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Air pollution is a global health issue, which especially affects people living in

highly urbanized areas. Many large cities in the developing world are highly

heterogeneous in population density and socioeconomic conditions. Under

these circumstances, relying on classical air quality indexes may not be

sufficient to provide a detailed view of the impact of air pollution. In the

paper, we propose an enriched spatial analysis of air pollution. By

performing spatial temporal Kriging on PM2.5 concentration, we obtain a

detailed map of its spatial distribution. Then, we integrate the population

and socioeconomic features to produce a measure of the inequality

between different demographic groups. We consider as a working case the

city of Bogotá, where demographic features are heterogeneous across different

districts. The results of our analyses identify a highly polluted cluster located in

the south-west cluster of the city. Within this cluster, we observe a

disproportionate representation of people from several vulnerable groups.

Overall, our analysis points out significant inequities with regard to the

exposure to poor air quality. The analysis we conduct for the city of Bogotá

is perfectly repeatable on any urban area equipped with an air quality

monitoring network.
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Introduction

During the last few decades, air pollution has become one of the main public health

issues worldwide. The World Health Organization (WHO) estimates that in 2019 around

90% of the world population lived in places where air pollutants concentrations levels are

considered dangerous (World Health Organization, 2021), with an estimated seven

million deaths per year due to the deleterious effects of poor air quality.

Particulate matter respirable fraction (PM10) and fine fraction (PM2.5) are among the

most hazardous air pollutants, with recognized harmful effects on people’s health. The

small diameter of these particles allows them to deeply penetrate the lungs and then into

the blood stream of exposed people, reaching all tissues. Multiple epidemiology studies
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have found a high positive correlation between ambient air

particulate matter concentrations and the incidence of

respiratory diseases, ischemic heart disease, lung cancer and

stroke (Atkinson et al., 2014; Xing et al., 2016; Cohen et al.,

2017). In addition, people’s exposure to PM2.5 positively

correlates with the incidence of several other pathological

conditions (Fajersztajn et al., 2017).

The WHO has established guidelines that prescribe limits of

the acceptable air pollution concentration levels. Such threshold

values have been set to offer quantitative health-based

recommendations for air quality management: PM10 and

PM2.5 annual concentrations guidelines are 15 μg/m3 and

5 μg/m3 respectively, and PM10 and PM2.5 24-h concentrations

guidelines are 45 μg/m3 and 15 μg/m3 respectively (World Health

Organization, 2021). National governments also have the

responsibility for setting their own air quality standards.

Colombia’s national regulations set PM2.5 standards as 25 μg/

m3 for the annual concentration and 50 μg/m3 for the 24-h mean

(MinAmbiente, 2017).

Different indicators and indices have been established to

quantify and communicate air quality and human health impacts

(Hsu et al., 2013; Sheng and Tang, 2016; Franco et al., 2019). A

commonly used one is simply called Air Quality Index (AQI,

hereafter), and is generally defined as the maximum of the

individual AQIs of a set of selected pollutants. Each individual

AQI is estimated as the ratio between the measured

concentration of an air pollutant and its established reference

value, multiplied by 100. Thus, independently from the specific

threshold values set for a pollutant, a value of individual AQI

equal to 100 for a pollutant corresponds to a measured

concentration that is exactly equal to the threshold value set

in the air quality standard (EPA, 2003).

Many large urban areas around the world monitor AQI

levels, using data coming from air quality monitoring

networks. The monitored AQI levels are used by local

authorities to support decision making when defining and

implementing policies/regulations aimed at improving air

quality (MinAmbiente, 2008). To facilitate AQI interpretation

by the general community, the WHO established a set of six AQI

ranges, which map AQI values with health concerns. The six

ranges are named Good, Moderate, Unhealthy for Sensitive

Groups, Unhealthy, Very Unhealthy, and Hazardous. While

the simplification provided by AQI ranges is useful for

communication purposes, it is easy to recognize that AQI is a

highly aggregated index that does not convey sufficient

information for managing air quality. For instance, it does not

allow tracking down which pollutant is determining its value.

Poor air quality is a major issue in many developing

countries, especially in those that are still experiencing

accelerate growth of urban areas, as it happens in all of Latin

America (Peláez et al., 2020). For the specific case of the capital

city of Colombia, Bogotá, PM10 and PM2.5 ambient

concentrations frequently exceed national standards (Mura

et al., 2020). In a large city like Bogotá, the uneven

distribution of emitting sources and the effects of meteorology

cause different zones of the city experiencing very distinct air

pollutant concentration levels (Díaz et al., 2021).

The existence of spatial gradients of air pollution makes more

complex the evaluation of the potential effects that poor air

quality has on the health of citizens. Moreover, since the

population density is highly variable among Bogotá districts,

even for areas with similar AQI the magnitude of the effects on

health might be quite different. Finally, other factors such as the

age distribution and socio-economic conditions of inhabitants

also vary widely across distinct areas of the city. This means that

the percentage of people belonging to sensitive groups will also

vary geographically, and the same applies for the possibility of

getting access to high quality health services. Hence, metrics

more informative than AQI are crucial to better understand air

pollution impacts on people living in large urban areas. Such

indicators should take into consideration the spatial distribution

of pollutants together with geographical variables that measure

demographic and socio-economic aspects.

