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China is one of the world’s most seriously affected regions by water and soil

erosion. Soil erosion is a major cause and an important component of land

degradation, which has a negative impact on ecological protection and

sustainable socioeconomic development. Rainfall erosivity (RE) is one of the

key parameters to assess the degree of soil erosion. Quantifying the content of

RE and the formation mechanism is important to accurately measure the

degree of soil erosion and provide a theoretical basis for soil erosion

management. Here, this study analyzed the spatial and temporal

characteristics of RE and their driving mechanisms in the Qinba Mountains

from 1970 to 2017 using a daily rainfall model. Furthermore, geographical

detector methods were used to quantitatively identify the dominant factors

affecting RE and the dominant factors affecting RE on different topographic

reliefs. The results showed that the RE between 1970 and 2017 averaged

4,197.85 MJmm hm−2 h−1 a−1, with a mutation coefficient of 0.16. The spatial

distribution of RE is high in the southeast and low in the northwest, and the

mean annual RE declines with the increase in latitude in longitude and increases

with the reduction in longitude in latitude. In addition, precipitation and

temperature are the main factors affecting the spatial distribution of RE.

Among these, precipitation can explain about 97% of the RE and

temperature can explain about 65% of the RE. These findings should be

essential for managing soil and water loss in the North–South Transition

Zone, China.
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1 Introduction

Soil erosion causes the degeneration of land resources, and

rainfall is one of the primary dynamic factors of soil erosion

(Alewell et al., 2019; Diodato et al., 2021). Rainfall erosivity (RE),

which is the potential ability of rainfall to cause soil erosion, is a

crucial indicator for predicting soil erosion (Teng et al., 2018;

Romshoo et al., 2021; Sun et al., 2021). It can represent the

comprehensive influence of rainfall on soil erosion and rainfall

intensity, rainfall kinetic energy, and rainfall duration (Martínez-

Mena et al., 2020). To identify the potential threat of soil erosion,

improve soil erosion prediction, and conduct soil with a water

conservation plan against the backdrop of global climate change,

RE is essential to achieve an accurate assessment of the potential

effects of rainfall on soil erosion (Huang et al., 2019). At present,

RE has been widely applied in soil erosion prediction models as

the Universal Soil Loss Equation (USLE) (Wischmeier and

Smith, 1978) and the Revised Universal Soil Loss Equation

(RUSLE) (Renard et al., 1997).

Quantitative research on the degree of RE and change

mechanisms has become popular in recent years (Diodato

et al., 2013; Bezak et al., 2021). Chinese scholars (Zhang et al.,

2008; Chen et al., 2018; Yin et al., 2022) have increasingly

conducted studies on RE through various mathematical

models. Among them, the daily rainfall erosivity model

established by Zhang et al. (2002, 2003) has been the most

extensively utilized in China, mainly because the daily rainfall

data can be easily accessed and handled, which overcomes the

difficulty of obtaining rainfall kinetic energy data (Deng et al.,

2019). Therefore, given the daily precipitation data of

meteorological stations, the rainfall erosivity models on

different timescales (time, day, month, season, and year) are

successively established (Vaezi et al., 2017a). Those models are

applied to different spatial scales, namely, region, province,

mountains, and watershed (Muhire et al., 2015; Yang and Lu,

2015; Dissanayake et al., 2019; Keesstra et al., 2019; Duan et al.,

2020).

In recent years, the assessment of RE has been extensively

conducted worldwide (Kiani-Harchegani et al., 2019). A study

carried out by Singh and Singh (2020) indicated remarkable year-

to-year, seasonal, and monthly variations in the average annual

RE and erosivity density over the western Himalayan catchment

in India during 1971–2015. Panagos et al. (2016) discovered that

the intra-annual variability of RE has been high in Greece in the

past 30 years. RE was three times less erosive during the warm

seasons than during the cold seasons. Similarly, significant

differences in RE were detected during the wet and dry

seasons in Ethiopia (Nyssen et al., 2005) and the Colombian

Andes (Hoyos et al., 2005). Besides, Peter et al., (2013) analyzed

long-term trends in summer rainfall events using a long-term

(1937–2007) high resolution images (≤5 min) and found a

steeper linear trend in RE. With the TRMM multi-satellite

precipitation data, Anton et al. (2010) observed that RE was

the highest in the northern area of Madagascar and along the

west coast of Africa and that the intensity of annual RE and RE in

the summer and autumn in the south was more significant than

in the north (Gu et al., 2016). By contrast, a decrease in RE from

east to west was discovered, with the highest in the northeastern

area and the lowest in the northern parts of Brazil (Oliveira et al.,

2013). The studies mentioned earlier have been conducted on RE

on national, continental, and provincial scales, but with colossal

differences in terms of topography, climate, soil, hydrology, and

land-use practices. To resolve this problem, RE and erosivity

density assessment in time and space is required in typical

regions with climate transition.

