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Zinc oxide (ZnO) nanostructures have emerged as efficient heterogeneous

photocatalysts for the degradation of organic pollutants in aqueous solutions

and industrial wastewaters. In this work, a simple and effective method is

reported for the synthesis of zinc oxide/zinc hydroxide (ZnO/Zn(OH)2) hybrid

nanoparticles using a mineral acid to enhance the photocatalytic activity of

ZnO. Infrared spectroscopy reveals the presence of hydroxyl groups in ZnO/

Zn(OH)2 nanoparticles. X-ray diffraction shows the formation of hexagonal

wurtzite ZnO nanoparticles, which retain their wurtzite structure after acid

treatment but additional diffractions for Zn(OH)2 are also recorded. The optical

bandgap of resulting ZnO and ZnO/Zn(OH)2 nanoparticles is reduced to

3.05 and 3.08 eV, respectively. In the initial photocatalysis experiments, ZnO/

Zn(OH)2 nanoparticles exhibit 3.5-times improved degradation and removal of

sunset yellow dye, a model organic pollutant, from deionized water compared

to pristine ZnO nanoparticles. Hence, for further studies, ZnO/Zn(OH)2 coatings

are fabricated on glass slides with a uniform surface morphology as shown by

the atomic force microscopy. The time-dependent UV-visible spectroscopy

reveals the photocatalytic degradation of sunset yellow over the surface of

ZnO/Zn(OH)2 coatings. The degradation reaction follows the pseudofirst-order

mechanism with a rate constant of 2.9 × 10–2 min−1. The recyclability and

stability experiments reveal the retention of appreciable photocatalytic

activity of ZnO/Zn(OH)2 coatings (with >92% degradation efficiency after six

successive cycles). The results are compared with recent examples from the

pertinent literature. The surface hydroxyl groups on ZnO/Zn(OH)2 nanoparticles

and bandgap lowering enhance the anchoring of dye molecules and electron

transfer reactions.
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Introduction

The 20th-century industrial revolution has transformed the

lifestyle but deteriorated the environment by polluting the air and

aquifers. Industrial wastewaters containing harmful and non-

biodegradable organic pollutants such as dyes and pigments

(Berradi et al., 2019; Gürses et al., 2021; Orozco et al., 2022),

drugs and pharmaceuticals (Akkari et al., 2018; Al-Areqi et al.,

2022), etc. Contaminate surface and groundwater sources leading

to health risks. Also, the prevalence of organic compounds in the

air contaminates surfaces such as textiles and fabrics, glass

windows, doors, and other installations, which is often

hazardous due to their perilous effects on human health and

wellbeing.

To reduce the impact of organic pollutants on the

environment and health, photocatalysis–light-induced

chemical reactions to oxidize and decompose organic

molecules–is developed (Ameta et al., 2018; Zhang et al.,

2018). The photoactive nanomaterials can be used as

heterogeneous catalysts as well as self-cleaning coatings to

remove hazardous organic molecules from the wastewaters

(Purcar et al., 2021; Shahid et al., 2021, 2022) or

contaminated surfaces (Afzal et al., 2021; Tănase et al., 2021).

A variety of nanostructured materials have been developed for

the photocatalytic degradation of organic pollutants such as

those based on carbon nanostructures (Khan, 2021), titania

(Chen et al., 2020; Varma et al., 2020), or zinc oxide (Qi

et al., 2017; Majumder et al., 2020).

ZnO is classified as active photocatalysts due to wide

absorption range and high photostability (Kołodziejczak-

Radzimska and Jesionowski, 2014; Laurenti et al., 2017).

Besides, ZnO is harmless and inexpensive, and ZnO

nanostructures can be synthesized via different methods

(Khan et al., 2019a, 2019b; Raha and Ahmaruzzaman, 2022).

Qi et al. (Qi et al., 2017) reviewed the photocatalytic applications

of ZnO and suggested that the photocatalytic performance of

ZnO nanomaterials could be improved by: 1) doping with metals

or non-metals, 2) constructing heterojunctions, 3) coupling with

carbon nanostructures, or 4) deposition of noble metals. For

instance, Ag doping is shown to improve the photocatalytic

degradation of both cationic and anionic dyes under

simulated solar irradiation by Ag@ZnO nanocomposites

(Sharwani et al., 2022).

