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The largest ever investment in shale gas resources has induced potential

environmental threats in China. The assessment and forecasting of

environmental impacts associated with shale gas production is highly

challenging due to the characteristics of high uncertainty, nonlinearity, and

complexity. This paper proposes a new hybrid model by combining the

pressure-state-response (PSR) framework with the firefly algorithm (FA) and

a nonlinear auto-regressive (NAR) dynamic neural network (the PSR-FA-NAR

model) to detect and forecast the state of the environment as well as send

warning signals for shale gas production. Then, an empirical sample, the

Changning-Weiyuan national-level shale gas pilot zone that produces more

than 50% of Chinese shale gas output, is used to test the effectiveness of the

proposed model. The results show that Changning play will predictably face

severe environmental threats imposed by rapid development, and the model is

not only able to capture nonlinearity time-series and present cause-effect

relationships but is also able to improve the predictive performance and

forecasting accuracy. It proves that the PSR-FA-NAR model can effectively

address the problems with high dimensionality, complexity, and nonlinearity

and provides a practical methodology to quantify and identify the potential

environmental impacts of unconventional oil and gas production.
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1 Introduction

The fossil fuel long-term dominated energy mix has resulted

in serious environmental problems in China (Yuan et al., 2016;

Wang and Zhan, 2019). To achieve Peak Carbon Emissions by

2030 and Carbon Neutrality by 2060 and to enlarge clean energy

supply capacity while contributing to national energy security,

China, which owns the largest shale gas reserves in the world, is

sharply stepping up its exploration and development. The state-

owned oil and gas companies that produce almost all of China’s

shale gas, e.g. China National Petroleum Corporation (CNPC)

and China Petrochemical Corporation (Sinopec), are making the

investment as “unprecedented”, that is, the largest ever

investment in shale oil and gas resources.

Shale gas trapped within an impermeable shale formation is a

kind of unconventional natural gas that is squeezed into shocks

(Bilgili et al., 2016). Shale gas development with large-scale and

commercial viability mainly depends on horizontal drilling with

multistage hydraulic fracturing (Hughes, 2013), whichmight often

cause huge negative impacts on the local environment. China’s

shale gas plans should be prudently made trade-offs between

environmental risks and scale profits (Wang et al., 2014; Wang

et al., 2018). Chinese shale gas has produced more than 20 billion

cubic meters (Bcm) in 2020. The Changning-Weiyuan play, the

largest national-level shale gas pilot zone, produced more than

10 Bcm in 2020, which accounts for more than 50% of the total

volume of produced shale gas in China. Moreover, compared to

the proved reserves with their trillion cubic meters, the actual shale

gas production is still low in the Changning-Weiyuan play.

Therefore, the current and future status of the environment

associated with Changning-Weiyuan shale gas production is

typical and could be used as a representative to be studied.

The purpose of this study is to present a novel hybrid PSR-FA-

NARmodel to detect and forecast the environmental status as well

as send early-warning signals of the potential environmental

threats and changes for shale gas production. The rest of this

paper is organized as follows. In section 2, we review the literature

on shale gas development, the potential environmental impacts, as

well as assessing and forecasting methods. Section 3 proposes a

novel forecasting methodology for the environmental impacts of

shale gas production. Section 4 demonstrates an empirical analysis.

In section 5, we present the environmental impact forecasting

results and construct a four-tier color-coded warning system for

Changning play. Section 6 concludes the paper.

2 Literature review

2.1 Review of the literature on shale gas
development and its environmental issues

Many researchers have studied shale gas development,

including shale gas prospects, shale gas properties, and the

social, economic, technical, and environmental issues of shale

gas production. Shale gas production was expected to supply

50% of the total natural gas in the U.S. by 2040 (Jackson et al.,

2014), and in fact, the proportion reached 68.5% in 2018.

Matthew et al. pointed out that shale gas has become an

energy policy priority in the United Kingdom (Cotton and

Cotton, 2016). It is noted that unconventional extraction for

shale gas resources, that is, multistage horizontal drilling and

high volume hydraulic fracturing, are fundamentally different

from and significantly more challenging than conventional

exploration (Navarette et al., 2014). The increased energy

security and potential economic benefits promote rapid

development in spite of the controversy about potential

environmental impacts of fracking goes on (Andersson-

Hudson et al., 2019). Bilgili et al. examined the potential

influence of shale gas extraction and concluded that new

technologies might be developed to reduce the possible

negative environmental impacts (Bilgili et al., 2016). Stamford

and Azapagic assessed the environmental impacts based on life

cycle assessment methodology and made comparisons with

fossil-fuel alternatives and low-carbon options (Stamford and

Azapagic, 2014). Wang et al. studied the economic, social, and

environmental impacts of shale gas development by integrating

driving force-pressure-state-impact-response (DPSIRM), the

real-coded accelerated genetic algorithm, and projection

pursuit (Wang and Zhan, 2019).