China is one of the world’s most seriously affected regions by

water and soil erosion. The water erosion area covers about 164.88 ×

104 km2, accounting for 17.53% of the national area (Ministry of

Water Resources of the People's Republic of China, 2002). Many

scholars have researched RE in China and much remarkable

research have been published. For example, the annual rainfall

and annual RE decreased in the Chinese Loess Plateau from 1956 to

2008 (Xin et al., 2011). Liu et al. (2008) noticed that most

hydrological stations in the Yellow River Basin showed a

decreasing trend, with only two stations displaying an increasing

trend. Yin et al. (2015) developed models to calculate the RE based

on commonly available precipitation data and improved the

model’s accuracy and calculation. The RE of the eastern water

erosion impacted regions of China that were analyzed based on daily

precipitation data, which displayed that RE was high in the east and

low in the west (Xie et al., 2016). Recently, the RE in China’s Jiangsu

has been more serious in the winter and summer (Huang et al.,

2019). In addition, Yang and Lu (2015) found that during the period

1961–2012, the average annual erosion rate in the arid zone of

China showed an increasing trend, while in the dryland semi-humid

zone there was a decreasing trend. Nevertheless, there are fewer

studies of RE in the transition regions of North and South China.

Wei et al. (2019) estimated the RE in the Qinba Mountains through

63 meteorological stations, finding an apparent temporal

distribution trend. Cheng et al. (2017) studied the RE of

Southern Shaanxi over the past 55 years, which indicated that

the average RE had increased from the north to south for many

years and that the variation coefficient in winter was relatively large.

Wang et al. (2019) analyzed soil nutrient loss patterns under

different rainfall intensities in Henan Province through an

indoor artificial rainfall experiment, which showed that in the

same type of soil, nutrient loss, runoff and sediment yield

increased accordingly with increasing rainfall intensity. Through

the analysis of RE in the Hubei province, Zhang et al. (2014) found

that RE has shown an increasing trend since 1978, with the main

cycle of change of 2–3a, and that the spatial pattern has decreased

from southeast to northwest mountainous areas. In summary,

existing researchers have analyzed changes in RE in local areas

such as the Daba Mountains, Southern Shaanxi, and Henan

province. However, the Qinba Mountains belong to a complete

north–south geographical transition unit from the Daba mountains
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in the south to the Qinling Mountains, meaning that those studies

lack the analysis of RE of this complete regional unit, especially the

analysis of the influence of climate factors and environmental

factors on the temporal and spatial distribution of RE. Hence, it

is urgent to study the spatial–temporal differences of RE based on

daily precipitation data in the Qinling–Daba mountains from the

aspects of topography, longitude, and latitude. Therefore, the overall

objectives of this study are 1) to estimate the annual rainfall and

rainfall erosivity based on daily precipitation from

118 meteorological stations from 1970 to 2017, 2) to detect the

trend in spatial distribution and variations in rainfall and rainfall

erosivity, and 3) to analyze the spatial differentiation characteristics

of RE in longitude and latitude and the driving factors of RE in

different topographic reliefs. The results will provide suggestions for

curbing soil erosion and improving the ecological environment in

the region.

2 Data and methodology

2.1 Study area

The Qinba Mountains (102°24′–112°40′E, 30°43′–35°29′N), as
China’s North–South Transition Zone, are located in the central

region of China, connecting the Tibetan Plateau region to the eastern

plains and the Yangtze River Basin to the Yellow River Basin. It

covers six provinces and cities, which include Hubei, Henan,

Chongqing, Shaanxi, Gansu, and Sichuan, with an area of

3 km2 × 105 km2. The region’s topography consists mainly of

hills, basins, valleys, and plains. Most of the plains and hills are

distributed in the eastern part, with an average of about 400 m. The

western part is mainly a high-altitude area, and the average elevation

is about 1,600 m. The terrain shows a distribution pattern of being

high in the east and low in the west. The study area is characterized

by diverse climatic types and significant vertical changes, such as a

north subtropical maritime climate, subtropical warm temperate

transitional monsoon climate, and warm temperate continental

monsoon climate. The Qinba Mountains are an essential

ecological function area for biodiversity and water conservation,

with an average annual precipitation of 450–1,300 mm.