However, these methods generally involve the addition of

other active components in ZnO to enhance its photoactivity.

Herein, a simple and effective method is used to improve the

photocatalytic properties of ZnO nanoparticles that employs a

mineral acid treatment to protonate ZnO surfaces and

improve dye adsorption and degradation. Previously, acid

treatment of TiO2-based photocatalyst and its influence on

the degradation of organic dyes have been studied (Park and

Shin, 2014). For instance, Dhandole et al. (Dhandole et al.,

2017) suggested that acid treatment of Co2O3-TiO2 nanorods

exhibited a higher efficiency for the photocatalytic

degradation of orange-II dye. However, contrary to these

findings, Onoda et al. (Onoda, 2019) recently reported that

phosphoric acid treatment was detrimental to the

photocatalytic activity of ZnO.

This work is aimed at studying the effects of a mineral acid

treatment of ZnO on its photocatalytic properties. For this

purpose, ZnO nanoparticles are prepared and treated with

1.0 M HCl to form ZnO/Zn(OH)2 hybrid nanoparticles and

coatings, which are subsequently used for the degradation of

organic pollutants in deionized water. As a model organic

compound, sunset yellow dye is chosen because of its

carcinogenicity and non-biodegradability (Sharma et al.,

2020). ZnO/Zn(OH)2 nanoparticles and coatings are

characterized and tested for their photocatalytic activity.

Hexagonal wurtzite ZnO/Zn(OH)2 coatings exhibit excellent

photocatalytic properties by oxidizing and removing sunset

yellow. The coatings are stable over several cycles of

photocatalytic measurements in aqueous solutions.

Methods

Synthesis

ZnO nanoparticles were synthesized by the precipitation

method using zinc nitrate hexahydrate (Zn(NO3)2.6H2O

purum p.a., crystallized, ≥99.0%, SigmaAldrich) as a

precursor, and ethanolamine (≥98.0%, SigmaAldrich) as the

solvent as well as the surfactant (Naz et al., 2015). Firstly, 20 ml

distilled ethanolamine was taken in a 250 ml round bottom

flask. 14 mmol of Zn(NO3)2.6H2O were added to it and stirred

at room temperature until a clear solution was obtained. The

solution was transparent with no turbidity. Then 10 ml of

ammonia solution (NH4OH, 32%, EMPLURA®,
SigmaAldrich) was added dropwise to the transparent

precursor solution to attain the basic pH (pH ~ 11). The

solution was allowed to stir at 60°C for 60 min. During this

period, white precipitates of ZnO nanoparticles were produced.

The product was centrifuged, washed with an excess of distilled

water, and dried in an oven at 100°C. The yield of the final

product, i.e., ZnO nanoparticles in dried powdered form

was 24.2%.

ZnO/Zn(OH)2 nanoparticles were produced by surface

protonation of the as-synthesized ZnO nanoparticles. For this

purpose, as-synthesized ZnO nanoparticles were dispersed in an

excess of 1 M aqueous HCl, and the suspension was kept in an

ultrasonic bath for an hour at room temperature. Afterward, the

mixture was centrifuged to separate ZnO/Zn(OH)2
nanoparticles, which were washed with distilled water, and

dried in an oven at 100°C. Both ZnO and ZnO/Zn(OH)2
nanoparticles were characterized and tested for their

photocatalytic properties.
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Characterization

Fourier-transform infrared (FTIR) spectroscopy of solid ZnO

and ZnO/Zn(OH)2 nanoparticles was performed with Thermo

Scientific Nicolet 6700 FTIR spectrophotometer in the range of

4000–400 cm−1. X-ray diffraction (XRD) patterns were obtained

with a Siemens D–5000 XRD system utilizing a Cu Kα radiation

source (λ = 1.5406 Å). Ultraviolet-visible (UV-vis) spectroscopy

was carried out with the Shimadzu model pharma spec

UV–1700 UV-vis spectrophotometer in the range of

200–800 nm. The cuvettes used were made up of quartz by

Shimadzu.

