled to total canopy photosynthesis, using

the assumption that both irradiance (Ipar) and photosynthetic

capacity (Vcmax) decline exponentially through the canopy, with

the same rate of decay.The second approach is a multi-layer

approach where gross photosynthesis is calculated for a number

of equal increments of leaf area index (LAI) through the canopy,

assuming again that both irradiance and photosynthetic capacity

decay exponentially through the canopy, although with the

option for these decay rates to differ. Mercado et al. (2007),

along with discussion in Clark et al. (2011), demonstrate the

superior performance of the multi-layer approach compared to

the big-leaf approach, in particular it is ability to capture

observed photosynthetic light responses, and diurnal cycles of

GPP.For computational efficiency, it is beneficial for the feedback

optimisation to be implemented as part of a big leaf approach,

with just a single prognostic variable for the whole canopy. For

this reason we present below a modified version of the big leaf

approach that more accurately captures the light response and

diurnal cycle of canopy photosynthesis.Photosynthesis in JULES

uses the biochemistry of C3 and C4 photosynthesis from Collatz

et al. (1991) and Collatz et al. (1992). Leaf photosynthesis is

determined by three potentially-limiting rates:

1. Rubisco-limited rate (Wc)

Wc �
Vcmax

ci − Γ
ci +Kc 1 + Oa/Ko( )( ) for C3 plants

Vcmax for C4 plants

⎧⎪⎪⎨⎪⎪⎩ (21)

where Vcmax (mol CO2m
−2s−1) is the maximum rate of

carboxylation of Rubisco, ci (Pa) is the leaf internal carbon

dioxide partial pressure, Γ (Pa) is the CO2 compensation

point in the ansence of mitochondrial respiration, Oa (Pa) is

the partial pressure of atmospheric oxygen, and Kc and Ko (Pa)

are the Michaelis-Menten parameters for CO2 and O2,

respectively.

2. Light-limited rate (Wl)

Wl �
α 1 − ω( )Ipar ci − Γ

ci + 2Γ( ) for C3 plants

α 1 − ω( )Ipar for C4 plants

⎧⎪⎪⎨⎪⎪⎩ (22)
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where α is the quantum efficiency of photosynthesis (mol

CO2mol−1PAR), ω is the leaf scattering coefficient for PAR

and Ipar is the incident photosynthetically active radiation

(PAR, mol m−2s−1).

3. Rate of transport of photosynthetic products (in the case of C3

plants) and PEPCarboxylase limitation (in the case of C4

plants) (We)

We �
0.5Vcmax for C3 plants

2 × 104Vcmax
ci
P*

for C4 plants

⎧⎪⎪⎨⎪⎪⎩ (23)

As in the original approach used in JULES and described in Clark

et al. (2011), incident radiation attenuation through the canopy is

assumed to follow Beer’s law:

Ipar L( ) � I0e
−kPARL (24)

where I0 is irradiance at the top of the canopy, kPAR is a light

extinction coefficient and L is the leaf area index through the

canopy.Similarly, it is also assumed that photosynthetic capacity

(Vcmax) varies through the canopy. Unlike the old big leaf

approach, however, we assume a distinct extinction coefficient

associated with the decline of Nitrogen through the canopy,

similar to that used in themulti-layer canopy scheme also present

in JULES:

Vcmax � Vcmax0e
−knL (25)

where kn is the decay coefficient of Nitrogen through the

canopy with the default value of 0.2.We also introduce a decay of

the quantum efficiency of photosynthesis (α) through the canopy

to account for the decline of chlorophyll content through the

canopy. The decay rate of α is assumed equal to that of Vcmax,

since both depend on canopy Nitrogen.