The potential threats associated with shale gas extraction

have begun to threaten the ecological environment due to water

consumption (Vidic et al., 2013; Loh and Loh, 2016), water

contamination (Rahm, 2011; Chang et al., 2014; Gallegos et al.,

2015; Harkness et al., 2015), air pollution (Roy et al., 2014; Sun

et al., 2016), noise pollution (Streich et al., 2010; Rutqvist et al.,

2013), induced earthquakes (Litovitz et al., 2013; Shirzaei, 2016),

and greenhouse gas emissions (Howarth et al., 2011; MacKay and

Stone, 2013; Melikoglu, 2014). MacKay and Stone examined local

greenhouse gas emissions associated with shale gas development

based on the life cycle (MacKay and Stone, 2013). Howarth et al.

evaluated greenhouse gases based on the available data from the

oil and gas industry by the U.S. Environmental Protection

Agency (Howarth et al., 2011). The rapid development of

shale gas has triggered an intense public debate over the

possible environmental and human health implications

(Vengosh et al., 2014). However, there is no unified

assessment, forecasting and warning system of the

environment on shale gas production for now. Therefore, it is

necessary to develop a scientific and reliable system to detect,

forecast, and identify the potential environmental threats

associated with shale gas extraction. Given the specific

properties of shale gas resources and the unconventional

extraction techniques, the development of shale gas should

require a different thought process to achieve a fully

optimized solution based on the interdependency between

multiple disciplines (Navarette et al., 2014).
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It can be seen that most of the literature mainly focuses on the

qualitative analysis and description of the potential challenges

posed by shale gas production. Meanwhile, some researchers

began to quantify the environmental impacts by using evaluation

methods and tried to assess these impacts objectively and

scientifically, which made great progress in the sustainability

of the shale gas industry. However, most of the research studies

environmental impacts from a macro perspective dedicated to

the assessment in a country or in a basin, and few of the research

studies a specific shale gas play or field from a micro perspective.

There is no doubt that the environmental impact assessment did

play an irreplaceable role in preventing or mitigating adverse

environmental impacts. However, the related results of the

assessment mainly show what happened in the past and

cannot effectively predict the future of environmental

conditions, that is, what will happen in the future cannot be

answered. China’s shale gas is growing at an exponential rate

thanks to national support policies and huge investments by

CNPC and Sinopec. Therefore, it is urgent to predict and identify

the potential environmental threats posed by shale gas

exploitation and development. In view of high heterogeneity

and the intrinsic nature of shale gas play, it is necessary to

construct a novel forecasting system to detect and reveal the

future status of the environment as a result of shale gas

production.

2.2 Review of the literature on the PSR-
FA-NAR model

Researchers have developed many models for assessing the

environmental impacts associated with shale gas development.

The environmental impacts were summarized and studied by

using the life cycle method (Stamford and Azapagic, 2014), the

correlation matrix method (Sun and Wang, 2015), curve

projection pursuit dynamic cluster, the Driving-Force-

Pressure-State-Impact-Response (DPSIR), and the PSR model

(Xing et al., 2016). However, the various methods combined with

the DPSIR framework have some shortcomings, such as covering

system complexity, over-representation of those impacts of

indicator changes, and an increasing insensitivity of the

assessment model with increasing complexity (Wolfslehner

and Vacik, 2008). It is worth pointing out that the PSR

framework has been applied to evaluate sustainable forest

management strategies (Wolfslehner and Vacik, 2008), assess

secondary soil salinization risk (Zhou et al., 2013), and forecast

security warning of energy consumption carbon emissions (Liang

et al., 2014), which have achieved great performance. Therefore,

the PSR framework that covers causes, impacts, and effects on the

environment was selected to develop the forecasting system for

shale gas production.

Shale gas development is a dynamic process with uncertainty

and complexity, so that nonlinear time-series models are viewed

as an effective tool with better performance. However, the PSR

model demonstrates a linear relationship between human beings

and the environment while having limited regard to scientific

analysis (Wolfslehner and Vacik, 2008). In fact, how to formulate

an appropriate nonlinear model is very difficult since more

mistakes can be made by more possibilities and more

parameters (Zhang et al., 2001). It can be proved that neural

networks show a lot of promise for nonlinear time-series

forecasting (McKenzie et al., 1995). An artificial neural

network (ANN) is a valuable tool for modeling and

forecasting time series, which has been commonly applied to

model dynamic nonlinear time series (Benmouiza and

Cheknane, 2013; Yolcu et al., 2013). To predict the change in

electric load consumption, Chow and Leung proposed a NAR

model to provide more accurate forecasts (Chow and Leung,

1996). Besides, the NAR neural network has been applied in

monitoring total suspended solids concentrations in Lake Mead

(Imen et al., 2015), detecting warning signals for chemical

industry (Jiang et al., 2017), enhancing the warning system of

drinking water source intake (Burchard-Levine et al., 2014), and

forecasting financial issues (Qi and Zhang, 2001; Zhang et al.,

2001; Panda and Narasimhan, 2007; Yu et al., 2009). The NAR

neural network with feedback and memory has obvious strengths

that provide more accuracy in time-series forecasting and

simulation (Benmouiza and Cheknane, 2013) and has been

proven to be well-suited for forecasting complex and

nonlinear time series (Cheng et al., 2019). There is still

limited research about environmental state forecasting

applying the NAR model. Therefore, this paper applies the

NAR neural network to address high uncertainty, high

complexity, and nonlinearity in the process of shale gas

production.

The prediction accuracy of the dynamic NAR neural network

mainly depends on the parameters, including lag orders and the

number of neurons in the hidden layer. However, the two

important parameters are often subjective, even sometimes

random, so that the NAR neural network might not be used

well in actual engineering applications. There is no specific

mathematical formula to obtain the number of neurons.