Several previous works have approached the spatial analysis

of the exposure to air pollution, enriching it with additional

variables that characterize age and socio-economic status. For

example, (Jerrett et al., 2001), is among the first ones to study the

association between a population’s social economical status and

exposure to the PM2.5, focusing on a Canada city. Using universal

Kriging for spatial interpolation and auto regressive modeling,

the study found that areas with lower social and economic status

have greater exposure to PM2.5 pollution. More studies then

followed up to quantify the social and air pollution exposure

disparities, as discussed in the review work by Hajat et al. (2015).

More recently, (Ouyang et al., 2018), used ordinary Kriging and

land use regression models to obtain detailed predictions of

exposure to PM2.5 for subgroups characterized by age and

education level in the city of Beijing. This study used an

inequality index to estimate the differences among groups,

finding that children and elders are disproportionately

exposed to air pollution. These studies provide evidence of the

importance of multi-dimensional analysis when assessing

exposure to air pollution, and should be taken into

consideration by decision makers and regulators to propose

effective policies aiming at improving the quality of urban

living (Morello-Frosch et al., 2011).

This paper has the objective of demonstrating the resulting

insights from the combined analysis of spatially distributed data

and additional age and socio-economic variables, having Bogotá

(Colombia) as a case study. The city provides an excellent case

study, since demographic and socio-economic data are available

at multiple levels, frommajor administrative subdivisions such as

districts, down to the finest granularity level of the blocks. Such

an abundance of detailed data is a trait that distinguishes the

work reported in this paper from previous literature. The study

has a descriptive nature, and integrates several open datasets
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made available by public institutions of the city. In particular, air

quality measurements are obtained from a dedicated repository

of the Environment Secretariat of the city, which stores the

hourly values of air pollutant concentrations collected by a

network of automatic monitoring stations (Environment

Secretariat of Bogotá, 2022). Demographic and socio-

economic data are available at the open-data repository Datos

Abiertos Bogotá (Bogotá City Government, 2022). Air quality

measurements are interpolated using Kriging simulation, which

allows generating a prediction of PM2.5 concentration for any

location of the city. This spatial distribution of air pollution is

then combined with the demographic and socio-economic data

to characterize at the local level the exposure to poor air quality,

and then aggregated to obtain informative views at the city level.

The rest of this paper is structured as follows. Section

2 provides the background information about air quality

monitoring in the city of Bogotá, and provides a first view

about the spatial distribution of air pollution in the city.

Section 3 describes the task of the interpolating data provided

by the air quality monitoring network, to obtain a high-

resolution spatial distribution of PM2.5. Then, using the spatial

distributions of air pollution and of population density, Section

4 proposes a detailed analysis of the population’s exposure. In

this same section, unsupervised clustering is applied to

automatically detect areas of the city that exhibit very distinct

profiles of exposure. In Section 5, a socio-economic indicator

specific to the city (the stratum) is introduced to add a new layer

into the analysis. Coupling the geographical distribution of PM2.5

and the socio-economic conditions allows differentiating

exposure to poor air quality for groups with distinct level of

wealth and access to health services. The combined effects of the

geographical distribution of air quality and age distribution

across the city are analyzed in Section 6. Finally, conclusions

are given in Section 7.

Air quality monitoring in Bogotá

The city of Bogotá is located on a plateau besides the eastern

Andean cordillera, at an altitude of approximately 2,600 m above

sea level. With an urban area of 307Km2, the city has been

witnessing a sustained growth of population, and in

2018 accounted to around eight million people, approximately

one sixth of the total country population (DANE, 2018). Such a

number of people in an urban area demands services and

industries that need fossil fuels to operate, being drivers of air

pollution. In 1997, an air quality monitoring network (Red de

Monitoreo de la Calidad del Aire—RMCAB) was deployed in

Bogotá. The RMCAB is currently equipped with 14 monitoring

stations, 12 of which are fixed stations, one is dedicated to the

measurement of meteorological variables, and the last one is a

mobile station (Environment Secretariat of Bogotá, 2020).

As shown in the map reported in Figure 1, the 14 RMCAB

stations are geographically distributed across 12 of the

20 districts (called localidades in Spanish) of the city. Each

station measures air pollutants and meteorological conditions,

FIGURE 1
Stations of the RMCAB air quality monitoring network of Bogotá. Source: Secretaría Distrital de Ambiente, https://www.ambientebogota.gov.
co/estaciones-rmcab.
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and sends hourly reports to the RMCABmain offices, where the

data undergoes several validation processes before being made

available for public access. Since its was first deployed, several

technology updates have occurred, and PM2.5 measurement

capabilities were progressively phased in. As a result, the

availability of PM2.5 monitored data has been increasing over

time. A recent study of the RMCAB stored data has shown that

the reporting of valid PM2.5 concentration levels was highly

discontinuous until 2014, and its overall availability less than

15% (Mura et al., 2020). After 2014, the PM2.5 data availability

has significantly improved, reaching levels between 80%–90%

in 2017 and 2018.