α L( ) � α0e
−kNL (26)

where α0 is the quantum efficiency of photosynthesis at the top of

the canopy with the default value of 0.035.To scale to canopy

photosynthesis, the three potentially-limiting rates are integrated

over the canopy to find their respective canopy average values

(denoted with a bar):

Wc � 1
Lc

∫Lc

0
WcdL � Wc0

1 − e−knLc

knLc
(27)

Wl � 1
Lc

∫Lc

0
WldL � Wl0

1 − e− kn+kPAR( )Lc

kn + kPAR( )Lc
(28)

We � 1
Lc

∫Lc

0
WedL � We0

1 − e−knLc

knLc
(29)

WhereWc0,Wl0, andWe0 are the values ofWc,Wl andWe at

the top of the canopy respectively.Average gross canopy

photosynthesis (W) is then calculated as the smoothed

minimum of these canopy average limiting rates. These are

found as the smallest root of the following set of equations:

β1Wp
2 −Wp Wc +Wl( ) +Wc Wl � 0 (30)

β2W
2 −W Wp +We( ) +Wp We � 0 (31)

whereWp is the smoothed minimum ofWc andWl, and β1 =

0.83 and β2 = 0.93 are “co-limitation” coefficients.Finally total

canopy gross photosynthesis is calculated by multiplying the

average canopy photosynthesis by canopy LAI, with the same

method also being used to calculate canopy respiration and

stomatal conductance:

W � WLc (32)

In addition to the introduction of a vertical distribution in the

quantum efficiency of photosynthesis (α), the new approach here

differs from the original big-leaf approach in the order in which

the co-limitation (Eq. 30 and Eq. 31) of the three potentially

limiting rates is calculated, and the scaling of leaf to canopy

photosynthesis. The original big leaf first calculates the co-

limitation of the three rates at the top of the canopy leaf

before scaling up to total canopy photosynthesis. Canopy

photosynthesis is therefore rarely light-limited as top of the

canopy leaves, which have the highest light conditions,

determine the total canopy rate. The new approach instead

performs co-limitation after each of the rates has been

effectively scaled to the canopy. This better accounts for the

contribution of lower canopy leaves that are typically shaded and

therefore limited by incoming light.

2.6 JULES-SOX simulations

All three versions of SOX (numerical, feedback control and

semi-analytical) were implemented into version 5.1 of the JULES

LSM, along with the updated canopy photosynthesis scheme. The

code for the feedback control version of JULES-SOX used in this

study can be found at code. metoffice.gov.uk/svn/jules/main/

branches/dev/simonjones/vn5.1_jules_SOX_feedback_control/.

The revision at time of publication is 23887. Each version of

JULES-SOX was then used to simulate plant function at four sites

across the Amazon rainforest from the LBA network (Saleska

et al., 2013). These sites include LBA-K34 Reserva Cuieiras,

Manaus Brazil; LBA-K83 Tapajos National forest, Santarem

Brazil; LBA-RJA Reserva Jaru; and LBA-K67 Tapajos National

forest, Santarem Brazil. A summary of the environmental

conditions at each site is given in the supplementary material

(Supplementary Figure S1, S2). The simulations were spun up for

25 years and run on a 15 minute time-step. Driving data is

provided from each site on an hourly basis and is linearly

interpolated to 15 min by JULES. The simulation period for

each site is as follows: K34–2003-01-01 04:00:00 to 2006-01-01

03:00:00; K83–2001-01-01 04:00:00 to 2004-01-01 03:00:00; RJA

- 2000-01-01 04:00:00 to 2002-12-31 23:00:00; and K67–2002-01-

01 02:00:00 to 2005-01-01 03:00:00. The parameters fitted in Eller
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et al. (2020) were used for SOX and are given in Supplementary

Table S1.