2.2 Data

Following the European evaluation standards for climate

data, this study collected daily precipitation (1970–2017) and

temperature data (2000–2017) at 118 meteorological stations

from China’s meteorological data–sharing service network

(http://cdc.nmic.cn/). Those stations with missing data of

more than 30 days were removed, and those with missing data

of less than 30 days were interpolated with the relevant adjacent

stations to ensure consistency and completeness of the

precipitation data (Wang et al., 2021). Snow was not

considered when calculating the process of RE because it does

not directly impact soil erosion (Yin et al., 2015). The

meteorological stations are shown in Figure 1. A digital

elevation model at 30 m resolution is derived from the

United States Geological Survey website (https://earthexplorer.

usgs.gov/). The elevation of the Qinba Mountains ranges from

13 to 5,528 m, with large differences in topography, uneven

rainfall distribution, and significant soil erosion. MODIS data

are collected from the 16-day MOD13Q1 products with a

resolution of 250 m synthesized by the National Aeronautics

and Space Administration (NASA), and the data were

preprocessed by the MODIS Reprojection Tool (MRT) to

extract normalized difference vegetation index (NDVI) from

2000 to 2017. The maximum-value composite (MVC) was

used to obtain the monthly average NDVI in the study area

(Meng et al., 2020; Yang et al., 2021).

2.3 Methodology

2.3.1 Calculation of rainfall erosivity
The Richardson daily rainfall erosivity estimation model

modified by Zhang et al. (2002) was applied to calculate RE,

which reads

Rhalf a month � α∑
m

k�1(Pk)β. (1)

In the abovementioned equation, Rhalf amonth

(ΜJ·mm·hm−2·h−1·a−1) is the RE value of half a month. The

threshold value of 12 mm is consistent with the Chinese

standard for rainfall erosivity (Xie et al., 2016). K is the

number of days of RE within half a month. Pk is the daily

precipitation greater than or equal to 12 mm on the K day within

half a month. The seasonal distribution of erosive forces reflected

by semimonthly periods is consistent with the USLE and RUSLE

models. α and β are model parameters and can be calculated as

follows:

α � 21.586β−7.1892, (2)
β � 0.8363 + 18.144

Pd12
+ 24.455

Py12
, (3)

where Pd12 (mm) refers to the daily average precipitation greater

than 12 mm and Py12 (mm) refers to the average annual

precipitation above or equal to 12 mm per day.

The RE of each half a month of each year is calculated using

Eqs 1–3. The monthly rainfall, annual rainfall erosivity (ARE),

and average annual rainfall erosivity (AARE) can be obtained by

summarizing.

2.3.2 Spatial–temporal characteristics analysis
method

Trend analysis, mutation analysis, and periodic analysis were

employed to analyze the changes in RE on the timescale. The
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Mann-Kendall method (M-K) was applied to calculate the

Z-value of statistics, and the changing trend in RE was

analyzed and discovered through the positive and negative

Z-values (Kendall, 1948; Alashan 2020; Wang 2020). The M-K

test has been widely applied to detect sudden changes in values in

long time series of climate data. The climate data are large and

span long periods of time. Therefore, we normally regard years as

the basic unit for research and analysis (Sa’adi et al., 2019;

Machiwal et al., 2019). If z is above 0, the sequence will show

an upward trend, and if z is below 0, it will display a downward

trend. For example, if |z| is greater than or equal to 1.96, the

mutation points of the time series of RE will be identified by the

standardized cumulative anomaly, and the rank test method will

be applied to further accurately test the mutation points. When

the statistic |U| is below 1.96, the mutation points identified by

standardized cumulative anomaly will be excluded. Wavelet

analysis was employed to analyze the periodic change of RE.

We spatially interpolated the precipitation and RE using a semi-

covariance function and co-kriging interpolation. As to the co-

kriging interpolation, we introduced elevation data as an

auxiliary variable and the resolution was 2 km (Xiao et al.,

2018; Belkhiri et al., 2020). The cross-verification method is

the use of points around each measured point to predict the

real value, and it compares the predicted value with the real value

(Sharma et al., 2022). The accuracy of the co-kriging

interpolation results was assessed by mean relative error

(MRE), mean absolute error (MAE), and root mean square

error (RMSE), and the smaller the value is, the higher the

accuracy becomes (Qi et al., 2020).