Although too many neurons can improve the learning ability

of the network, it leads to overfitting and reduces the

generalization ability. If too little, the network’s learning

ability is poor and it cannot capture the rules and

characteristics of sample data well. How to determine the two

parameters is a complex nonlinear optimization problem. The

general optimization algorithms including genetic algorithms

(GA) and particle swarm optimization (PSO), could be used

to solve the problem, while preliminary studies indicate that the

Firefly Algorithm (FA) is superior to GA and PSO (Goos et al.,

2009). The FA proposed by Yang (Goos et al., 2009) is a very

promising metaheuristic algorithm, which mimics the social

behavior of fireflies while flying such as searching for prey

and finding mates by bioluminescence with varied flashing
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patterns (Gandomi et al., 2011). Compared to other traditional

deterministic optimization algorithms, the FA is simple and

independent of the mathematical properties of the

optimization problem itself, so that it has been widely used

due to its calculation with high efficiency and less time-

consuming (Shuling et al., 2019). It has been proved that the

FA has the advantages of the global optimum, fast convergence,

easy operation, and good robustness and has been applied in

many areas, such as demand estimation of water resources

(Wang et al., 2018), mid-term interval load forecasting (Hu

et al., 2015), feature selection for classification and regression

models (Zhang et al., 2018), forecasting modeling and

optimization of a multi-zone HVAC system (Zeng et al.,

2015). Therefore, this paper uses the FA, one of the

metaheuristic optimization algorithms, to adjust and optimize

the parameters of the NAR neural network and improve the

performance of the network. Accordingly, the optimal lag order

and the optimal number of neurons in the hidden layer were

obtained objectively and scientifically by applying the FA-NAR

model.

3 Methodology

3.1 Model description

To address the cause-effect relationship, nonlinearity time-

series, and subjective or random parameters of the neural

network, we proposed a novel PSR-NAR-FA model which

combines the PSR framework with the NAR neural network

and the FA optimization algorithm. Firstly, the primary

indicators set up in the PSR framework should be screened to

be the key (or candidate) ones, then tailored ones according to

the actual status quo of shale gas plays. Secondly, the composite

environmental index (CEI) in environmental systems analysis is

calculated to delegate the whole state of the environment during

shale gas production. Thirdly, the aggregated monthly indexes

are used as input variables into a dynamic NAR model that can

effectively predict the environmental status of shale gas

development. Meanwhile, the FA optimization algorithm is

used to obtain the two important parameters, that is, the lag

orders and the number of neurons in the hidden layer. Finally,

the different warning signals are to be sent based on the local

environmental standards and the forecasting results of the PSR-

NAR-FA model. The proposed model is demonstrated in

Figure 1.

3.2 The indicator system within the PSR
framework

3.2.1 The PSR framework
The PSR framework, developed by the Organization for

Economic Co-operation and Development (OECD) (OECD,

1993), is an efficient framework for studying environmental

issues since it covers causes and effects influencing a

measurable state. Human beings have to obtain essentially

natural resources for survival and development, various kinds

of waste are emitted to affect the environment at the same time,

subsequently the responding actions and measures are taken to

reduce and curb the negative effects, finally changing human

behavior and decisions. Such interesting recycling constitutes a

pressure-state-response relationship which consists of three

categories of indicators: pressure indicators (indicators of

FIGURE 1
Flowchart of the PSR-FA-NAR model.
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P-layer), state indicators (indicators of S-layer), and response

indicators (indicators of R-layer), as shown in Figure 2.

The PSR framework is good at answering the basic

questions: “what happened, why happened, and how we will

do it.” The PSR model shown in Figure 2 illustrates the logic

structure during shale gas development. The indicators of the

P-layer describe the potential environmental impacts of

production activities, the indicators of the S-layer express the

status quo of the environment and corresponding changes as a

result of the activities; and the indicators of the R-layer present

the actions taken by companies to alleviate or curb the

corresponding negative changes (Wolfslehner and Vacik,

2008; Sun et al., 2020).

3.2.2 The screening of indicators
A set of thirty-six primary indicators were summarized and

elaborated on in the previous study (Sun et al., 2020). Given a

set of those, we interviewed the experts, managers, operators,

and workers on site and screened the key indicators in order to

enhance the implementation and application of the indicators

system in practice. The detailed calculation process is omitted

here because the method is popular and mature and is applied

in a lot of literature (Saaty, 1990; Zhou et al., 2006; Liu et al.,

2022). Then, the set of the key indicators is constituted based on

the data availability and the applicability of the indicator

system. Finally, the tailored indicator system should be

further studied due to the typical heterogeneity of the shale

gas plays according to the optimization theory. To

simultaneously ensure the completeness of the indicator

system and reduce the redundancy of indicators, the number

of indicators within the PSR framework should be a minimum,

which belongs to an optimization problem. Then, a screening

model is constructed based on this objective optimization

theory.

minZ � ∑3
s�1
∑N
h�1

csh, (1)

where s is equal to 1, 2, and 3 and represents the pressure, state,

and response subsystem respectively. Let N represent the

number of indicators in different subsystems and Z be the

number of indicators to be selected within the PSR

framework. Let csh denote the indicator h at the s level that is

kept whether or not. The minimum objective function is

subjected to the three constraints.⎧⎪⎪⎪⎨⎪⎪⎪⎩
csh � 0 or 1,∑N
h�1

csh > 0,

W · C≥ 85%,

(2)

where W is the weight vector of the key (i.e., candidate)

indicators and C is the vector of solution of the equation. The

first constraint indicates that there are only two states of the

alternative (or candidate) indicator, if the value is 1, then the

indicator is kept, and if the value is 0, then the indicator is

abandoned. The second constraint shows that at least one

indicator is selected at each layer so that the integrity of the

PSR framework system is guaranteed. The third constraint

indicates that the sum of the weights of the indicator system

should reach a certain threshold to meet the requirements of

completeness, and the weight of the selected (i.e., tailored)

indicators should account for no less than 85% of the original

indicators’ weight (Wang et al., 2020).