2.7 Model evaluation

The aim of the study is to test the ability of feedback control

to track the optimum solution of SOX found by numerical

iteration. To do this we examine both predicted daily (24-h

mean) grid-box gross primary productivity (GPP) and predicted

daily stomatal transpiration from the feedback control approach

and compare it against the same predictions from the numerical

approach across all sites. We also compare predicted GPP and

transpiration from the semi-analytical approximation against the

numerical version of SOX, and present root mean square error

(RMSE) values for both sets of comparisons. This allows us to

then compare the ability of the feedback optimisation and semi-

analytical versions to replicate the predictions made by the

numerical version.We also compare the average diurnal cycle

of predicted grid-box GPP, predicted grid-box transpiration, and

predicted leaf water potential for each version of SOX at each site,

in order investigate the ability of both the feedback control and

semi-analytical approaches to represent the sub-daily behaviour

of stomata predicted by SOX.We also assess the ability of JULES-

SOX to capture observed sub-daily fluxes at each site and

compare the average diurnal cycle of GPP predicted by each

model to the equivalent cycle of observed GPP at each site, and

across the same time period. We also compare the average

diurnal cycle of transpiration to observations, although due to

data availability this comparison is only made at site K67.

Observations are taken from Saleska et al. (2013) and GPP

and transpiration are taken as the “GEP_model” and “Fh20”

variables respectively.Finally, an important part of the

motivation behind the feedback control approach is that while

the numerical version accurately represents the assumptions

made within SOX it is computationally inefficient. So as well

as evaluating each models ability to capture the assumptions

made in SOX we also assess the computational efficiency of each

method. We do this by presenting the total aggregate time taken

to run all four sites, which provides a metric of the efficiency of

each version.

3 Results

In general the feedback control approach was able to replicate

the results from the numerical iteration approach more closely

than the semi-analytical version of SOX (Figure 2 and Figure 3).

With respect to predicted daily grid box GPP, the difference

between the two approaches was relatively small, and both were

able to replicate the result from the numerical version with

reasonable accuracy (Figure 2). Non-etheless the root mean

square error (RMSE) between predicted daily grid box GPP

from the numerical version of SOX and the feedback control

version of SOX (RMSE = 0.106) was lower than the RMSE

between the numerical and semi-analytical versions (RMSE =

0.140) across all simulations (Figure 2). In contrast, there were

more significant differences between the two approaches in terms

of predicted daily grid-box stomatal transpiration (Figure 3) and

canopy water potential (Figure 6). The feedback control version

more closely matched the numerical solution, with a significantly

lower RMSE value (RMSE = 29.4) for predicted transpiration

compared to the semi-analytical version (RMSE = 264.4)

(Figure 3). The semi-analytical version of SOX generally

predicted larger values of transpiration compared with the

numerical version (Figure 3). This was due to greater daily

maxima in stomatal conductance, and therefore greater

maxima in daily transpiration compared to the numerical and

feedback control versions of SOX (Figure 5). The feedback

control method generally predicted similar values of daily

GPP relative to the numerical version, but there was a small

bias towards lower values of daily GPP relative to the numerical

version (Figure 2). This was mostly due to a lag in stomatal

opening at dawn in the feedback control approach relative to the

numerical version, resulting in overall lower average daily values

(Figure 4).

All three approaches accurately captured the average

diurnal cycle of observed GPP at each site, with the

exception of the K34 site where the peak in daily GPP was

underestimated by all three versions of the models (Figure 4).

The similarity of the three versions of the model here is due to

the weak dependence of the light-limited rate of photosynthesis

(Wl, Eq. 22) on ci and therefore gs, which is most commonly the

limiting rate in our new big leaf scheme. All three versions of

JULES-SOX underestimated the amplitude of the average

diurnal cycle of transpiration at the K67 site, but the semi-

analytical version predicted greater daily maxima than the

numerical and feedback control versions and was therefore

closest to the observed values. The greater difference between

the approaches in terms of predicted transpiration relative to

predicted GPP is due to the greater dependence of transpiration

on stomatal conductance than that of photosynthesis in the

light-limited regime.

As expected, the numerical version of SOX was the least

computationally efficient method. To run all four sites it took

a combined time of 52 min and 52 s (3,172 s). The speed of

the numerical version depends on the number of iterations

used and the time taken of course reduces when fewer

iterations are used, although at the cost of reduced

accuracy. Both the semi-analytical and feedback control

approaches were significantly faster, with total run times

of 38 min and 4 s, and 25 min and 26 s respectively. The

efficiency of the feedback control version could be improved

further if instead of using the chain rule to calculate the

derivatives of the Newton-Raphson increment, the

derivatives are estimated directly using:
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zĴ

zfi
� Ĵ fi + h( ) − Ĵ fi − h( )

2h
(33)

z2Ĵ

zf2
i

� Ĵ fi + h( ) − 2Ĵ fi( ) + Ĵ fi − h( )
h2

(34)

This reduces the number of calculations required but results

in a slightly less accurate estimate of the derivatives and so lowers

the performance of the approach with respect to replicating the

results of the numerical version.

