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Applying the panel data of 16 districts in Beijing, China from 2009 to 2020 as the

research object, this studymeasures and analyzes the carbon emission intensity

and the level of industrial structure upgrading. Based on the above results, a

spatial econometricmodel is established to analyze the spatial spillover effect of

industrial structure upgrading on carbon emission intensity. Conclusions are

drawn as follows: (a) In 2009, 2015 and 2020, the carbon emission intensity in

most districts of Beijing has decreased, and in some areas even decreased

significantly. The upgrading of industrial structure in all districts has been

improved (b). According to the results of spatial autocorrelation, the carbon

emission intensity in Beijing shows significant positive spatial autocorrelation in

2009 and 2020,while negative spatial autocorrelation in 2015; The upgrading of

industrial structure in Beijing shows significant positive spatial autocorrelation in

2009, 2015 and 2020 (c). The regression results of the spatial econometric

model show that industrial structure upgrading not only reduces the carbon

emission intensity of the region, but also decreases the carbon emission

intensity of the surrounding areas.
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1 Introduction

Carbon dioxide emissions and global warming have raised concern in various

countries in recent years once again with the increasing number of extreme weather

events (Paul and Bhattacharya, 2004). The increase of carbon dioxide emissions led to a

series of natural disasters, forcing the countries to jointly call for the reduction of carbon

emissions, which puts forward new requirements for national and regional industrial

development and thus, promoting industrial development and transformation to become

a crucial link in national strategic development (IPCC, 2007). On 22 September 2020,

Chinese President Xi Jinping announced to the world at the General Debate of the

75 sessions of the United Nations General Assembly that China will scale up its Intended
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Nationally Determined Contribution by adopting more vigorous

policies and measures, aiming to peak CO2 emissions before

2030 and achieving carbon neutrality before 2060. As the world’s

largest energy producer and consumer, China has been actively

promoting industrial restructuring and energy structure

optimization since the 11th Five-Year Plan period in order to

achieve sustainable and high-quality economic development. As

the second largest first-tier city in terms of GDP in China, Beijing

has experienced a constant evolution of urban function

positioning and has the biggest tertiary industry as a

proportion of GDP among all Chinese cities. Beijing has

played an exemplary role in actively implementing the

industrial structure upgrading and emission reduction among

Chinese cities. Especially, a large number of enterprises with high

pollution and high energy consumption have been closed down

or transferred since 2014, achieving the industrial structure

upgrading from the industrial economy to the service

economy. Meanwhile, Beijing has been actively responding to

the call of carbon emission reduction work by the central

government and achieved remarkable results in the field. In

addition, CO2 emissions are mainly concentrated in urban

areas, accounting for 70% of global CO2 emissions. China is

the largest carbon emitter in the world, and Beijing, as the capital

and first-tier city of China, has attracted great attention from the

world. Does the industrial structure upgrading promote the

reduction of carbon emission intensity? The empirical

research from 16 districts in Beijing may provide a reference

for China to achieve the “carbon peaking and carbon neutrality

goals” as scheduled, and also for other countries to formulate

industrial policies and reduce carbon emission intensity.

On the issue of carbon emission intensity, some scholars have

carried out a large number of studies to explore the factors

affecting carbon emission intensity from different perspectives.

Hanif et al. (2019) conclude that FDI is a significant source of

CO2 emissions for developing countries (Hanif et al., 2019). The

relationship between economic development level and carbon

emission intensity has been frequently discussed. A large number

of studies show that the economic development level has a

significant impact on carbon emission intensity in China (Li,

2010; Meng et al., 2011; Zhang and Lin, 2012). Auffhammer and

Carson (2008) analyze the influencing factors of carbon emission

intensity in 25 provinces of China during 1985–2004 and find

that there is an inverted U-shaped relationship between carbon

emission intensity and per capita GDP in China (Auffhammer

and Carson, 2008). (Fan et al., 2007) empirically analyze the

influencing factors of carbon emission intensity and reveal that

carbon emission intensity in China generally showed a

downward trend from 1980 to 2003 (Fan et al., 2007).