3.3 Aggregated monthly index

The CEI usually offers condensed environmental

information for decision making and performance monitoring

FIGURE 2
The PSR framework for forecasting the environmental status of shale gas production.
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(Zhou et al., 2006). Hope and Park highlighted the necessity of

the monthly CEI and pointed out that the index might be good

since it is more practical (Hope and Parker, 1990). Based on the

above valuable research results, we construct a monthly CEI and

apply the simple weighted sum method to calculate and rank the

values of the monthly CEI.

Suppose that there arem tailored indicators for one shale gas

play. Let X � (xij)m×n be the original matrix, where xij is the

value of the ith indicator in month j The indicators with different

measurement units have to be normalized before aggregating,

and the normalization values rij can be obtained by the following

normalization formula.

rij �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xij −min
i

{xij}
max

i
{xij} −min

i
{xij}, if the indicator satisfies ″the larger the better″

max
i

{xij} − xij

max
i

{xij} −min
i

{xij}, if the indicator satisfies ″the smaller the better″

min{xij, xi }
max{xij, xi }, if the indicator is the ideal value.

(3)

Let CEIj be the composite environmental index in a month j

and ωi is the weight of the indicator i Then the aggregated index

is formulated as follows:

CEIj � ∑m
i�1
rijωi j � 1, 2, . . . , n. (4)

Meanwhile, the sub-index of the composite index within the

PSR framework could be obtained by the same method and

procedure.

CEIj(s) � ∑m
i�1
rijωi(s), j � 1, 2, . . . , n; s � 1, 2, 3. (5)

Here, CEIj(s) is the monthly aggregated index at the s level that

represents the pressure, state, and response subsystem when s is

equal to 1, 2, and 3, respectively.

3.4 The FA-NAR model

3.4.1 The NAR neural network
The NAR is a recurrent neural network with a strong

dynamic performance and a high immunity to noise since it

combines the nonlinear mapping ability of a neural network with

the time-series characteristics of the linear autogressive model

(Cheng et al., 2019). Therefore, a NAR model is applied to detect

and forecast the state of the environment in a given period t as a

result of shale gas production, which is formulated as follows

(Lapedes and Farber, 1987; Ibrahim et al., 2016):

y(t) � f(y(t − 1), y(t − 2), . . . , y(t − p)),
� ∑L

j�1
WjH⎛⎝∑p

i�0
wijy(t − i) + εj⎞⎠ + ε0,

(6)

where y(t) is the output in a period t, p is the number of the lag

used to forecast the future, and f is the activation function with

nonlinear, discrete, and autoregressive systems (Zhang et al.,

2001; Ibrahim et al., 2016). L is the total number of neurons in the

hidden layer. The linking weights Wj and wij and the biases εj
and ε0 are estimated and derived in the training process of the

neural network, and the parameters in the NAR model are

updated by the Levenberg-Marquardt backpropagation

technique. It can be seen that the mapping from the inputs to

the output is performed by the formula, and the NAR with

feedback connections is illustrated in Figure 3 (Mahmoud et al.,

2015; Ibrahim et al., 2016; Tealab et al., 2017).

The input layer receives the variables

{y(t − 1), y(t − 2), . . . , y(t − p)} and sends them to the

hidden layer, then each of the neurons in the hidden layer

produces an intermediate output. Then, the neuron in the

output layer sums the intermediate outputs. It is noted that

the performance of the NAR heavily depends on two parameters,

that is, lag order and the number of neurons in the hidden layer,

which are traditionally obtained by rules-of-thumb or trial and

error without explicit scientific proof. Therefore, the

metaheuristic FA shown in section 3.4.2 is used to obtain the

two optimal parameters.

3.4.2 The FA optimization algorithm
The basic procedures of the FA optimization algorithm are

demonstrated by the pseudo code shown in Table1 (Gerhard

Goos, Juris Hartmanis, 2009; Gandomi et al., 2011).

The FA is a modern metaheuristic optimization algorithm

that can find the global and local optima simultaneously

(Gerhard Goos, Juris Hartmanis, 2009; Gandomi et al., 2011).

The process of search mimics the mating behavior of flashing

fireflies, and each one delegates a candidate solution. All feasible

solutions in the search space are regarded as firefly individuals.

When the less bright firefly is attracted by other brighter ones, it

can move toward other new positions and find potential

solutions (Wang, 2018). To simply describe the search model,

Yang (Gerhard Goos, Juris Hartmanis, 2009; Gandomi et al.,

2011) proposed three rules: 1) one firefly is attracted to other

brighter fireflies regardless of their gender; 2) the attractiveness is

proportional to firefly brightness; 3) the brightness is determined

by the landscape of objective function.

In the FA algorithm, the variation of light intensity and the

formulation of the attractiveness are the two key issues. The light

intensity I(dij) varies with the increasing distance dij between

firefly i at xi and firefly j at xj and the attractiveness β(dij) are
denoted as follows (Goos et al., 2009):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I(dij) � I0e
−γd2ij ,

β(dij)dij) � β0e
−γd2ij ,

dij �
����xi − xj

���� � ������������∑N
k�1

(xi,k − xj,k)2√√
,

(7)
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where I0 is the light intensity at distance d � 0, the

attractiveness β0 at d � 0 is the most attractiveness, and γ is

the light absorption coefficient, and usually regarded as a

constant [0.01,100] for most optimization problems. xi,k is the

kth component of the spatial coordinate xi of ith firefly andN is

the number of all the fireflies. Firefly i is attracted to moving

toward a brighter firefly j, and the location update function

can be formulated as follows:

xi � xi + β0e
−γd2ij(xj − xi) + α(rand − 1

2
), (8)

where the step factor α ∈ [0, 1] is the randomization parameter

and rand is a random generator uniformly distributed in [−1, 1]

3.4.3 The FA-NAR neural network
The principle and the process of optimizing the NAR neural

network by using the FA algorithm are outlined in Figure 4.