2.3.3 Topographic relief
Topographic relief (m) refers to the height difference

between the highest and lowest points within a particular area

(Shiraishi et al., 2020). In this study, the mean–variable point

methods were applied to calculate the optimal statistical unit

(18 × 18) of topographic relief in the Qinba Mountains, which is

the optimal statistical window for neighborhood analysis to

obtain the topographic relief.

TR � ALT/1000 + {[Max(H) −Min(H)] × [1 − P(A)/A]}
× /500,

(4)
where TR is the topographic relief; ALT is the average altitude in

the region; Max(H) and Min(H) are the highest and lowest

values of altitude in the region, respectively; P(A) is the area of

flat land in the region, and areas with slopes of less than 2° are

defined as flat in this article; A is the total area.

2.3.4 Geographical detector method
The geographical detector method developed by Wang and

Xu (2017) was used to conduct factor detection and analysis of

RE and calculate the degree of influence of various environmental

factors on RE in the region. The calculation equation is as follows:

q � 1 − 1

Nδ2
∑L

h�1Nhδ
2
h. (5)

In this equation, q is the detection factor (rainfall, temperature,

NDVI, DEM, longitude, and latitude) detection force value, and

q ∈ [0, 1]. The larger the q value becomes, more is the influence

FIGURE 1
Distribution map of Qinba Mountains meteorological stations.
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that factor A has on RE in the study area. N and Nh are,

respectively, the sample numbers of the Qinba Mountain

region. δ2h is the discrete variance of A in sample h, and L is

the type of the factors.

3 Results

3.1 Dynamic variation characteristics of
rainfall erosivity

3.1.1 Interannual variation of rainfall erosivity
The AARE of the Qinba Mountains from 1970 to 2017 was

4,197.85 MJ mm hm−2 h−1 a−1, showing a slight variation with a

mutation coefficient of 0.16. As illustrated in Figure 2A, the

overall trend in RE is fluctuating, displaying a three-stage change

characteristic of increasing first, then decreasing, and finally

increasing. In the first stage (1970–1984), the RE showed a

rising trend of fluctuation, and it then gradually decreased in

the second stage (1984–1995). During the third stage of

1995–2017, the RE fluctuated from 3,157.31 to

3,954.75 MJ mm hm−2 h−1 a−1. According to Figure 3, the

wavelet analysis was introduced to conduct periodic analysis

of RE. It was found that RE presented a periodic change of

5–10 years.

The variation trend of annual precipitation (Figure 2B) is

consistent with annual RE (Figure 2A). During the past 50 years,

the maximum precipitation was 1,046.98 mm in 1983, and the

maximum RE was 5,264.11 MJ mm hm−2 h−1a−1 in 1980. The

lowest precipitation was 560.76 mm in 1997, and the minimum

FIGURE 2
Trend analysis of RE (A) and precipitation (B) in Qinba Mountains.

FIGURE 3
Wavelet analysis of RE (A) and M-K test (B) in Qinba Mountains.
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RE was 3,157.31 MJ mm hm−2 h−1a−1 in 1995. The results

demonstrated that the maximum precipitation did not

coincide with the occurrence time of the maximum RE, and

the maximum value of RE was 3 years earlier, and the minimum

value was 2 years earlier, compared with precipitation. The

maximum and minimum precipitation values differed by

1.86 times, but the maximum and minimum values of RE

differed by 1.66 times, meaning that the variation range of

precipitation is more extensive than RE. The variation

coefficient of annual RE (0.16) was higher than that of the

annual precipitation (0.12), illustrating that the interannual

change of RE was more significant than the interannual

change of precipitation. Figure 3 indicates that the amplitude

changes of UF and UB are similar, suggesting a fluctuation trend

of first increasing, then decreasing, and again increasing. The

positive series (UF) represented a fluctuation trend from 1970 to

1983, a slow decline from 1983 to 2003, and a gradual rise from

2004 to 2017. The reverse series (UB) showed a declining trend

from 1970 to 1979, a rising trend from 1980 to 1991, and an

ascending trend from 1992 to 2017. The change in UB was more

intense. UF and UB, respectively, had an intersection point

between 1988 and 1989, 2006 and 2007, and 2007 and 2008.

The positive sequence (UF) exceeded the critical value of 1.96 in

1984, and the inverse sequence (UB) went beyond the critical

value of −1.96 in 2009 because the mutation point in 2007 and

2008 was the closest to 2010 and displayed a trend of significant

decline, which further indicates that RE mutations in the Qinba

mountains had occurred in 2008.