The surface morphology of ZnO/Zn(OH)2 coatings on the

glass slide was examined by Shimadzu WET-SPM 9600 atomic

force microscope (AFM) using the contact mode.WSxM 4.0 Beta

9.3 scanning probe microscopy software was used for image

analysis and calculation of surface parameters (Horcas et al.,

2007).

Photocatalytic performance: Degradation
of organic pollutants

The photocatalytic properties of ZnO and ZnO/Zn(OH)2
nanoparticles were studied by the light-induced degradation of

sunset yellow (a model organic contaminant) at 25°C. First, a

solution of sunset yellow (20 μg mL−1) was prepared. Sunset

yellow dye shows good stability to changes in pH and it does not

exhibit an appreciable change within the pH range of 3–8. Hence,

the dye solutions were maintained at pH 6 for all experiments.

ZnO or ZnO/Zn(OH)2 nanoparticles (1 mgmL−1) were dispersed

in the solution and it was kept in dark for an hour to establish the

adsorption-desorption equilibrium. After an hour, the

absorption spectra of the dye solutions were recorded with a

UV-vis spectrophotometer. Subsequently, the solutions were

exposed to UV light (λ = 365 nm) for 2 h. The optimal

distance between the solutions and the UV light source was

maintained at 20 cm to avoid the heating effect. Afterward, the

UV-vis spectra of the same solutions were recorded again to

compare the absorbance and photocatalytic performance of ZnO

and ZnO/Zn(OH)2 nanoparticles were estimated.

ZnO/Zn(OH)2 coatings for pollutant
degradation

Self-cleaning ZnO/Zn(OH)2 coatings were prepared on glass

slides (1 cm × 2 cm) via spray coating a suspension of

nanoparticles in 4 wt% poly(vinyl acetate). The glass slides

were first cleaned in an ultrasonic bath with acetone,

methanol, and deionized water for 5 min, respectively.

Subsequently, three aliquots of ZnO/Zn(OH)2 nanoparticles

were spray-coated and air-dried at room temperature. These

coatings were subsequently exposed to organic contaminants in a

solution to study their photodegradation performance.

For ZnO/Zn(OH)2 coatings, photocatalytic activity was

explored by studying the degradation of sunset yellow under

365 nm light illumination at 25°C. ZnO/Zn(OH)2 samples with a

size of 1 cm × 2 cm were immersed into a 70 ml dye solution

(20 μg mL−1). The solution was stirred in dark for an hour to

develop an adsorption-desorption equilibrium. Afterward, the

dye solution with ZnO/Zn(OH)2 sample was exposed to UV

irradiation for 0–120 min. During this period, the absorption

spectrum of the sunset yellow solution was recorded at 0 min

exposure to UV light (as the initial reading), and subsequently,

the absorbance was measured after every 15 min of UV exposure

in the range of 325–600 nm. To determine the recyclability and

stability of ZnO/Zn(OH)2 coatings on glass, the photocatalytic

performance was repeatedly measured under similar conditions,

i.e. at 25°C and 365 nm UV illumination.

Results and discussion

Characterization

The formation of ZnO and ZnO/Zn(OH)2 is depicted in

Figure 1A. ZnO is prepared via an ethanolamine-mediated

precipitation of ZnO from a Zn(NO3)2 solution using

NH4OH. Ethanolamine simultaneously acts as a solvent and a

surfactant (Naz et al., 2015). ZnO nanoparticles are subsequently

treated with an acid to protonate the surface oxygens and form a

hybrid ZnO/Zn(OH)2 structure with surface hydroxyl groups.

Wang et al. (Wang et al., 2005) already demonstrated a

straightforward and effective method for proton adsorption on

the surface of TiO2 films that was based on acid (0.1 M HCl)

treatment.