The performance and accuracy of forecasting by using the

NAR model mainly depend on the parameters, especially the

number of neurons in the hidden layer and lag order. The FA is

superior to the GA and PSO in optimizing the NAR network

parameters because fireflies aggregate more closely around each

optimum (Mandal et al., 2013). The network parameters, that is,

the lag order and the number of neurons in the hidden layer, are

regarded as firefly individuals, and the optimal network

parameters are derived after constantly updating the firefly

locations by using the global search ability of the FA. As for

the objective function of the algorithm, we use the mean square

error tomake the judgement. Then the optimal parameters by the

FA are integrated into the NAR model, which effectively

describes the nonlinear component to predict the state of the

environment.

FIGURE 3
The topology structure of the NAR neural network.

TABLE 1 The pseudo-code of the standard firefly optimization
algorithm.

Begin

Generate initial population of fireflies xi (i = 1,2, . . ., n)

Light intensity Ii at xi

Define light absorption coefficient γ

While t < MaxGeneration do

for i = 1: n all n fireflies do

for j = 1: i all n fireflies do

if Ij > Ii do

Move firefly i toward j in d-dimension

end if

Attractiveness varies with distance d via exp [-γd2]
Evaluate new solutions and update light intensity

end for j

end for i

Rank the fireflies and find the current best

end while

Postprocess results and visualization

End
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4 Empirical analysis

4.1 The tailored indicator system of
changning shale gas play

The Changning National Shale Gas Demonstration Zone,

approved by the National Development and Reform

Commission (NDRC) and the National Energy

Administration (NEA) in 2012 and operated by PetroChina

Southwest Oil & Gas Field Company, spans four counties in

Sichuan province, that is, Changning County, Gong County,

Xingwen County, and Junlian County in Sichuan province. In

October 2020, Changning’s daily shale gas output broke through

0.02 Bcm, ranking first in China’s shale gas fields’ daily

production. The annual shale gas output of the Changning-

Weiyuan play now exceeds 10 Bcm, accounting for more than

50% of total shale gas in China. Compared with reservoirs in

North America, Chinese shale gas reservoirs are deeply buried

and havemore complex surface conditions, whichmight produce

much more negative impacts on the local environment. Twenty

key indicators shown in Table 2 are selected.

The tailored indicators are obtained via the screening method

shown in section 3.2.2. The indicator is kept if the outcome is 1, and the

indicator is deleted if the outcome is 0. In this case, the environmental

indicators are optimized from 20 to 14, with 70% of the indicators

expressing 86.3% of the information, which could reflect the important

aspects of the environmental status comprehensively and eliminate the

subjective influence of humans. The whole algorithm is implemented

inMatlab software. The final weights of the fourteen tailored indicators

are recalculated and shown in Figure 5.

4.2 The CEI of changning play from
2014 to 2019

By applying the methodology in section 3.3, the monthly

CEIs of shale gas production in the Changning play from 2014 to

2019 are calculated as shown in Figure 6.

FIGURE 4
The flowchart of the FA-NAR model.
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4.3 Implementation of the FA-NAR model

The CEIs of Changning play are inputs to the NAR model.

The output parameter of the FA-NAR model is the

forecasting results. In this paper, we assign 70%, 15%, and

15% of the sample data from 2014 to 2019 to the training set,

validation set, and testing set, respectively. The training

process aims to adjust and optimize the neural network

based on the error term for the training set. The validation

process aims at the improvement of the generalization ability

of the neural network, and the training will have to stop

immediately once the generalization cannot be improved.

Thus, overfitting can be effectively prevented. Then, the

testing set offers a measure that can be used to evaluate

and judge the neural network performance during and

after training. It is noted that only the predictions of the

NAR model that passed the error autocorrelation test are

effective (Cheng et al., 2019).

The learning and prediction performance of NAR is tied

to lag order and the numbers of neurons in the hidden layer.

Hence, we would strongly suggest that the two parameters

should be obtained by global search algorithms such as the FA

optimization algorithm proposed in section 3.4.2 rather than

any rules of thumb. In theory, the range of γ is in the interval

(0, ∞) and it typically varies from 0.01 to 100 in most

applications, and α from 0.5 to 0.01 (Gandomi et al.,

2011). Li, 2015) found that the optimal parameters should

be set as follows, d � 85, α ∈ [0.01, 0.02], γ ∈ [1.02, 22.23] by

using trial and error regardless of the unique properties of the

research problems. Based on the characteristics of an

empirical case, the parameters are set as follows: the

population size d � 10, the maximum times of iteration are

100, the light absorption coefficient γ � 1, a firefly’s

attractiveness β0 � 1, and in this case, the randomization

parameter α is changing and updating from 0.01 to

0.02 with each iteration of this algorithm. Finally, the

optimal lag order and the optimal number of neurons in

the hidden layer at the pressure, state, and response level are

optimized to be 7 and 16, 8 and 12, 7 and 17, respectively. The

specific results of the training, validation, and testing of the

FA-NAR model are illustrated in Figures 7A–C, respectively.

The prediction performance of the FA-NAR model is

determined by the degree of correlation errors that can be

tested by error autocorrelation analysis (Cheng et al., 2019). It

is well known that the stronger the autocorrelation, the smaller

the prediction error. Only the degrees of correlation errors that

TABLE 2 The twenty key indicators and fourteen tailored indicators of Changning play.