3.1.2 Variation of seasonal rainfall erosivity
Considering the seasonal differences of precipitation, spring,

summer, autumn, and winter are correspondingly divided into

March–May, June–August, September–November, and

December–February. As shown in Figure 4, RE slumps in

spring and summer and soars in autumn, and the changes in

winter are small and can be ignored. From 1970 to 2017, in

spring, the average RE was 243.20 MJ mm hm−2 h−1 a−1,

accounting for 5.79% of the annual average RE, and the

average RE decreased by 9.16 MJ mm−2 h−1 a−1 per 10a, with a

Z-value of −2.60, showing a significant decreasing trend. In

summer, the average RE was 1,660.73 MJ mm hm−2 h−1 a−1,

accounting for 39.56%, and the changing trend was first

FIGURE 4
Variation trend of Spring (A), Summer (B), Autumn (C) and Winter (D) in Qinba Mountains.
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decreasing, then increasing, and again decreasing. In 1999, the

maximum values of RE appeared in spring. The variation law of

autumn annual RE was similar to that of interannual RE, which

was 2,044.84 MJ mm hm−2 h−1 a−1, accounting for 48.71% of the

annual average RE. The average RE increased by

217.65 MJ mm hm−2 h−1 a−1 per 10a, exhibiting a significant

increasing trend (z = 1.36). In winter, since snowfall did not

directly affect soil erosion, snow is not considered in the

calculation of winter RE. As a result, the proportion of

average RE was relatively small (5.94%).

3.2 Spatial analysis of rainfall erosivity

3.2.1 Spatial distribution analysis
Based on the ArcGIS 10.3 platform, semi-covariance

functions and kriging interpolation were examined to

interpolate the average annual rainfall erosivity (AARE) and

average annual precipitation (AAP) in the Qinba Mountains

from 1970 to 2017. The semi-covariance function shows that the

AARE is a spherical model, and AAP is a Gaussian model. The

accuracy of the kriging interpolation was verified through the

cross-verification method, and the results showed that MAE and

RMSE were less than 1, demonstrating the credibility of the

AARE and AAP interpolation results. As illustrated in Figure 5A,

the spatial distribution characteristics of AARE were high in the

southeast and low in the northwest, which was consistent with

the distribution rule of AAP (Figure 5B). The AAP gradually

dropped from above the average precipitation line of 800 mm in

the southeast to below the average precipitation line of 200 mm

in the northwest, and the AARE dropped from above the average

RE line of 9,000 MJ mm hm−2 h−1 a−1 in the southeast to below

the average RE line of 3,000 MJ mm hm−2 h−1 a−1 in the

northwest. The distribution center and the high value of the

AARE were consistent and distributed in the southeast. The

high-value distribution center of AAP was consistent with the

AARE, which was distributed in the southeastern part. The low

value was distributed in the northwestern part, but the

distribution area of AARE was more widespread.

3.2.2 Analysis of spatial variation trend of rainfall
erosivity

To further analyze the trend of the annual RE changes, the

statistical Mann-Kendall Z-value and coefficient of variation (Cv)

of 118 weather stations from 1970 to 2017 were calculated.

Meanwhile, semi-covariance functions and kriging

interpolation were applied for interpolation. The Mann-

Kendall Z-value is more suitable for the linear model, and Cv

fits the spherical model more. The cross-verification results

display that the MAE is 0.001 and RMSE is 1.02 in the

Mann-Kendall Z-value and that the MAE is 0.08 and RMSE is

0.14 in the Cv (Figure 6).

As Figure 6A demonstrates, there are pronounced regional

differences in the distribution of the RE coefficient. The spatial

distribution characteristics are high in the middle and low in the

surrounding region, showing that in the central region, the RE

was increased and that water conservation measures should be

implemented to prevent further soil erosion in the central

region (Muhire et al., 2015). RE was declining around the

study area boundary, but most of them failed to pass the

significance test (|Z| was below 1.96). Figure 6B also

illustrates that the variation coefficient of RE was relatively

stable (Cv was below 0.2), showing a distribution pattern of

being high in the west and low in the east. Located in a high-

altitude area, the terrain in the western region is complex, and

the coefficient of variation was relatively large. Also, the annual

rainfall was unstable, and the interannual RE varied greatly. The

variation coefficient decreased from west to east in the Qinba

Mountains, indicating that the precipitation tended to be stable

from west to east, and the interannual variation of RE gradually

FIGURE 5
Spatial distribution of AARE (A) and AAR (B) in Qinba Mountains.
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decreased, mainly caused by the dual influence of topography

and climate.