Figure 1B shows the FTIR spectra of ZnO and ZnO/Zn(OH)2
nanoparticles, which are markedly different in terms of the

presence of–OH groups. As-synthesized ZnO nanoparticles

show the characteristic Zn–O vibration at ~400 and 421 cm−1

(Estrada-Urbina et al., 2018). FTIR spectrum of ZnO/Zn(OH)2
nanoparticles, on the other hand, confirms the presence of

hydroxyl moieties (–OH groups) along with the characteristic

Zn–O vibrations (~400 (Estrada-Urbina et al., 2018), 421, and

458 cm−1 (Handore et al., 2014)). A broad absorption peak with a

maximum at 3,440 cm−1 corresponds to the stretching vibrations

of O–H groups located on the surface of ZnO/Zn(OH)2
nanoparticles (Hadjiivanov, 2014). The appearance of

additional peaks around 1499 and 916 cm−1 is also attributed

to the formation of Zn(OH)2 (Khanom andHayashi, 2021), while

the absorption bands around 1380 and 880 cm−1 are ascribed to

the adsorbed CO2 (Estrada-Urbina et al., 2018).

XRD patterns of ZnO and ZnO/Zn(OH)2 nanoparticles

between 10° and 80° 2θ are presented in Figure 1C. The main

diffraction peaks correspond to the hexagonal wurtzite ZnO
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crystal structure with space group P63mc and can be correlated

with JCPDS 36–1451 (Singh, 2011). The characteristic diffraction

peaks of ZnO nanoparticles appear at 31.6°, 34.3°, 36.1°, 47.4°,

56.4°, 62.6°, and 67.9° 2θ and correspond to the (100), (002),

(101), (102), (110), (103), and (112) miller indices, respectively.

The diffraction pattern of ZnO/Zn(OH)2 nanoparticles is quite

similar to ZnO, which shows the hexagonal wurtzite ZnO as the

major crystalline phase. However, compared to pristine ZnO,

ZnO/Zn(OH)2 nanoparticles exhibit additional peaks at 2θ =

32.8° (Emara et al., 2021) and 33.5° (Molefe et al., 2015),

corresponding to Zn(OH)2.

The respective lattice parameters for ZnO and ZnO/Zn(OH)2
nanoparticles are determined from the XRD data, and are

comparable as follows: a = b = 3.26 Å (ZnO) and 3.24 Å

(ZnO/Zn(OH)2); and c = 5.21 Å (ZnO) and 5.16 Å (ZnO/

Zn(OH)2). These lattice parameters are consistent with the

values reported in the literature (Awan et al., 2018). The

crystallite size is determined by Debye–Scherer’s formula

(Afzal et al., 2020). The average crystallite size of the ZnO

and ZnO/Zn(OH)2 nanoparticles is found to be 16.6 and

18.0 nm, respectively. The density (ρ) and the specific surface

area (SSA) of the ZnO and ZnO/Zn(OH)2 nanoparticles are also

estimated from XRD data, which are as follows: ZnO

nanoparticles (ρ = 16.08 g cm−3; SSA = 22.48 m2 g−1), and

ZnO/Zn(OH)2 nanoparticles (ρ = 16.41 g cm−3; SSA =

20.31 m2 g−1).

UV-vis spectra of ZnO and ZnO/Zn(OH)2 nanoparticles are

recorded in Figure 1D. On basis of the intersection along the

baseline (Lin et al., 2011), ZnO and ZnO/Zn(OH)2 nanoparticles

absorb at 406 and 402 nm, respectively. The absorbance (ca.

406–402 nm) corresponds to the optical bandgap of 3.05–3.08 eV

for ZnO and ZnO/Zn(OH)2 nanoparticles, which is significantly

less than the direct bandgap of bulk ZnO, i.e., 3.37 eV

(Kamarulzaman et al., 2015). A reduction in the bandgap of

ZnO and ZnO/Zn(OH)2 nanoparticles compared to that of bulk

ZnO and a significant shift in the near violet region may be

attributed to the quantum confinement effect (Kumar et al.,

2017). A clear difference in the UV-vis spectra of ZnO and ZnO/

Zn(OH)2 nanoparticles is the secondary absorbance at ~236 nm

that is attributed to the presence of the Zn(OH)2 phase. This

wavelength corresponds to the direct bandgap of 5.3 eV, which is

in agreement with the bandgap of Zn(OH)2 (Wang et al., 2015).