Items No. Key (candidate)
indicators

Subjective weights Objective weights Aggregate weights State

Pressure 1 Wastewater 0.0544 0.0783 0.065 1

2 General solid waste 0.0113 0.0741 0.039 0

3 Disturbed land surface 0.0175 0.0908 0.049 1

4 Reduction in vegetation biomass 0.0080 0.0398 0.022 0

5 Fugitive and vented methane emissions 0.1156 0.0339 0.080 1

6 CO2 emissions 0.0175 0.0767 0.043 1

7 NOx emissions 0.0544 0.0822 0.066 1

8 SO2 emissions 0.0175 0.0763 0.043 1

9 Noise pollution at daytime 0.0113 0.0330 0.021 0

10 Noise pollution at night 0.0815 0.0247 0.057 1

11 Hazardous solid waste 0.0544 0.0741 0.063 1

State 12 Proportion of “good” surface water quality 0.0336 0.0944 0.060 1

13 Proportion of “good” groundwater quality 0.0336 0.0473 0.040 1

14 Percentage of “up to standard” air quality days 0.0793 0.0419 0.063 1

15 Vegetation cover 0.0090 0.0208 0.014 0

16 Ecological index 0.0138 0.0122 0.013 0

Response 17 Environmental protection expenditure in total investment 0.1832 0.0156 0.110 1

18 Percentage of flow-back fluids recycle 0.1102 0.0376 0.079 1

19 Proportion of general solid waste disposal and recycle 0.0282 0.0297 0.029 0

20 Percentage of land restoration 0.0658 0.0167 0.045 1

Frontiers in Environmental Science frontiersin.org09

Sun et al. 10.3389/fenvs.2022.965728

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.965728


are lower than the confidence level can pass the error

autocorrelation test (Cheng et al., 2019). The error

autocorrelation analysis of the FA-NAR model is illustrated in

Figure 8.

We can see that the autocorrelation of errors is within the

range of the confidence levels except when the lag order is zero,

which denotes that the FA-NAR model is effective and the

prediction performance of the model is good and accepted.

Therefore, we could apply the FA-NAR model with good

prediction performance to forecast the monthly environmental

state within the next 2 years.

5 Prediction results and analysis

5.1 Prediction results

In this section, the effectiveness of the FA-NAR model is

evaluated and discussed by predicting the state of the environment

from 2020 to 2021. If the error between the actual value and the

obtained value is accepted, then the model could be used for

forecasting the future state of the environment in the process of

shale gas production. Given that the proposed model is a data

extrapolation method, short-term predictions could be made. In

FIGURE 5
The final weights of fourteen tailored indicators of Changning play.

FIGURE 6
The monthly indexes in Changning play from 2014 to 2019.
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this paper, 1 month is selected as the length of the short-term

prediction. The forecasting results of monthly CEIs at the pressure,

state, and response levels are illustrated in Figures 9A–C, respectively.

Subsequently, the results of monthly CEIs are summarized

and aggregated in Figure 10.

5.2 Error analysis

The prediction performance of the forecasting model is

usually estimated by error functions such as the sum of

squared errors, the mean absolute percentage error, the least

absolute deviations, the mean square error (MSE), and

percentage differences. In this paper, the MSE is selected to

FIGURE 7
The specific results of training, validation, and testing of the
FA-NAR model. (A) Results of training, verification, and testing at
the pressure level. (B) Results of training, verification, and testing at
the state level. (C) Results of training, verification, and testing
at the response level.

FIGURE 8
The results of error autocorrelation analysis of the FA-NAR
model (A) Error autocorrelation analysis at the pressure level (B)
Error autocorrelation analysis at the state level (C) Error
autocorrelation analysis at the response level.
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analyze the predictive performance and accuracy of the FA-NAR

neural network. And the MSE can be obtained by formula (9).

MSE � 1
T
∑T
t�1
(predictedt − observedt)2, (9)

where observedt is the actual value of the environmental index

time series, predictedi is the forecasting value obtained by the

proposed model, and T is the length of the forecasting interval.

Based on the differences between the forecasting results

and the recorded actual values from January 2020 to

December 2021, the predictive performance measure, MSE,

is calculated by using the NAR and the FA-NAR models. Then

the MSEs at the P-layer, S-layer, and R-layer by the FA-NAR

are 0.0768, 0.0020, and 0.0110, respectively, and the

corresponding MSE by the NAR is 0.0945, 0.0033, and

0.0131, respectively. It can be seen that the MSE at

different layers corresponding to the FA-NAR model is less

than the MSE by the NAR model, which indicates that the

proposed FA-NAR model outperforms the contrasted NAR

model in predictive performance and accuracy. Whereas, the

computing time by the FA-NAR model is much higher than

the traditional NAR model. The computing time by the FA-

NAR model is from 264 sec to 290 sec far beyond only 0.6 sec,

by the NAR model. If the problem to be solved is super large-

scale, how to improve the forecasting efficiency should be

further studied.

5.3 The standards of environmental
protection in changning play

The environmental protection standards in the Changning

shale gas play are given in Table 3.

5.4 Warning signals for changning play

According to the CEIs shown in Figure 6 and the

standards of environmental protection shown in Table 3,

the warning signals are designed for Changning play by the

aggregating weight method, which is shown and visualized in

Figure 11.