According to the equipment specifications published by the

Secretariat of Environment, 13 out of the 14 stations are equipped

to measure and report the concentration levels of PM2.5. For the

period 2015–2018, valid PM2.5 measurements were found

available for 10 of the stations, which are those that in the

map in Figure 1 are marked by solid red triangles and in the

table at its right are listed with a white background.

We show in Figure 2 the box-and-whiskers plots (whiskers

length equal to 1.5 interquartile ranges) of the daily average

concentration of PM2.5 measured at each monitoring station of

the RMCAB. A separate plot is reported for the average daily data

points of each year, from 2015 to 2018. Figure 2 also reports the

guideline value set for the daily average PM2.5 concentration by

the WHO and the Colombian national standard. It can be

observed that median values recorded at Carvajal, Kennedy

and Puente Aranda stations exceeded the most recent WHO

guideline in all the years of the considered period, other stations

such as Suba and Las Ferias are showing a tendency to

improvement, and the remaining ones are below the

threshold. However, 6 out of the 10 stations exceed the

national standard value of 50 μg/m3 (upper whiskers outside

the solid line). Additionally, a large number of outlier data points,

which are further above the national standard, have not been

reported in the boxplot chart in Figure 2.

Here, it is important to clarify that air pollution

measurements collected beyond year 2018 will not be taken

into consideration in this work. We contend that 2018 was

the last year for which the measurements of the RMCAB can

represent historical trends in Bogotá’s air quality. In fact, as of

2019 the city began the modernization of its public transport

fleet, which is still in progress. Also, the environmental authority

started changing the instrumentation at some of the monitoring

network stations. Finally, the city had two atypical years for

traffic and industry during the COVID-19 pandemic (2020 and

2021). In our analyses, we consider the measurements from the

10 monitoring stations identified in Figure 1 as being all equally

representative of the local level of exposure to PM2.5. We

acknowledge that the exact placement of the monitoring

instruments determines the representativeness of the collected

measurements, and that ideally, we should have used only

stations whose measurements can estimate background

pollutant concentration levels. On he other hand, the

relationship between the type of station and the level of PM

concentration measured is not so direct, and in the case of Bogotá

many studies have shown that the pollutant levels reported y the

monitoring stations are indeed characteristics of the geographical

districts. Also, these 10 stations are routinely used by the

environmental management authority to characterize the

status of air quality in the city. All in all, we opted for

including all these 10 stations in our analyses, ensuring that

the measurements are reasonably covering the urban area of

the city.

As it can be appreciated from Figure 2, air quality in Bogotá

greatly varies across the city. The median daily average value of

FIGURE 2
Boxplots of average daily PM2.5 concentration measured at the RMCAB monitoring stations, from 2015 to 2018.
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PM2.5 concentration measured at the station of Carvajal in the

south of the city is about three times the one measured in San

Cristóbal (still in the south) and in Usaquén (in the north). These

differences are caused by the heterogeneous distribution of

emission sources such as industrial activity hot-spots and

highly intensity traffic corridors, as well as the combined

effect of geography and meteorological factors. Clearly, people

living nearby more polluted areas, such those in the proximity of

Carvajal and Kennedy monitoring stations, will be exposed to

significantly poorer air quality compared to the inhabitants

residing in other areas the city.

The large differences that exist among the areas of the city

make clear that spatial gradients convey significant information

about the state of air quality in Bogotá. While most analyses have

focused on understanding how air pollution changes over

time—see for instance (Mura et al., 2020), obtaining a precise

picture of the impact of PM2.5 air pollution requires taking into

consideration the information about its spatial distribution. For

instance, given the large differences in pollutant concentration

levels across city districts, a question that naturally arises is which

group of the city population is exposed to the worst/best air

quality. Also, a more precise characterization of the impact could

be obtained by taking into account further details about the

distribution of sensitive groups (young and elder) or the

possibility of getting access to health services. Answering these

questions has a major practical relevance, and provides insights

that could be useful for decision-makers to plan interventions

and prioritizing actions aiming at reducing the deleterious

consequences of poor air quality on the city dwellers.

A detailed estimation of exposure requires coupling two

distinct types of information that can characterize the urban

environment: the first is the spatial distribution of PM2.5, and the

second the spatial distribution of city inhabitants, disaggregated

by density, age and socio-economic condition. For this to be

possible, it is necessary to have available an estimation of the

detailed distribution in time and space of PM2.5 for the city. The

task of obtaining the space-time field of PM2.5 concentration

from the measurements collected by the RMCAB monitoring

stations will be approached in the next section, using a technique

known as Kriging interpolation.