3.2.3 Variations in longitude and latitude of
rainfall erosivity

Four lines of latitude and longitude (32.67°N, 33.96°N,

107.05°E, and 108°E) were selected to analyze the trends in the

AARE of the QinbaMountains in the longitudinal and latitudinal

directions. Figure 7 indicates a trend of increasing and then

decreasing, with increasing longitude at different latitudes, and

the trend line displays a sharper increase at 33.96°N than at

32.67°N. The highest value of AARE (9,085.31 MJ mm hm−2 h−1

a−1) at 32.67°N appears at 108.41°E, while the highest value

(5,750.45 MJ mm hm−2 h−1 a−1) at 33.96°N appears at 107.96°E,

with a difference of 1.57 times and a deviation of 0.45°E.

Meanwhile, both 32.67°N and 33.96°N indicate that RE is

more noticeable in areas with flatter topography, mainly due

to the flatter topography being influenced by the monsoonal

climate with abundant rainfall (northern hemisphere). The

AARE tends to drop with increasing latitude at 107.05°E and

110.52°E (Figure 8). The highest value is 9,593.04 MJ mm hm−2

h−1 a−1 and the lowest is 4,245.61 MJ mm hm−2 h−1 a−1 at

107.05°E, with a decrease of 2.26 times. At 110.52°E, the

highest (8,022.83 MJ mm hm−2 h−1 a−1) and the lowest

(4090.49 MJ mm hm−2 h−1 a−1) values of RE are decreased by

1.96 times. Compared with 110.52°E, the decreasing trend of

AARE is more apparent at 107.05°E.

3.3 Spatial differentiation of rainfall
erosivity on topographic relief

3.3.1 Analysis of topographic relief features of
Qinba Mountains

Based on the research by Shiraishi et al. (2020) and

considering the complex geomorphic features of the Qinba

Mountains, the topographic relief (m) was divided into four

categories: micro-topography (below or equal to 140), small

topography (140–250), medium topography (250–370), and

large topography (above or equal to 370). The topographic

FIGURE 6
Spatial distribution of Mann-Kendall Z-value (A) and coefficient of variation (B) of rainfall erosivity in Qinba Mountains.

FIGURE 7
Distribution of RE along 32.67°N (A) and 33.96°N (B).
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relief degree is mainly small topography (39.08%), distributed

alternately with the middle relief area. The second is the medium

topography (28.88%), distributed in the southwest and central

parts. The third is the large topography, accounting for 10.37%,

mainly distributed in the southwest with a high elevation and

along the ridgeline from west to east like a belt. Micro-

topography (21.67%) is mainly on the border of the central

Hanzhong Basin and eastern border of the Qinba Mountains

(Figure 9; Table 1).

3.3.2 Spatial differentiation of precipitation and
rainfall erosivity on topographic relief

Figures 10A–D display the corresponding AAP changes

that exist in different topographic reliefs. The AAP in the

micro-topography showed a distribution pattern of being high

in the southeast and low in the northwest, with fewer areas of

high AAP and low AAP concentrated in the northwest of the

study area. The APP distribution pattern in the small

topography is similar to that in the medium topography,

decreasing from southeast to northwest. The main reason is

that the Qinba Mountains pass through the Qinling–Huaihe

Line, and the study area is a subtropical monsoon climate,

resulting in high precipitation. Due to the small area of large

topography in the topographic relief, the AAP was scattered

with a decreasing trend from south to north. The AAP low-

value area was concentrated in the southwest, while the AAP

high-value area was not evident. The distribution of the AARE

over different topographic reliefs is shown in Figures 11A–D.

The RE in the micro-topography gradually decreases from the

southeast to northwest, which is consistent with the variation

of the AAP in the topographic relief. The sum of the RE

distribution in the small and medium topographies accounts

for 67.96%, with a decreasing trend from the east to west and

from the south to north, mainly because of the influence of the

monsoon climate on the eastern and southern areas and the

superior hydrothermal conditions there. However, the

northern and western areas are less affected by the

monsoon climate, and the topography is complex, leading

to a lower value of RE.

3.4 Study of influencing factors on rainfall
erosivity

Considering precipitation, NDVI, temperature, latitude

and longitude, elevation, and topographic relief, the

geospatial detector model was applied to explore the

influencing factors of RE in the Qinba Mountains, identify

the important indicators affecting the spatial distribution, and

analyze the differences of the influence factors on the four

topographic reliefs. As shown by Table 2, RE is most affected

by precipitation, with a q value of 0.97. The second is the

temperature (q = 0.65), and the factor with the smallest effect

is NDVI (q = 0.24). Based on the q value of the geographic

detector, the influencing factors of RE are ranked in the Qinba

FIGURE 8
Distribution of RE along 107.05°E (A) and 110.52°E (B).