The state of the environment is healthy when the index is

below 0.0953, 0.0919, 0.1038, and 0.0930 in the first, second,

third, and fourth quarters, respectively. When the index is from

0.0953 to 0.4767 and from 0.0919 to 0.4597 in the first and second

quarters, respectively, it is a slight warning without substantial

pollution in the process of shale gas extraction.When the index is

above 0.5188 and below 0.9038 in the third quarter, the warning

signal is yellow with a severe warning, which denotes serious

FIGURE 9
The forecasting results of monthly composite environmental
indexes. (A) The forecasting results of monthly CEIs at the pressure
level. (B) The forecasting results of monthly CEIs at the state level.
(C) The forecasting results of monthly CEIs at the response
level.
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environmental problems, the same principle applies to other

quarters. Subsequently, if the index in the four quarters is above

0.8953, 0.8919, 0.9038, and 0.8930, respectively, all the projects

must be stopped immediately because the catastrophic

consequence would be caused with an extremely great possibility.

6 Discussion

The aggregated monthly warning indexes from 2014 to

2021 are eventually illustrated in Figure 12 based on the

monthly aggregated indexes of the environment shown in

FIGURE 10
The monthly CEI and the aggregated indexes from 2014 to 2021 in the Changning shale gas play.

TABLE 3 The environment protection standards in Changning play.

Layer Indicator Unit Q1 Q2 Q3 Q4 Source

Pressure A1 t CO2e 13288.48 17586.32 30270.61 35405.62 The people’s government of Sichuan Province

A2 t 25.95 48.57 47.71 35.75 The people’s government of Sichuan Province

A3 m3 5,008.57 7,026.30 8,498.32 9,878.83 The average monthly value from 2014 to 2019/Estimated by the authors

A4 m3 1830.56 2,133.87 2,366.27 2,581.75 The average monthly value from 2014 to 2019/Estimated by the authors

A5 dB 50.00 50.00 50.00 50.00 Emission standard for industrial enterprises noise at boundary (GB12348-2008)

A6 m2 1065000 1189500 1645556 1099867 The average monthly value from 2014 to 2019/Estimated by the authors

A7 t CO2e 4.41 6.51 6.38 3.52 The People’s Government of Sichuan Province

A8 t 6.63 9.41 9.21 4.76 The People’s Government of Sichuan Province

State A9 % 42.41 94.52 100 80.05 China’s Ambient air quality standards, GB3095-2012/The people’s government of
Sichuan Province

A10 % 82.14 82.14 82.14 82.14 China’s Environmental quality standards for surface water, GB 3838–2002/Action Plan
of Water Pollution Control Work plan of Sichuan Province

A11 % 90.00 90.00 90.00 90.00 China’s Quality Standard for Ground Water, GB 14848–2017/Action Plan of Water
Pollution Control Work plan of Sichuan Province

Response A12 % 1.50 1.50 1.50 1.50 Management Method for the Extraction and Use of Enterprise Safety Production Costs

A13 % 85.00 85.00 85.00 85.00 Technical Policy of Pollution Prevention and Control for Shale Gas Exploitation in
Sichuan Province

A14 % 2.21 2.12 1.51 2.19 The average monthly value from 2014 to 2019/Estimated by the authors

Q1, Q2, Q3, and Q4 represent the first, second, third, and fourth quarter of a year.
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Figure 10 and the warning signals for Changning play shown in

Figure 11.

The blue parts of the table in the latter half of Figure 12 and

the vertical blue lines in the upper half of Figure 12 denote a slight

warning in the months. The yellow parts and the vertical yellow

lines mean that there are some seriously negative environmental

impacts, and the shale gas company and the local government

agencies have to take much more effective measures and actions

to alleviate and curb the bad situation. Next, we need to do the

analysis and discussion in detail. We have found that the warning

signals during the first month and the fifth month of 2014 were

yellow. The reasons are that shale gas production in Changning

play was still at an early stage at that time and the company did

not take proactive actions enough to address the potential

threats. As an enhancement in technology, capital, and

equipment, the severe situation has been changed, and the

FIGURE 11
The warning signals for Changning play.

FIGURE 12
The monthly aggregated warning indexes for Changning play from 2014 to 2021.
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general state of the environment was accepted without

substantial pollution and sent blue signals from 2014 to 2018.

Actually, the real reason might be that the output of shale gas is

still limited, so that the negative effects on the local environment

are controllable on the whole. However, the status quo of the

environment was not always optimistic with the rapid

development of shale gas and sent yellow alarms in December

2018 again. The aggregated monthly CEI has been increasing

year by year since 2018, which might mean that the Changning

play will face severe environmental risks and threats imposed by

the shale gas acceleration.

As expected, the status of the ecological environment became

worse and worse, up to eleven-times yellow alarms in 2019,

which indicated that a severe warning was coming again and the

environmental impacts were threatening the local ecosystem.

The main reason why the state of the environment has

deteriorated sharply is the great breakthrough of the large-

scale development of shale gas resources in the Changning-

Weiyuan national-level shale gas pilot zone after a long period

of huge investments in unconventional natural gas resources.

From 2016 to October 2018, it took two and a half years for the

Changning shale gas play to increase by three million cubic

meters. According to the development plans, the number of

drilling wells in the Changning shale gas field began to increase

greatly in the middle of 2018. On May 20, 2019, the daily

production of the Changning shale gas block reached

10.06 million cubic meters with the faster development. In

2019, the volume of shale gas production increased to

3.486 Bcm, accounting for 43% of Petro China’s total shale

gas production in Southern Sichuan. Therefore, the aggregated

environmental indexes at the pressure level increased sharply due

to the rapid development of shale gas, and the warning signals are

all yellow except for July of 2019.