Spatial and temporal interpolation of
air quality

The RMCAB stations periodically sample the PM2.5 air

pollution field across Bogotá. We deal here with the task of

estimating, from the samples available at the stations, a

prediction of the spatial-temporal field at any location in the

geographical area of the city.

To formalize our discussion, let S denote the set of

coordinates of a geographical space, and T a time interval.

Also, let z(s, t) be the concentration of pollutants at location s

and time t, s ∈ S, t ∈ T. Given that the topographical relief in the

city of Bogotá is very limited, we model S as a subset of the 2 −

dimensional Euclidean space. Let �S � {s1, s2, . . . , sn}, with si ∈ S,

i = 1, 2, . . . , n be the set of locations at which the field is sampled,

and �T � {t1, t2, . . . , tm}, with tj ∈ T, j = 1, 2, . . . , m, be the set of

sampling times. Then, for any location s ∈ S and time t ∈ T, we

would like to make a reliable estimation ẑ(s, t) of the true value
z(s, t) of the PM2.5 concentration from the set of measured values

{z(si, tj) | si ∈ �S, tj ∈ �T}.
The Kriging interpolation is a family of methods in the

geostatistic literature, which can be used to estimate the

unknown value of a spatio-temporal field from a set of

measurements collected at selected locations/times. For

instance, in (Sampson et al., 2013) the authors used a

regionalized universal Kriging model to estimate the annual

particular matter concentration. (Song et al., 2017) resorted to

ordinary Kriging and extreme learning machine to predict the

concentration of soil organic matter. More recently, the work in

(Shukla et al., 2020) used inverse distance weighting Kriging for

particulate matter mapping, while in (van Zoest et al., 2020) a

regression Kriging is adopted for modeling the urban NO2

concentration.

The basic assumption underlying the model used for

estimation in Kriging is that the correlation between values of

the field decreases with the increase of distance. In this study, we

choose to employ spatial temporal Kriging for interpolating the

particulate matter concentration, so to take advantage of the

hourly measurements taken at RMCAB stations. The dependence

between distance (in time and space) and correlation is described

by a function called spatial-temporal variogram. In the following

sub-sections, we shall detail the specific options we consider for

the variogram, and we will shortly report on the process by which

we selected the Kriging interpolation approach to be used for

estimating the concentration of PM2.5 at unobserved locations/

times for the city of Bogotá.

Modeling spatial-temporal variation

The most important objective when applying Kriging is to

correctly capture in a model the dependence of correlation

between any two points of the field and their distance. This

modeling step is influenced by the assumptions that can be made

on the stationarity of the field. In light of the very limited number

of measurements available—only 10 locations across the whole

city—we will adopt the most convenient assumptions for

modeling. We believe there is no reason for trying to be

overly precise when the amount of available data is so limited;

rather, our objective is to obtain a reasonable approximation of

the field that can serve the purpose of supporting the analyses we

want to conduct in this study.

We will assume that the field z(s, t) can be modeled by a

Gaussian spatial-temporal random field over S × T, and that
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z(s, t) can be expressed as the sum of a locally stationary mean

μ(s, t) and a covariance function σ(s, t). Both components have

to be estimated empirically from the available data, and the

covariance part captured by a variogram γ(Δs, Δt) = σ(s0, t0) −

σ(s, t), where Δs and Δt denote the distance in space and time.

In our case, the distance between two points in space is taken

to be the Euclidean distance in the flat geometry that we

choose for the city of Bogotá. As for the distance in time, to

take into account the existence of marked seasonality patterns

(see for instance Mura et al. (2020)), we shall use a biased

distance function that introduces the required periodicity.

We analyzed various possible choices of a model for the

spatio-temporal variogram, i.e. those supported by the gstat

package (Gräler et al., 2016) of the statistical software R (R

Core Team, 2017). We observed that the simple sum metric

variogram model, proposed in (Bilonick, 1988), appears to be the

most flexible model. This variogram has the following form:

γ Δs,Δt( ) � nug · 1Δs>0 ∨ Δt>0 + γs Δs( ) + γt Δt( )
+ γjoint

������������
Δs2 + κ · Δt( )2

√( ) (1)

i.e., it is the sum of a single scalar nugget term, a spatial

variogram, a temporal variogram, and a joint variogram

component. In Eq. 1, 1a denotes the indicator function, which

takes the value of 1 when the predicate specified by a is true, and

0 otherwise, and κ denotes the anisotropy term, which relates the

spatial variation with the temporal variations.