In addition, more and more scholars are paying attention to

the relationship between industrial structure and carbon

emissions since China is in a critical period of industrial

structure transformation and upgrading. Plentiful literatures

reveal that carbon emissions are closely related to industrial

structure, energy structure, and energy intensity. Ang et al.

(1998) study the relationship between CO2 emission and

industrial energy consumption in China during 1985–1990 by

using the logarithmic mean Divisia index (LMDI) method. Their

results show a large positive effect associated with the change in

industrial production and a large negative effect associated with

the change in sectorial energy intensity (Ang et al., 1998). The

research results of Zhang (2000) show that, without the policies

and measures toward energy conversation, it would be difficult

for China to contribute to a significant decline in carbon emission

intensity given its economic growth rate (Zhang, 2000). Zhang

J. et al. (2018) empirically find that industrial structure

optimization can significantly inhibit carbon emissions. Cheng

Z. et al. (2018) study the effects of the industrial structure

upgrading in China on carbon emission intensity, finding that

both the carbon emission intensity in China and the industrial

structure upgrading show a significant positive spatial

autocorrelation, and industrial structure upgrading reduces the

carbon emission intensity of the region (Cheng et al., 2018).

Through reviewing the relevant literature, it is found that there

are plentiful studies on the influence relation between industrial

structure upgrading and carbon emission intensity in China at

the national level, but few studies at the urban level. This paper

innovatively explores the relation from the perspective of “small

scale in big city” to offer a closer look at this field.

Although extensive studies have examined the factors

affecting carbon emissions, especially those on the impact of

industrial structure on carbon emissions are springing up, there

are still some perspectives that remain insufficiently analyzed.

The previous literature mostly studies the impact of industrial

structure on total carbon emissions rather than carbon emission

intensity, which can better reflect the concept of low-carbon

economy. Few of the existing literatures have analyzed the

relationship between industrial structure upgrading and

carbon emission intensity from a spatial perspective. Besides,

the existing studies mostly have focused on the relationship

between industrial structure and carbon emissions at the

provincial level but not considered the relationship between

the two at a city level. This article aims to measure and

analyze the carbon emission intensity and the level of

industrial structure upgrading with appropriate indicators in

each district of Beijing and then builds a spatial econometric

model to discuss the spatial spillover effect of industrial structure

upgrading on carbon emission intensity.

The first section of this paper introduces the research

background and current status of relevant research. Methods

introduces data sources and research methods. Then in Statistical

analysis we select the relevant data of each district in Beijing to

calculate and analyze the carbon emission intensity and

industrial structure upgrading level. The next we analyze the

spatial correlation and heterogeneity of the two, then study the

impact of industrial structure upgrading on carbon emission

intensity in Beijing by SDMmodel. Based on the interpretation of
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the results of spatial analysis, a discussion is presented in

Discussion. Lastly, the conclusion is summarized and relevant

policy recommendations are put forward in Conclusion.

2 Methods

2.1 Data sources

Beijing is located in northern China with a population of

21.886 million and an area of 16,410 square kilometers. The per

capita GDP in Beijing was 164,200 yuan by the end of 2020,

ranking first in China. Our research object is the 16 municipal

districts of Beijing from 2009 to 2020 and the original data are

collected from Beijing Statistical Yearbook1 (Beijing Municipal

Bureau of Statistics and NBS Survey Office in Beijing,

2009–2020) and EPS database2. The dependent variable is set

as carbon emission intensity and the core explanatory variable is

industrial structure upgrading. According to the relevant

literatures, investment level, economic development level,

consumption level and labor input are the major factors

affecting carbon emission intensity. The indicator of

investment level is measured by regional actual utilized

foreign direct investment/regional GDP (fdi). The indicator of

economic development level is measured by per capita GDP

(pgdp). The indicator of consumption level is measured by per

capita personal consumption expenditure (pcon). And the

indicator of labor force is measured by total sum of on-duty

employees’ wages (lab). Appendix A displays the definitions and

descriptive statistics of the above variables. Figure 1 shows the

location and administrative boundaries of districts in Beijing.

The symbols of 16 districts in Figure 1 are the phonetic initials of

each district. The projection method used in Figure 1 is

CGCS_2000. The same below.

2.2 Research methodologies

2.2.1 Exploratory spatial data analysis
This study uses spatial autocorrelation to explore the spatial

pattern of carbon emission intensity and industrial upgrading.