FIGURE 9
Topographic relief of Qinba Mountains.
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Mountains as follows: precipitation, temperature, longitude,

latitude, and elevation.

There are differences in the factors influencing RE at

different topographic reliefs, and precipitation is the most

influential factor (q = 0.97). The temperature has similar

effects on the four topographic reliefs, and the impact is most

apparent in regions with large topography (q = 0.72). The

NDVI has apparent differences in different topographic

relief degrees, with the micro-topography being the

greatest (0.34) and the large topography being the smallest

(0.23), mainly due to the high vegetation coverage and high

interpretation accuracy in low-altitude areas. Elevation has a

strong correlation in RE with the increase of topographic

relief. The correlation is the highest in the area with large

topography (0.49), indicating that the greater the

topographic relief, the greater the degree of RE. The

correlation between the longitude and RE becomes

stronger as the topographic relief becomes higher, while

the correlation between the latitude and RE decreases with

the increase of topographic relief. The results show that the

sensitivity of RE to longitude is the highest in large

topography, and the sensitivity of RE to latitude is

stronger in small topography.

4 Discussion

Similar findings have also been revealed in other studies

(Vijith and Dodge-Wan 2019; Chang et al., 2022; Johannsen

et al., 2022), but the results of this study further display that

due to the uneven seasonal distribution of precipitation, the

RE has significant seasonal variation. Through semi-

covariance function, co-kriging interpolation, and cross-

validation, we corroborated the accuracy of RE, and the

TABLE 1 Statistical results of topographic relief in Qinba Mountains.

Topographic relief Pixel quantity (number) Area (km2) Area ratio (%)

≤140 (micro-topography) 76341852 66,635.21 21.67

140–250 (small topography) 137705184 120,196.42 39.08

250–370 (medium topography) 101736324 88,800.87 28.88

≥370 (large topography) 36545580 31,898.92 10.37

Total 341728940 307,531.42 100

FIGURE 10
Spatial distribution of average annual precipitation over micro-topography (A), small topography (B), medium topography (C), and large
topography (D).
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results indicate that the accuracy of the co-kriging

interpolation results meets the research requirements (Qi

et al., 2020; Sharma et al., 2022). Panagos et al. (2016)

noticed that erosivity density is relatively low in the first

5 months (January–May) and higher in the remaining

7 months (June–December) of the year. High seasonality

was present in the distribution of precipitation, and the

seasonality of RE was strong (Lee and Julien, 2018; Galicia

et al., 2019; Zhu et al., 2020). The abovementioned research

proves that convective rain is the primary precipitation type in

summer, with more extensive precipitation and higher

intensity, leading to more noticeable changes in RE. In

spring or autumn, frontal precipitation is dominant, and

smaller precipitation is related to weaker intensity and

lowers RE.

Furthermore, Yang and Lu (2015) noticed that RE showed

a significant increasing trend accordingly to an increase in

precipitation from the northwest to southeast in China’s

dryland region. In the Qinba Mountains, the AARE

declines from the southeast to northwest, with a decrease

in precipitation. The southeast of the Qinba Mountains is the

region with a high RE and precipitation distribution value,

mainly due to the humid climate and flat topography in the

eastern region. Yang et al. (2017) observed that RE displays an

increasing trend in space in the Northern Shaanxi Plateau.

The distribution of RE is consistent with that of precipitation.

In most areas of Jinan, an insignificant increasing trend was

discovered (Xu et al., 2018), where the spatial variation of RE

is slight, showing a high distribution pattern in the west and a

low distribution pattern in the east. Topography is the critical

FIGURE 11
Spatial distribution of average annual rainfall erosivity over micro-topography (A), small topography (B), medium topography (C), and large
topography (D).

TABLE 2 Statistical results of q values of influencing factors of rainfall erosivity in Qinba Mountains.

Degree
of topographic relief

Precipitation Temperature NDVI Elevation Longitude Latitude Topographic relief

Micro-topography 0.97 0.65 0.34 0.32 0.46 0.58 —

Small topography 0.97 0.65 0.31 0.33 0.46 0.48 —

Medium topography 0.97 0.66 0.25 0.39 0.47 0.32 —

Large topography 0.97 0.72 0.23 0.49 0.63 0.24 —

Qinba Mountains 0.97 0.65 0.24 0.34 0.47 0.39 0.34
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factor affecting the spatial variation coefficient of RE, and

AARE is affected by many factors, thus leading to the

significant variation coefficient of RE in local areas.