4 Discussion

Accurately simulating stomatal behaviour is an

important part of predicting climate change and its

impacts in the future. Stomatal optimisation theory has

shown promise as a relatively simple way to replicate

observed stomatal responses, without the need for

complex understanding of physiological processes.

However, it is use in large scale simulations of the land

surface has been limited due to the difficulties involved in

solving for optimal stomatal conductance, with methods

often compromising either on scientific accuracy, or on

computational efficiency. Applying methods based in

feedback control, we have demonstrated an alternative

approach to solving stomatal optimisation models that

may allow optimisation theory to be effectively

implemented in LSMs and used in large scale modelling

studies. Our approach significantly increases computational

efficiency relative to numerical iteration while maintaining a

close representation of the underlying assumptions made in

the optimisation model.

One of the largest challenges facing stomatal optimisation

models is defining the cost function associated with water loss

(Wang et al., 2020). Plants may experience multiple different

penalties for transpiring excessive water, including loss of

hydraulic conductance through xylem cavitation (Tyree and

Sperry, 1989; Martínez-Vilalta et al., 2014; Sperry and Love,

2015) and reduced cell turgor required for tissue expansion and

growth (Hsiao, 1973; Cosgrove, 2014; Fricke, 2017). How to

aggregate these potential costs into a single function is not

currently clear (Wang et al., 2020). The ability to implement

new assumptions into optimisation models and test them within

the context of an LSM is therefore crucial to advancing stomatal

optimisation models and improving predictions of stomatal

behaviour in the future. Unlike the semi-analytical solution of

FIGURE 2
The comparison of predicted daily grid-box gross primary production (GPP, kg C m−2 yr−1) from the numerically solved version of JULES-SOX
along the x axis against 1) feedback control version of JULES-SOX (black) and 2) the semi-analytical approximation of JULES-SOX (red) along the
y-axis, across simulations from four sites in the Amazon rainforest. The sites are LBA-K34: Reserva Cuieiras, Manaus Brazil; LBA-K83: Tapajos
National forest, Santarem Brazil; LBA-RJA: Reserva Jaru; LBA-K67: Tapajos National forest, Santarem Brazil. Root mean square error (RMSE)
values between values predicted by the numerical version and the two other versions across all simulations are presented.
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SOX, the feedback control approach can in theory be applied to

any realistic objective function, allowing new cost functions to be

readily implemented into LSMs.

Plants in JULES have been reported to have a high sensitivity

to drought events (Harper et al., 2016; Williams et al., 2018), due

in part to the empirical ‘β-factor’ approach used to represent the

effect of changes in soil moisture on canopy level photosynthesis

(Cox et al., 1998; Clark et al., 2011). This sensitivity represents a

significant component of simulating the response of vegetated

ecosystems to drought and is a key source of error betweenmodel

predictions and observations (Powell et al., 2013). Similarly, the

response of stomata to changes in vapour pressure deficit (VPD)