Spatial autocorrelation refers to the statistical correlation between

the spatial proximity among observational units and the numeric

similarity among their values. In general, the closer the distance, the

greater the correlation between the two values. Moran’s I and Local

Moran Index are usually introduced to measure global and local

spatial correlation. The former is a method of global clustering

test, which tests the similarity (spatial positive correlation) and

dissimilarity (spatial negative correlation) or mutual

independence of adjacent areas in the whole research area; The

latter is used to test whether similar or different observations have

been collected locally. Moran’s I index is generally used for global

spatial autocorrelation (Moran, 1950). In this study, globalMoran’s I

value is used to analyze the degree of spatial correlation as a whole

and the calculation formula is as follows:

FIGURE 1
Location of each administrative district in Beijing.

1 http://tjj.beijing.gov.cn/tjsj_31433/

2 https://www.epsnet.com.cn/index.html#/Index
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I � N∑N
i�1∑N

j�1Wij

∑N
i�1∑N

j�1Wij(yi − �y)(yj − �y)
∑N

i�1(yi − �y)2 (1)

Where N is the total number of districts in Beijing; yi is carbon

emission intensity or industrial structure upgrading index in region

i; �y is the average of carbon emission intensity or industrial

structure upgrading index; W is the spatial weight matrix, where

adjacent space is 1 and non-adjacent space is 0. The value range of

Moran’s I is [−1,1], where positive value represents positive spatial

autocorrelation, negative value represents negative spatial

autocorrelation, and 0 represents spatial uncorrelation. Z-test is

usually used to perform statistical tests on Moran’s I value results:

Z(I) � I − E(I)������
var(I)√ (2)

Where E(I) is the expected value, var(I) is the variance.

Local spatial autocorrelation refers to the Local Moran Index

of a region (Pinto et al., 2014), which is used to measure the

degree of association between region I and its adjacent regions.

Our study applies LISA as a local metric of spatial autocorrelation

(Anselin, 1995) to identify clusters and outliers, such as districts

which have higher or lower carbon intensity or industrial

upgrading values than expected. The accumulation of j in the

formula does not involve the district I itself, that is, j ≠i. We use

LISA agglomeration map to analyze the characteristics of local

agglomeration. LISA agglomeration map consists of four

quadrants, namely, the first quadrant, the second quadrant, the

third quadrant and the fourth quadrant. The first quadrant (HH)

represents the high-value region surrounded by the high-value

regions; the second quadrant (LH) represents the low-value region

surrounded by the high-value regions; the third quadrant (LL)

represents the low-value region surrounded by the low-value

regions; and the fourth quadrant (HL) represents the high-value

region surrounded by the low-value regions.

Ii � (yi − �y)
S2y

∑
j
[Wij(yj − �y)] (3)

S2y � ∑
j
(yj − �y)/N (4)

Where N is the total number of districts in Beijing; yj is carbon

emission intensity or industrial structure upgrading index in region

i; �y is the average of carbon emission intensity or industrial structure

upgrading index; W is spatial weight matrix; S2y is the variance.

2.2.2 Spatial econometric model
This study utilizes mainly spatial regression models, such as

Spatial Autoregressive Model (SAR), Spatial Autocorrelation

Model (SAC) and Spatial Durbin Model (SDM).

2.2.2.1 Spatial Autoregressive Model (SAR)

The Spatial Autoregressive Model (Anselin, 2013)proposed

by Cliff and Ord (1981) is the most widely used method in spatial

econometrics (Cliff et al., 1981). Spatial Autoregressive Model is

used for examining spatial dependence between dependent

variables, mainly considering the interaction between regions

with spillover effects, excluding the interaction of independent

variables. The formula is as follows:

Y � δWY + ατN +Xβ + ε (5)
Where Y is the dependent variable of order N×t; X is the

independent variable of order N×t; W is the spatial weight

matrix; δ is used to measure the degree of interaction between

regions; τN is the unit vector of order N×t; α is the constant term;

Y is the actual value of the dependent variable; β is the unknown

parameter variable to be estimated; ε is the stochastic disturbance

term; δ is the spatial autoregressive coefficient. If δ is significant,

then the variables are spatially correlated; the larger the value of δ

is, the more significant the spillover effect is.