By the end of 2020, the annual output in the Changning-

Weiyuan national-level shale gas pilot zone exceeded 10 Bcm to

be the largest shale gas development demonstration zone in

China. China is now the world’s second largest shale gas

producer, making it the third country, after the United States

and Canada, to have the capacity to develop shale gas

commercially. Furthermore, the state-owned oil companies

have made an unprecedented investment in shale gas

exploration and production since the end of 2020. In August

2021, the NEA hosted a working talk on enhancing oil and gas

exploration and production in Beijing once again after May 2019,

which called for the domestic oil and gas producers, that is,

CNPC, Sinopec, CNOOC (China National Offshore Oil

Corporation), and Shaanxi Yanchang Petroleum, to

continuously improve the intensity of oil and gas exploration

and production and investment. The oil giants, in response to the

national strategic plan, began to invest and accelerate in oil and

gas, especially unconventional oil and gas, even if the oil price was

very low at that time. The “unprecedented” investment in shale

oil and gas resources, especially in the Changning-Weiyuan

national-level shale gas pilot zone, is exacerbating the local

environmental threats and challenges.

The state of the environment is not optimistic, and the

environmental risks and threats are increasing month by

month. The worst thing is that there are nineteen severe

warnings with yellow signals from 2020 to 2021. The

aggregated indexes for the first 6 months of 2021 show a

declining trend, which indicates that the effort made by the

company and the government achieved remarkable success.

However, the state of the environment has changed and has

again presented yellow warning signals since August of 2021, and

the aggregated indexes are continuously rising. The negative

impacts of the P-layer surpass the positive effects of the

S-layer, which leads to the increase of the aggregated indexes.

As for why that happened, it can be seen that the sub-indexes at

the response level are not improved obviously and almost keep a

straight line, which might denote that the environmental

protection expenditure is not enough to deal with the negative

impacts in the future. The company that is involved in shale gas

development in Changning play, that is, PetroChina Southwest

Oil and Gas Field Company, whose target output of shale gas

production will reach 27 Bcm by 2025, will face much more

serious environmental problems if they do not keep increasing

concerns and expenditures. Hence, the company and the local

government should take much more proactive and effective

measures and actions to curb environmental deterioration.

Methane is a more potent greenhouse gas than carbon

dioxide in the process of shale gas extraction, so even small

emissions matter. Howarth stated that methane is a major

component of the greenhouse gas footprint of shale gas and

estimated that 3.6–7.9 percent of the lifetime production of a

shale gas well is vented from the pipelines, wellhead, and

storage facilities (Howarth and Ingraffea, 2011). However,

methane leakage and emissions from natural gas industry

operations are not known due to the poor quality of

estimates available (Kirchgessner et al., 1997). Methane

emissions from U.S. and Canadian natural gas systems

appear larger than official estimates (Brandt et al., 2014). In

addition, the issue of possible induced earthquakes due to

shale gas extraction might be further discussed and studied

since researchers or institutes hold different viewpoints. For

instance, many people doubted that the 6-moment magnitude

earthquake event that occurred on June 17, 2019 in Changning

County might result from shale gas production, whereas the

Sichuan Earthquake Administration stated that it was natural

rather than induced seismic. Many international experts or

professionals thought the earthquake might not be triggered

in the period of shale gas production, but the controversial

issue is still worth discussing and has raised the public’s

concerns. Nevertheless, all the shale gas projects located in

Rong County, Sichuan Province, were stopped on February

25, 2019. The debates over hydraulic fracking’s impacts on

increased levels of induced seismicity are likely to endure,
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while the existing literature shows that it is possible to produce

shale gas sustainably.

7 Conclusion

The rapid development of Chinese shale gas does have a

strategic role in improving the energy mix and energy

dependency in the future. The contribution made by shale gas

is most likely to increase a lot thanks to “unprecedented”

investment from the state-owned oil giants and better national

policies in favor of its use in China. China’s “unprecedented”

investment in shale gas is exacerbating ongoing negative

environmental impacts. The environmental impacts and

threats corresponding to shale gas production are becoming

an urgent task as the state of the environment is not

optimistic with the rapid expansion of shale gas production.

Given that high uncertainty, nonlinearity, and complexity, this

paper proposes a new hybrid PSR-FA-NAR methodology which

combines the PSR framework with the NAR neural network and

the FA optimization algorithm to forecast the state of the

environment as well as send warning signals of the potential

environmental threats to shale gas production. In the hybrid

methodology, the metaheuristic optimization algorithm is

applied to adjust and optimize the parameters of the NAR

neural network, such as the optimal lag order and the optimal

number of neurons in the hidden layer. Moreover, a practical

four-tier warning system has been designed based on the

standards of environmental protection in China, Sichuan

province, and the Changning shale gas play, which can

visually display the state of the environment in the process of

shale gas production. The empirical study demonstrates that the

proposed model is not only able to capture nonlinearity time-

series and present cause-effect relationships, but is also able to

improve the predictive performance and forecasting accuracy.

The empirical results show that the FA-NAR model that can

reduce the subjectivity of input network parameters is superior to

the traditional NAR prediction methods in predictive

performance and accuracy, while it is inferior to the NAR in

computing efficiency. It is predicted that the state of the

environment will become worse and worse with the rapid

expansion of shale gas production in the Changning-Weiyuan

national-level shale gas pilot. Changning play will predictably

face severe environmental threats with a breakthrough

development. Given the complexity, dynamics, and

uncertainties of the state of the environment in the process of

shale gas production and the high heterogeneity and intrinsic

nature of shale gas plays, more empirical cases are still needed to

further verify the stability and general adaptability. The state of

the environment is not optimistic, mainly due to poor

environmental protection expenditure and underestimated

methane emissions. In any case, Chinese government agencies

should pay much more attention to environmental protection

and implement more strict environmental policies, even if they

might constrain China’s shale gas industry to some extent.

Otherwise, the status quo of the environment could not be

fundamentally improved with the sharp acceleration of shale

gas production.
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