is traditionally controlled by the empirically derived relationship

between intercellular leaf CO2 and VPD from Jacobs (1994), as

described in Best et al. (2011). Increases in VPD can reduce

stomatal conductance and photosynthesis as the increased

evaporative demand results in greater water loss through

transpiration (Grossiord et al., 2020). Capturing this response

is crucial for predicting the future of ecosystems across the globe

as increasing VPD is a significant driver of tree mortality (Park

Williams et al., 2013). The SOX model provides a theoretical

basis that allows improved predictions of stomatal regulation

during drought and periods of high VPD (Eller et al., 2018) that

are more robust to changes in climate than the empirically

derived responses. The semi-analytical approximation for SOX

Eller et al. (2020) provides a means to implement stomatal

optimisation into JULES that is computationally efficient and

maintains some of the improved predictions of carbon and water

fluxes. However, as we have shown here this approximation does

not fully represent the assumptions made in SOX. In particular,

the semi-analytical version often mischaracterises the sensitivity

of stomata to VPD due to the linearisation of the vulnerability

curve (Sabot et al., 2022b). Applying feedback control will allow

SOX to be accurately and efficiently implemented into JULES

while preserving the fundamental assumptions made in the

model, and facilitate the implementation of alternative cost

functions that may improve the capability of SOX to predict

forest responses to extreme climate events such as drought, and

increasing global VPD.

The feedback control approach is a promising alternative

method for solving stomatal optimisation models. However,

as can be seen in Figure 2–6, the method does not track the

optimal solution perfectly. There are many potential reasons

for this, including for example, numerical errors in the

estimation of the objective function derivatives (indeed

the tracking improves when analytical derivatives are

FIGURE 3
The comparison of predicted daily grid-box stomatal transpiration (kg H2O m−2yr−1) from the numerically solved version of JULES-SOX along
the x axis against 1) feedback control version of JULES-SOX (black) and 2) the semi-analytical approximation of JULES-SOX (red) along the y-axis,
across simulations from four sites in the Amazon rainforest. The sites are LBA-K34: Reserva Cuieiras, Manaus Brazil; LBA-K83: Tapajos National forest,
Santarem Brazil; LBA-RJA: Reserva Jaru; LBA-K67: Tapajos National forest, Santarem Brazil. Root mean square error (RMSE) values between
values predicted by the numerical version and the two other versions across all simulations are presented.
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used). A more scientifically interesting difference between

the feedback control approach and the numerical solution

can be seen when looking in particular at the average diurnal

cycle of transpiration and leaf water potential at each of the

four simulated sites (Figure 5). In particular, while the

feedback method closely tracks the numerical solution

throughout the middle of the day, there is a clear

distinction between the two approaches at dawn when the

stomata first open, as in general the feedback control

approach tends to lag behind the optimal solution. This is

because stomatal conductance (or more accurately fi in this

case) is now determined by a differential equation (Eq. 14),

which introduces a time-scale into the rate of stomatal

opening. The exact mechanisms that control the

regulation of stomata are not well understood (Buckley,

2019). However, it is clear that physiological constraints

related to the size, density and structure of stomata have a

significant effect on the rate at which stomata can respond to

changing environmental conditions (Lawson and Vialet-

Chabrand, 2019). Observations show that these response

times can be an order of magnitude or more slower than the

response of photosynthesis (Lawson and Blatt, 2014; Lawson

and Vialet-Chabrand, 2019), which decouples

photosynthesis from stomatal conductance over short

time-scales and can have important consequences for

plant water use efficiency (Lawson and Blatt, 2014; Vialet-

Chabrand et al., 2017; Eyland et al., 2021). Stomatal

optimisation models do not intrinsically account for these

physiological constraints and so implicitly assume that the

rate of change of stomata is unbounded, although time-

scales can be introduced using, for example, the “prognostic

stomatal conductance” approach described by Sellers et al.

FIGURE 4
A comparison of the average diurnal cycle of predicted gross primary production (GPP, kg C m−2yr−1) from JULES-SOX solved using three
different methods (1. Numerical iteration (black), 2. Feedback control (red), 3. A semi-analytical approximation (blue))) and observed GPP at four sites
in the Amazon rainforest. (A) LBA-K34 Reserva Cuieiras, Manaus Brazil; (B) LBA-K83 Tapajos National forest, Santarem Brazil; (C) LBA-RJA Reserva
Jaru; (D) LBA-K67 Tapajos National forest, Santarem Brazil. Observed data is from Saleska et al. (2013). Error bars and shaded areas represent the
25% and 75% uncertainty percentiles.
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(1996). In the absence of detailed understanding of the

physiological mechanisms behind lagged stomatal

regulation, the feedback approach presented here presents

an efficient method for physiological constraints on stomatal

opening to be accounted for, at least implicitly, and may help

to bridge the gap between optimisation and mechanistic

approaches, allowing more accurate predictions of sub-

daily stomatal behaviour.