Photocatalytic degradation of sunset
yellow: Preliminary experiments

The preliminary experiments performed for the assessment

of the photocatalytic performance of ZnO and ZnO/Zn(OH)2
nanoparticles involved the degradation of sunset yellow after 2 h

of light irradiation. The aqueous solutions of 20 μg mL−1 sunset

yellow containing 1 mg mL−1 of ZnO and ZnO/Zn(OH)2
nanoparticles were exposed to UV light after the

establishment of adsorption-desorption equilibrium. The

degradation of sunset yellow was monitored with a UV-vis

spectrophotometer. Figure 2A shows the photocatalytic

degradation performance of ZnO and ZnO/Zn(OH)2
nanoparticles. After 2 h of light exposure, the dye is almost

FIGURE 1
(A) A schematic showing the formation of ZnO and ZnO/Zn(OH)2 nanoparticles. (B) Fourier-transform infrared spectra, (C) X-ray diffraction
patterns, and (D)UV-vis spectra of ZnO and ZnO/Zn(OH)2 nanoparticles showing the notable differences in themolecular and crystalline structure of
pristine ZnO and composite ZnO/Zn(OH)2 nanoparticles and their optical properties.
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completely removed by ZnO/Zn(OH)2 nanoparticles, while

pristine ZnO nanoparticles did not exhibit comparable

photocatalytic activity.

The analysis of UV-vis spectra before and after adsorption-

desorption and after 2 h of light exposure shows that the overall

dye removal by ZnO/Zn(OH)2 (97.4%) was 3.5-fold higher than

ZnO nanoparticles (28.2%), as shown in Figure 2B. Also, ZnO/

Zn(OH)2 nanoparticles adsorbed a significantly greater amount

of sunset yellow (27.3%) compared to ZnO nanoparticles (7.1%).

This is because of the presence of surface hydroxyl (–OH) groups,

which may develop non-covalent interactions with the sunset

yellow molecule. Consequently, in turn, the photocatalytic

processes are supported by the enhanced adsorption of the

dye molecules (Paul et al., 2020).

However, the degradation of sunset yellow is not merely the

decolorization of dye solution. To investigate the persistence of

degraded organic products in the sunset yellow solution treated

with ZnO/Zn(OH)2 nanoparticles, its FTIR spectrum was

recorded and compared with the spectrum of distilled water

as shown in Figure 2C. Before recording the FTIR spectrum of

ZnO/Zn(OH)2 nanoparticles treated dye solution, the solution

was centrifuged to remove ZnO/Zn(OH)2 nanoparticles. Both of

these FTIR spectra, shown in Figure 2C, were similar, and no

additional peaks for the organic species or functional groups were

observed. It indicated that sunset yellow molecules were

completely degraded into non-toxic components such as water

and carbon dioxide.

Pollutant degradation by ZnO/Zn(OH)2
coatings

From the preliminary experiments on the photocatalytic

performance of solid ZnO and ZnO/Zn(OH)2 nanoparticles, it

is confirmed that ZnO/Zn(OH)2 nanoparticles exhibit superior

photocatalytic properties compared to pristine ZnO. Hence, only

ZnO/Zn(OH)2 nanoparticles were tested further as

photocatalytic coatings for pollutant degradation applications.

ZnO/Zn(OH)2 coatings were fabricated on glass slides via

spray coating. Figure 3 shows the surface analysis of ZnO/

Zn(OH)2 coatings. Two- and three-dimensional micrographs

and phase images demonstrate the surface morphology of the

coatings with the consistent presence of ZnO/Zn(OH)2
nanoparticles on the glass surface. The root-mean-square

(RMS) roughness and the average surface roughness are

recorded as 75.47 and 59.04 nm, respectively with an average

height of 172.82 nm. The surface profiles and particles’ size

distribution histogram are consistent with the roughness

analysis and calculated values.