Each of the component variograms can be chosen

independently. To determine the most suitable options, i.e.

those that result in the best quality of the fitting, we conduct

a comparative evaluation of a set of possible models. Specifically,

we consider the spherical and Gaussian type of variogram, and fit

the eight different simple summetric models that can be obtained

by the possible selection of the two options for the spatial,

temporal and combined variograms. To comparatively assess

the quality of the eight models, we perform a leave-one-out cross

validation. Specifically, we leave out one observation

(s*, t*) ∈ �S × �T from the input dataset for the interpolation,

and we use the Kriging model to obtain the prediction

ẑ(s*, t*) for the true (measured) value z(s*, t*) using the

remaining measurements. We repeat this process for the

elements in �S × �T, and then we estimate a Root Mean Square

Error (RMSE) for the model, as follows:

RMSE �
��������������������������∑ sp ,tp( )∈�S× �T ẑ sp, tp( ) − z sp, tp( )[ ]2

npm

√
(2)

In this work, the RMSE in Eq. (2) is the metric that defines the

quality of the Kriging interpolation, and the model with the

minimal RMSE is the one chosen for approximating the values of

the PM2.5 field across the city. The results of the leave-one-out

cross validation are reported in Table 1.

Kriging interpolation results

The objective we state for the Kriging interpolation is to

construct an approximation for PM2.5 yearly average

concentration field. The input data to the process consists of the

whole set of RMCABhourlymeasurements for years 2017 and 2018.

TABLE 1 RMSE obtained with the leave-one-out accuracy estimation for the different combinations of spatial, temporal and joint variograms. The
smaller the error, the better the quality of the interpolation. The best model is highlighted using bold font.

Spatial × Temporal
Joint Variogram

Sph × Sph Sph × Gau Gau × Sph Gau × Gau

Sph 2.3869 2.2588 6.0613 6.0670

Gau 2.4047 2.3955 5.8139 6.1677

FIGURE 3
Annual ambient PM2.5 concentration for year 2018. The
spatial resolution is at the level of barrio.
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We first aggregated the data at the month level, obtaining

24 measurements for each of the 10 locations that report PM2.5

concentration levels. We the estimated the eight possible models

based on the simple sum metric variogram, and estimated their

RMSE. The results can be seen in Table 1. With the best model, we

produced a set of 12 interpolated surfaces, one for each month, with

one predicted value for the geographical location of the centroid of

each neighborhood in the city. Then, we averaged the 12 surfaces to

obtain the yearly average estimation of PM2.5. The predicted surface

of the yearly average pollutant concentration level is reported in

Figure 3, and clearly shows the existence of a PM2.5 concentration

gradient that portraits a very uneven spatial distribution of poor air

quality.

Detailed descriptions of the spatial distribution of air

pollutants, such as the one reported in Figure 3, allow

producing more precise characterizations of PM2.5 across the

urban area. For example, it is possible to describe the exposure of

city’s inhabitants at the level of the district. Figure 4 shows the

distribution of the yearly average air pollutant concentration

values estimated for each neighborhood (barrio, in Spanish),

grouped per district. Each boxplot is drawn using the standard

1.5 inter quartile distance for the length of its whiskers. As it can

be appreciated from Figure 4, the disparities among sectors of the

city that were signaled by the variation among monitoring

stations appear to be very relevant. The median PM2.5 yearly

concentration level (27.47 μg/m3) at the most polluted district

(Tunjelito) is more than twice the median (13.18 μg/m3) of the

least polluted one (Santa Fe). Moreover, three districts have a

median PM2.5 yearly concentration level beyond the national

standard of 25 μg/m3. The chart in Figure 4 is an illustrative

example of the insightful analyses that can be conducted using

spatially distributed air pollution data.

Air quality and population density

As already mentioned, Bogotá is a highly heterogeneous city.

Inside its boundaries, residential areas co-exist with industrial

sectors, historical neighborhoods are located besides modern

high-rising buildings and shantytowns where people displaced

by the conflict dwell. Such a diversity gets reflected in very

different densities of population across the city.

Figure 5A shows a map of the population density of the city

of Bogotá in 2018 (Bogotá City Government, 2021). The data in

the map is averaged at the level of the UPZ, the acronym of

Unidad de Planeamiento Zonal, an intermediate level

administrative sub-division between the neighborhood (barrio)

and the district (localidad), and demonstrates that the variation

in population density within the city boundaries is quite

noticeable.

The range of values of the density is shown in the box-and-

whiskers plot in Figure 5B, and covers an interval of values from

0.13 in the northernmost UPZ of the city, up to 50 and until

70 inhabitants/m2 in the westernmost ones. Such extreme values

of population density are comparable to those observed in the

most dense urban areas of the world. Figure 5C provides an

histogram of the population density distribution, which shows

that both tails hold significant parts of the distribution.

Such differences make it more complicated to grasp a

detailed understanding of how poor air quality affects city

residents. To assess the exposure to pollutants, it is possible to

cross the information provided by the two surfaces in Figures 3,

5. In particular, for each of the neighborhoods, we can associate

the resident population with the average annual PM2.5

concentration on that area. Thus, an empirical distribution of

exposure can be generated, which describes howmany people are

FIGURE 4
Boxplots of the 2018 yearly average PM2.5 concentration level for the neighborhoods of each district of the city.
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exposed to each level of PM2.5 air pollution. Such a distribution,

summarized in the pie chart reported in Figure 6, provides a very

detailed picture of the impact of poor air quality in the city of

Bogotá.