Feedback control has strong parallels with numerical

optimisation (Hauswirth et al., 2021). These algorithms allow

complex equations to be solved numerically and have been

applied to stomatal optimisation models previously. For

example, Anderegg et al. (2018) use the Newton-Raphson

algorithm to solve their stomatal optimisation model for

optimal stomatal conductance at each time-step. The

difference between using a numerical solver in this way, and

the feedback control approach we present here is that we do not

use multiple iterations per time-step. Instead the Newton-

Raphson algorithm determines the rate of change of fi which

is then solved through integration. It should be noted that this

limits the feedback approach to simulations with relatively

short time-steps, such as the 15 min time-step used here.

The choice of the Newton-Raphson algorithm here was

justified by our aim of replicating the numerical solution of

SOX as closely as possible, as the Newton-Raphson algorithm

typically has faster convergence than first order methods.

However, despite the fast convergence of the Newton-

Raphson algorithm and the relatively close tracking of the

optimal solution by our implementation, its use requires

additional constraints to be added to the model code that

prevent the algorithm becoming unstable and producing

unrealistic results. In particular, the algorithm is not robust

when the objective function is not concave and the second

derivative changes sign within the optimisation domain. This is

FIGURE 5
A comparison of the average diurnal cycle of predicted stomatal transpiration (kg H2O m−2yr−1) from JULES-SOX solved using three different
methods (1. Numerical iteration (black), 2. Feedback control (red), 3. A semi-analytical approximation (blue))) and observed transpiration at four sites
in the Amazon rainforest. (A) LBA-K34 Reserva Cuieiras, Manaus Brazil; (B) LBA-K83 Tapajos National forest, Santarem Brazil; (C) LBA-RJA Reserva
Jaru; (D) LBA-K67 Tapajos National forest, Santarem Brazil. Observed data is from Saleska et al. (2013). Error bars and shaded areas represent the
25% and 75% uncertainty percentiles.
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the case in SOX where under certain environmental conditions

the second derivative of the objective function can become

positive. Our solution of artificially preventing the second

derivative from approaching zero and ultimately changing

sign, by giving it a maximum value appears to have been

relatively successful here. However, we currently have no

clear method for determining what this maximum value

should be besides the tuning we have done. This may mean

that our method is not robust for all sets of environmental

conditions and future applications of feedback control to

stomatal optimisation may use more robust methods such as

the commonly used gradient ascent method. Feedback

optimisation of non-concave/non-convex functions, in

particular those that change through time, is an emerging

field (Häberle et al., 2020; Ding et al., 2021) and further

work is required to understand how these methods may be

applicable to stomatal optimisation.

5 Conclusion

We present a feedback control based approach for tracking the

optimum stomatal conductance predicted by stomatal optimisation

models through time. We apply the approach to the SOX stomatal

optimisation model, where it is able to accurately replicate predicted

GPP, stomatal transpiration and leaf water potential found by

numerical iteration. Feedback control represents a promising

avenue for stomatal optimisation models that may allow them to

be efficiently implemented into LSMs, improving the representation of

stomatal behaviour in projections of global climate in the future.

FIGURE 6
The average diurnal cycle of predicted canopy water potential (MPa) from JULES-SOX solved using three different methods (1. Numerical
iteration (black), 2. Feedback control (red), 3. A semi-analytical approximation (blue)) at four sites in the Amazon rainforest. (A) LBA-K34 Reserva
Cuieiras, Manaus Brazil; (B) LBA-K83 Tapajos National forest, Santarem Brazil; (C) LBA-RJA Reserva Jaru; (D) LBA-K67 Tapajos National forest,
Santarem Brazil. Shaded areas represent the 25% and 75% uncertainty percentiles.
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