The photocatalytic properties of the ZnO/Zn(OH)2 coating

were measured by the degradation of sunset yellow in water

under UV light illumination. The time-dependent percent

degradation of sunset yellow was calculated as follows (Islam

et al., 2019):

degradation (%) � ((Ao − At)
Ao

) × 100 � ((Co − Ct)
Co

) × 100

where Ao and At correspond to the initial absorbance at t = 0 min

and time-dependent absorbance of sunset yellow after UV light

irradiation, respectively; and Co and Ct are the respective

concentrations of sunset yellow. UV-vis spectroscopy was

used to study the degradation of sunset yellow. The time-

dependent UV-vis spectra of 20 ppm sunset yellow solution in

deionized water are presented in Figure 4A which exhibit its

photocatalytic degradation in the presence of ZnO/Zn(OH)2
coatings. The absorbance (At/Ao) of the sunset yellow solution

is plotted as a function of time in Figure 4B. As revealed in

Figures 4A,B, the concentration of sunset yellow solution

regularly decreases with the UV irradiation time due to the

FIGURE 2
(A)UV-vis spectra of the aqueous solution of sunset yellow and its exposure to UV light in the presence of ZnO and ZnO/Zn(OH)2 nanoparticles.
(B) The overall dye removal shows the photocatalytic degradation performance of ZnO and ZnO/Zn(OH)2 nanoparticles. (C) FTIR spectra of the
distilled H2O and ZnO/Zn(OH)2 nanoparticles treated dye solution.
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FIGURE 3
Atomic force microscopy of ZnO/Zn(OH)2 coatings fabricated on glass slides: (A) A topography image, and corresponding (B) phase image, (C)
3-dimensional topography map, (D) surface profiles, and (E) surface roughness analysis histogram.

FIGURE 4
(A) The time-dependent photocatalytic performance of ZnO/Zn(OH)2 coatings: UV-vis spectra of the sunset yellow solution at different
intervals (t = 0–100 min) of UV light (λ = 365 nm) irradiation. (B) A relationship of the initial (Ao) and time-dependent (At) absorbance of sunset yellow
with UV irradiation time (t). (C) A kinetics analysis: pseudofirst-order kinetics (-ln(Ct/Co) vs. t) of the photocatalytic degradation of sunset yellow. (D)
Recyclability of the photocatalytic ZnO/Zn(OH)2 coatings.
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photocatalytic effect of ZnO/Zn(OH)2 coatings. The absorption

maxima around 400 and 480 nm gradually disappear after

100 min of exposure to UV light, which suggests the complete

degradation of sunset yellow in water.

The experimentally observed photocatalytic degradation

properties of ZnO/Zn(OH)2 coatings were further explored by

the pseudofirst-order kinetic model. The kinetics of

photocatalytic degradation was measured by the following

apparent pseudofirst-order rate equation:

−ln(Ct/Co) � kt

where k is the rate constant, and t is the UV irradiation time. The

relation between −ln(Ct/Co) and t is plotted in Figure 4C. As

shown in Figure 4C, the −ln(Ct/Co) versus t graph reveals the

linear trend with R2 = 0.986, which indicates that the sunset

yellow degradation proceeds via the pseudofirst-order reaction

mechanism and follows the Langmuir–Hinshelwood model

(Khezrianjoo and Revanasiddappa, 2012; Moghaddas et al.,

2020). The rate constant (k) for the photocatalytic degradation

of sunset yellow is calculated to be 2.9 × 10–2 min−1 (standard

deviation: ±1.3 × 10–3 min−1) for 20 ppm sunset yellow in

deionized water.

The recyclability and stability of ZnO/Zn(OH)2 coatings on

glass were determined by repeated photocatalysis experiments at

25°C. The results are recorded in Figure 4D. As shown in

Figure 4D, the percent degradation of sunset yellow in

deionized water after UV illumination of ZnO/Zn(OH)2
coatings for six different cycles are comparable, and above

92% after several cycles. The mean value for the percent

degradation of sunset yellow after six measurements is 94.0%,

and the standard deviation is ±1.9%.