Overall, existing studies mainly focus on the

spatial–temporal variation of RE, but there is still a lack of

studies on the variation of RE in longitude, latitude, and

topographic relief. Liu et al. (2008) found that the

precipitation possessed longitude zonality and had no clear

linear relationship with latitude. In this study, four longitude

and latitude lines such as 32.67° N, 33.96°N, 107.05°E, and

108°E were selected to analyze the variation of RE. The results

demonstrate that the increasing trend of 33.96° N is more

evident than that of 32.67°N. When compared with 110.52°E,

the decreasing trend of AARE is more marked at 107.05°E.

The overall change trend is consistent with the spatial change

of RE. In terms of different topographic reliefs, RE is mainly

concentrated in the small- and medium-relief areas, with a

distribution trend of being high in the southeast and low in

the northwest. Plateau is the primary geomorphic type of

large topography, concentrated in the northwestern part of

the Qinba Mountains, where the effects of extreme weather

and hydrological influence are relatively marked (Wang et al.,

2021). In this area, the topographic relief is complicated, and

the western and northern regions are less affected by the

monsoon climate, thus displaying an RE trend of being high

in the southeast and low in the northwest (Talchabhadel

et al., 2020; Xu et al., 2021).

In addition, this research also studies the influence of

different environmental factors on RE, indicating that

precipitation exerts the most significant influence on RE

and vegetation NDVI has the weakest effect on RE. The

influence of sunspots and the Arctic Oscillation on RE is

also essential (Cai et al., 2016). Precipitation is the

dominant factor affecting RE (Liu et al., 2018; Zhu et al.,

2019; Chen et al., 2020; Rutebuka et al., 2020). In our research,

precipitation has the most noticeable influence on RE in

different topographic relief degrees, mainly because the

daily precipitation model calculates RE through daily

precipitation data. Besides, temperature, elevation,

longitude, latitude, and NDVI all have a particular

influence on RE. The results presented in this article will

deepen the understanding of the formation mechanism of

RE. Multisource data fusion will be an essential direction to

study RE in future processes. Remote sensing satellite product

data will be applied to analyze RE in the Qinba Mountains, and

the spatial–temporal variation of RE and its impact on soil

erosion will be thoroughly studied. This study systematically

investigates RE’s spatial and temporal variation and the

driving mechanisms in the Qinba Mountains. Also, the

article enriches the study of the transition zone from the

north subtropical to the south warm temperate climate and

can provide a reference for the study of soil erosion in

mountainous areas of other climate transition zones in the

world.

5 Conclusion

This study calculated rainfall erosivity based on daily

precipitation data from 1970 to 2017 in the Qinba

Mountains. The spatial and temporal characteristics of RE

and precipitation were systematically analyzed. Seasonal

fluctuations and interannual differences in RE were

explored by applying the wavelet analysis. Also, the

distribution of precipitation and rainfall erosivity at

different topographic reliefs were measured, and the main

control factors of RE were identified with geographical

detectors. The results show that 1) from 1970 to 2017,

AARE was 4,197.85 MJ mm hm−2 h−1 a−1 in the Qinba

Mountains, with a mild variation coefficient of 0.16. The

interannual variation trend shows a three-stage feature of

first increasing, then decreasing, and again increasing,

presenting a 5–10a periodic variation. The seasonal

change displays that RE decreases significantly in spring

and summer, increases sharply in autumn, and increases

insignificantly in winter; 2) the spatial pattern of RE is high

in the southeast and low in the northwest, and the spatial

distribution of the area with high AARE is consistent with

that of the area with high AAR. There are differences in RE’s

distribution in different topographic reliefs. RE is more

intense in small-topography and medium-topography

areas, with an overall trend of being high in the south and

east and low in the north and west. Moreover, the AARE

decreases with the increase of latitude in longitude and

increases with the increase of longitude in latitude

(northern hemisphere); 3) precipitation has the dominant

impact on RE in the Qinba Mountains (q = 0.97), and NDVI

has the weakest impact on RE (q = 0.24). The study provides

the rank of the influencing factors of RE from the most

influential to the least influential: precipitation, temperature,

longitude, latitude, elevation and topographic relief, and

NDVI. With the increase of topographic relief, the

correlation between temperature, elevation, longitude, and

RE increases, while the correlation between NDVI and

latitude and RE decreases.
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