Figure 6 breaks down the overall range of values of PM2.5

concentration levels (12.5–30.0) into seven equally wide

intervals. For each interval, the pie chart reports the

percentage of city population that is exposed to a PM2.5

pollution level included in the interval. The distribution in

Figure 6 reveals that approximately 77.3% of the population

(the part of the pie chart in shades of gray) resides in an area of

the city where the average annual concentration of PM2.5 is below

the national standard of 25 μg/m3, while the remaining 22.7%

(the red-shaded part in the chart) is exposed to pollution levels

that exceed the norm. This latter percentage accounts for

approximately 1.6 millions of the inhabitants of the city in

2018. It is also worthwhile noticing that only 13.47% of the

population resides in areas with an average annual concentration

of PM2.5 below themost recentWHO recommended threshold of

15 μg/m3.

Considering the significant differences that exist in the PM2.5

air pollution level across the city, we conduct a further analysis to

better characterize the exposure. We divided the city in

3 contiguous geographical regions, characterized by similar

levels of air quality. To identify the regions, we used the k-

means clustering algorithm (implementation of the Scikit-learn

module of Python Pedregosa et al. (2011)). The input to the

clustering is a set of 3-dimensional points, each one formed by

the two geographical coordinates of the center of a

FIGURE 5
Population density across the 112 UPZs of Bogotá, in 2018. (A) map of spatial distribution of population density; (B) box-and-whiskers plot of
UPZ population density values; (C) histogram of frequencies for the population density distribution across UPZs.

FIGURE 6
Distribution of the exposure to PM2.5 air pollution of Bogotá
residents: gray sectors for exposure to concentration below the
national standard threshold, red sectors for exposure to
concentrations above the threshold. Each sector reports the
percentage of city residents exposed at a specific pollutant range.
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neighborhood, plus the concentration of PM2.5 estimated at that

location. Each input variable is pre-processed with a min-max

scaling to be normalized in the [0, 1] interval.

Clustering results are reported in Figure 7, in the 3-

dimensional chart shown at the left (chart A). The city area is

partitioned in three regions, shown in different shades of gray on

the horizontal plane, which approximately correspond to the

northern, south-western and south-eastern parts of the city. On

top of the clustered regions, we render the surface of PM2.5 air

pollution. As it can be observed, the southwestern cluster clearly

corresponds to the most polluted part of the city, which lays

under the orange-red colored area of the pollution surface. The

northern and southeastern clusters are covering less polluted

regions of the city.

A description of the differences in PM2.5 concentration level

among clusters is reported by the boxplots in part B of Figure 7

(right side). In each boxplot, the maximum whisker length is set

to be equal to 1.5 times the interquartile range. By construction,

clusters have minimal inner variance and there are no outlier

values in the distributions. Thus, for each of the clusters, the

whisker extreme points correspond to the extreme values of the

range of PM2.5 concentration. As it can be appreciated, each

cluster has a different median value of the air pollutant

concentration: 16.1 μg/m3 for the northern cluster, 18.2 μg/m3

for the southeastern one, and finally 26.3 μg/m3 for the

southwestern cluster. The last cluster is significantly more

polluted: all PM2.5 values exceeding the national norm of

25 μg/m3 are grouped in this cluster.

FIGURE 7
(A) on the horizontal plane the 3 clustered regions, in different shades of gray. On top, the 3-dimensional rendering of the PM2.5 air pollution
surface. (B) boxplots of PM2.5 concentration per cluster, whiskers at 1.5 interquartile ranges.

FIGURE 8
Detailed contribution of each cluster to the PM2.5 air pollution exposure.
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To better quantify the contribution of each cluster to the

overall exposure at the city level, we report in Figure 8 a stacked

histogram chart. In this chart, the average annual PM2.5

concentration is on the horizontal axis, and each bar shows

the percentages of the city residents that are exposed to a

particular level of the pollutant, broken down at the cluster

level. The southwestern cluster is the only contributor to

exposures above the national limit set for PM2.5. As indicated

in Figure 8, approximately 64.6% of the people resident in this

cluster are exposed to pollutant concentrations beyond the

acceptable values. This 64.6% corresponds to the 1.6 million

city inhabitants who experience inadequate air quality

conditions. This fraction of the city population is

concentrated in a limited geographical area.

Socio-economic condition and
exposure to air-quality

Many different indicators of socio-economic condition can

be obtained for a population. Income and education level are two

commonly used ones. In the case of Bogotá, a stratum is officially

associated to each block of the city, which describes the quality of

the buildings, including the construction materials, as well as the

surrounding infrastructure and services.