The photocatalytic performance of ZnO/Zn(OH)2 coatings is

compared with various other photocatalysts reported in the past few

years and the data are represented in Table 1. ZnO/Zn(OH)2
coatings exhibit excellent photocatalytic properties toward sunset

yellow degradation. Based on the experimental observations, the

enhanced photocatalytic properties of the ZnO/Zn(OH)2 coatings

are attributed to the presence of surface hydroxyl groups and the

narrow bandgap, which result in the improved interactions between

the ZnO/Zn(OH)2 coatings and sunset yellowmolecules and greater

electron transfer speed for the degradation reaction. Given the high

photocatalytic activity, recyclability, and stability of ZnO/Zn(OH)2
coatings, they have potential applications in the light-induced

catalytic degradation of organic pollutants in the wastewater as

well as self-cleaning coatings and surfaces for environmental and

industrial applications.

Conclusion

ZnO nanoparticles were prepared via a simple

aminoethanol-mediated precipitation of Zn(NO3)2 solution

with aqueous NH3. Pristine ZnO nanoparticles were

subsequently treated with a mineral acid to form ZnO/

Zn(OH)2 hybrid nanoparticles. Both ZnO and ZnO/Zn(OH)2
nanoparticles were characterized by XRD, FTIR, and UV-vis

spectroscopy. The XRD analysis revealed the formation of

hexagonal wurtzite ZnO and ZnO/Zn(OH)2 nanoparticles.

ZnO/Zn(OH)2 nanoparticles additionally exhibited the

presence of Zn(OH)2 phases in XRD, and surface hydroxyl

groups in the FTIR spectrum. UV-vis spectroscopy revealed

significant lowering of the optical bandgap to ~3.1 eV. The

preliminary photocatalysis experiments confirmed that ZnO/

Zn(OH)2 nanoparticles possessed superior photocatalytic

properties toward the degradation of sunset yellow, a model

organic pollutant, in deionized water. ZnO/Zn(OH)2
nanoparticles treatment under UV irradiation completely

degraded the sunset yellow molecules, and the persistence of

organic species in treated solution was not observed. The

bandgap narrowing and surface hydroxyl groups were the

reasons for the improved photocatalytic activity of ZnO/

Zn(OH)2 nanoparticles. ZnO/Zn(OH)2 coatings were also

fabricated and tested for their photocatalytic performance and

stability, which demonstrated pseudofirst-order degradation

TABLE 1 A comparison of the photodegradation of sunset yellow by various nanostructured photocatalysts.

Photocatalyst Band-
gap (eV)

Catalyst
dose
(mg ml−1)

Dye
concentration (µM)

pH Rate
of degradation
(min−1)

Reusability1

(%)
References

ZnO/Zn(OH)2 3.08 1.0 44.2 6.0 2.9 × 10–2 95.56 This work

Chitosan/ZnSe — 3.0 44.2 5.0 4.317 × 10–2 82.42 Zhang et al. (2022)

Pd–BiFeO3 2.23 1.5 22.1 — 1.688 × 10–2 ~98 Jaffari et al. (2021)

Se nanoparticles 2.3 0.3 11 5.8 1.73 × 10–1 — Hassanien et al. (2019)

SeO2/TiO2 2.9 5.0 300 7.0 3.06 × 10–2 94.6 Rajamanickam et al.
(2015)

Activated carbon/
TiO2

— 4.0 300 7.0 — 96.4 Rajamanickam and
Shanthi, (2014)

1Reusability refers to the percent degradation of sunset yellow dye after 3 successive cycles.
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kinetics with a rate constant of 2.9 × 10–2 min−1, and excellent

stability after 6 cycles of photocatalytic degradation while

maintaining more than 92% degradation of sunset yellow. The

results were compared with the recent literature on

photocatalytic degradation of sunset yellow. The results

indicate the potential of ZnO/Zn(OH)2 coatings in self-

cleaning and environmental applications for pollutant

degradation.
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