Strata are numbered from 1, i.e., very low quality of living

conditions, to 6, i.e., high, with stratum four corresponding to

medium. Blocks in stratum 1 typically have major issues with the

quality of the infrastructure and the provision of public services,

are located in areas where construction is difficult or risky (hills,

river banks), streets are unpaved, and buildings may have bare

brick or even wooden walls. Stratum 6 blocks consist by large

modern condos, luxurious and historical houses with gardens or

in parks, usually located on panoramic locations.

Even if it is not directly determined by the income of the

people living in the block, the stratum is indeed a very good

indicator of their socio-economic conditions. Not only does it

describe the overall quality of the living environment, but also

defines how dwellers will be charged for basic services such as

water, gas, power supply and land telephony lines. Therefore, for

the sake of the analyses conducted in this section, the stratumwill

be used.

The distribution of strata is very illustrative of another layer

of heterogeneity in the city. The choropleth map at the left in

Figure 9 shows the spatial distribution of stratum across the

UPZs of the city. For each UPZ, an aggregate stratum is

computed by aggregating the strata assigned to its blocks.

First, a stratum is determined for each neighborhood of the

UPZ, chosen as the modal value of the strata of the blocks within.

Second, the population weighted average stratum of the

neighborhoods is computed to determine the stratum of the

UPZ shown in Figure 9. The map clearly indicates that the

majority of blocks with higher strata are located in the

northeastern area of the city, and that the southernmost

region has a strong prevalence of strata 1 and 2.

The plots at the right side of Figure 9 show the strata

distribution across blocks (upper bar chart), and across

population (lower bar chart). As it can be seen, most blocks

(approximately 89%) are categorized as pertaining to the below

medium stratum (i.e., strata 1, 2, and 3). The proportion of the

city population living in those strata is also similar, very close

to 86%.

A side-by-side comparison of the interpolated surface for the

spatial distribution of PM2.5 concentration level in Figure 3 and

FIGURE 9
Distribution of socio-economic stratum in the city of Bogotá. At the left, spatial distribution of strata across the UPZs. At the right, overall
distribution of strata across blocks and population.
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the strata distribution in Figure 9 is indicative of the existence of

significant disparities among the air quality levels of people living

in different strata. Figure 10 shows the distribution of PM2.5

concentration levels in each stratum (the input values for each

stratum are the predicted average yearly concentrations of PM2.5

of each neighborhood in the stratum).The difference in poor air

quality exposure is immediately noticeable. The median value of

the air pollutant concentration decreases with the increases of

stratum, and so it does the spread of its distribution. All the low

strata (1–3) have high median value, and very similar variances,

with a part of the distribution exceeding the national standard of

25 μg/m3. On the other hand, the strata from medium to high

(4–6) have smaller (and similar) median values, much smaller

variance and all neighborhoods have average yearly PM2.5

exposure below the national standard threshold value.

Once more, to fully understand the implications that these

differences among strata have on the exposure, it is pertinent to

consider the distribution of the population. As it can be

appreciated from Figure 9, the city dwellers are unequally

distributed across the strata. This uneven distribution adds to

the disparity in exposure, because almost 86% of the population

belongs to strata 1 to 3, and is thus experiencing an yearly average

exposure to PM2.5 that follows one of the three top distributions

in Figure 10. This is especially important because people living in

the lower socio-economic strata have limited access to high-end

health services, as it has been consistently observed for in past

studies, see for instance Garcia-Subirats et al. (2014); de Vries

et al. (2018); Cifuentes et al. (2021). In particular, belonging to

that part of the city population that receives subsidies for health

services (i.e., people in strata 1 and 2) is a factor that the

aforementioned research has identified as being detrimental

for the overall access to health.

The map in Figure 11 shows the geographical location of all

the neighborhoods whose modal stratum is either 1 or 2, and

whose yearly average concentration of PM2.5 exceeds the national

standard of 25 μg/m3. To ensure the assignment of a stratum at

the neighborhood level is accurate, we show besides the map in

Figure 11 the distribution of blocks and population across strata.

As it can be observed, only a very tiny fraction of blocks is

categorized with a stratum other than 1 or 2. Those

neighborhoods are all located in the southwest area of the

city. They can be grouped in two clusters, which in Figure 11

are enclosed by the two rectangular regions. Clearly, the areas

highlighted in Figure 11 should be object of priority interventions

aimed at monitoring the health status of the citizens living

therein, and ensuring that adequate health services are

provided. In spite of the limited area they occupy, the

431 neighborhoods are home to more than 1.4 million people.

Age group exposure to air pollution

Age is an important factor to take into consideration when

evaluating the effects of air pollution. Children and elderly

population are qualified as sensitive groups, and they are the

first to suffer from deteriorated air quality and bear the most

serious consequences (Sun and Zhu, 2019; Delgado-Saborit et al.,

2021).

FIGURE 10
Distribution of PM2.5 yearly average concentration per stratum. The densities are estimated with the categorical Kernel Density Estimation
function of the Python Seaborn data visualization library (Waskom, 2021).

Frontiers in Environmental Science frontiersin.org11

Jin et al. 10.3389/fenvs.2022.966560

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.966560


The differences in socio-economic conditions, and the results

of recent massive urbanization waves, generate significant

variations of the age distribution across the city of Bogotá.

Figure 12 shows the geographical distribution of three age

groups, children aged less than 5 years, young people that

consists of individuals between 10 and 19 years old, and the

adults older than 64 years. Note that the choropleth maps in

Figure 12 are at the level of the UPZ, because that is the lowest

granularity level at which the information on the age distribution

is available (Bogotá City Government, 2021).

As it can be observed from Figure 12, age has a clear gradient

across Bogotá: it increases almost radially from the periphery

FIGURE 11
Neighborhoods of Bogotá where the yearly average PM2.5 concentration (in 2018) exceeded the national standard threshold value, and whose
inhabitants pertain to the subsided health regime.

FIGURE 12
Spatial distribution of population age ranges in the city of Bogotá, at the level of the UPZ. (A) percentage of inhabitants younger than 10 years;
(B) percentage of inhabitants younger than 20 years; (C) percentage of inhabitants older than 64 years.
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towards the central-eastern sector that corresponds to the

historical part of the city.

Given the existence of these differences in the geographical

distribution of these age ranges, it is interesting to check whether

they result in different exposures to air pollution, i.e., in different

levels of risk for the young and the elderly. The bar diagram in

Figure 13 shows the exposure to different PM2.5 concentration

ranges for two groups of the populations: children of less than

10 years, and adults older than 64 years. For each range of the

pollutant and for each group, the percentage of individuals

exposed is determined by their geographical distribution

across the pollution field.

Both distributions are bimodal, with a considerable part of

each population group exposed to PM2.5 concentrations above

the national limit of 25 μg/m3 (21.1% of children and 15.2% of

elders). However, the two age groups have different profiles of

exposure, with the distribution of the children’s exposure having

a larger negative skewness, which means the distribution is

shifted towards the right queue. The difference is especially

large for the lowest PM2.5 concentration range, which

corresponds to the best air quality conditions. Approximately

one third of the adults above 64 years live in areas that enjoy this

favorable conditions, while only one fifth of children under

10 years are in the same circumstances.

It is interesting to notice the similarity between the average

stratum distribution at the UPZ level (left map in Figure 9) and

the geographical distribution of the percentage of inhabitants

agedmore than 64 years (right map in Figure 12). The scatter plot

of the two variables, reported in Figure 14, graphically shows the

sign of a positive correlation. An adjusted R2 = 0.4999 was

estimated for the linear regression model. In Figure 14, the

size of each bubble is proportional to the total population of

the UPZ. Adding this additional piece of information shows that

elderly are proportionally underrepresented in the low stratum,

highly populated UPZs. On the contrary, children are

proportionally less represented in high stratum, less densely

populated UPZs, which are found in those areas of the city

with the best air quality. Figure 15 shows the difference between

the exposure of children less than 10 years old who live in

stratum 1 and 2, and those of the same age who live in strata

3 to 6. The two groups have profoundly different distributions of

exposure to PM2.5. Less than 3% of children from strata three to

six live in areas of the city where the average yearly concentration

of PM2.5 is above the national standard, while for children in

strata one to two the percentage is ten times larger, exceeding

30%. More than 63% of children from strata three to six are living

in the UPZs with the best air quality, but this percentage drops to

below 9% for children from strata 1–2. It must be observed that

FIGURE 13
Exposure to PM2.5 concentration of children and elderly.

FIGURE 14
Scatter plot of the average stratum of the UPZ (horizontal axis) versus the percentage of adults older than 64 years in the UPZ.
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strata one to two accounts for 30% of the children with less than

10 years in the city.

Conclusion

We propose an enriched spatial analysis of air pollution,

which integrates air quality, demographic, and socio-economic

data to provide decision-makers with a broader insight for urban

air quality management. A significant result of this study is the

recognition and quantification of profound inequities when

assessing air pollution exposure, with sensitive population

groups (i.e., citizens with lower income and children) being

the most affected. For instance, geographical areas of the city

where PM2.5 concentrations are higher are also highly populated

districts and with a greater presence of people with lower socio-

economic conditions. This reality is even more critical if we take

into account that Colombian air quality standards used for our

analysis are significantly more permissive than the WHO

guidelines.

Such findings reflect social disparities and have

environmental justice implications that urge to be considered

when formulating strategies to reduce air pollution and improve

the living conditions of urban population. We used Bogotá,

Colombia, as a study case, but the enriched spatial analysis

method hereby presented is perfectly applicable to any other

city in Latin America, where urban air quality is a major concern.

We believe the analyses proposed in this study can provide a

more comprehensive view of the impact of poor air quality, a

systematic approach to assess population exposure, and a means

for improving air quality management practices supporting the

prioritization of air pollution abatement strategies. Future studies

could consider analyzing available information on particulate

spoilage chemical composition and relate its value to the presence

of specific sources and risks by type of population.
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