2.2.2.2 Spatial Autocorrelation Model (SAC)

SAC model (Dormann C et al., 2007) does not consider the

spatial interaction effect among explanatory variables, compared

with Spatial Durbin Model. It should be noted that SAC model

can only be constructed on the basis of fixed effects model, so the

specific calculation formula is as follows:

Y � δWY + ατN +Xβ + μ (6)
μ � λWμ + ε (7)

Where μ is the residual vector in the regression; λ is the error

spatial autoregression coefficient, which is used to measure the

spatial dependence of Y. If λ is significant, then there is spatial

correlation in the error term caused by the important factor

omitted.

2.2.2.3 Spatial durbin model

The Spatial Durbin Model comprehensively considers both

exogenous and endogenous interaction effects, the calculation

formula as follows:

Y � δWY + ατN +Xβ +WXθ + μ (8)
μ � λWμ + ε (9)

Where θ is an unknown parameter variable that needs to be

estimated (LeSage and Pace, 2009; Yu et al., 2013).

3 Statistical analysis

3.1 Measurement of carbon emission
intensity

Carbon emission intensity is calculated according to energy

consumption. The formula is as follows:

E � ETCE × EF ×
44
12

(10)
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c � E
GDP

(11)

Where E is the total amount of carbon emission, ETCE is energy

consumption (standard coal); EF is the transition coefficient

between energy consumption and carbon emission intensity;

and C is carbon emission intensity. The district-level energy

consumption data of Beijing come from Beijing Regional

Statistical Yearbook (Beijing Municipal Bureau of Statistics).

According to the transition coefficient developed by Zheng

et al. (2019), EF is 2.204 kg CO2/kg TCE.

3.2 Measurement of industrial structure
upgrading

The level of industrial structure upgrading can be evaluated

by various indexes, such as Proportional Weight Method of

Industrial Structure, Technical Complexity Method and

Included Angle Cosine Method. Proportional Weight Method

of Industrial Structure is suitable to measure the rationalization

process and upgrading process of industrial structure change.

Technical Complexity Method has such critical requirements for

data that the process is often difficult to implement. Included

Angle Cosine Method expresses the improvement degree of

industrial structure by studying the angle of geometric vector.

According to both data availability and the limitations, this study

adopts the method developed by Fu (2010) to measure the

industrial structure upgrading. Fu (2010) introduces the angle

of three-dimensional vectors in space instead of simple and

rough subjective assignment, and his approach has been

widely adopted as a main research method by many Chinese

scholars. This method is also called “Angle Method of Space

Vectors”. The first step is to measure the ratio of the output value

of primary industry, secondary industry and tertiary industry to

GDP as a component of the spatial vectors to form a set of 3-

dimensional vectors X0 � (x1,0, x2,0, x3,0). Then we measure the

angles between X0 and the vectors of primary industry,

secondary industry and tertiary industry respectively ( X1 �
(1, 0, 0) , X2 � (0, 1, 0) , X3 � (0, 0, 1)), namely θ1, θ2, θ3:

θj � arccos
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ∑3

i�1(xi,jxi,0)
(∑3

i�1(x2
i,j)1/2∑3

i�1(x2
i,0)1/2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

j = 1,2,3.

The formula of industrial structure upgrading (W) is as

follows:

W � ∑3

k�1∑k

j�1θj (13)

3.3 Analysis of carbon emission intensity
and industrial structure upgrading level

3.3.1 Calculation of carbon emission intensity
In order to understand the change of carbon emission

intensity in each district of Beijing from 2009 to 2020, we

conduct analysis on the data of the years of 2009, 2015 and

FIGURE 2
Distribution of carbon emission intensity in 2009.
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2020. The color changing from green to red in Figures 2–4

indicates the value getting larger. As can be seen from Figures

2–4, the carbon emission intensity of all districts in Beijing was

low on the whole, while that of some districts was high, such as

Mentougou District, however, with a downward trend. From the

perspective of spatial distribution, the carbon emission intensity

of Dongcheng District, Xicheng District and its surrounding ones

was significantly lower than that of other districts. The districts

with higher carbon emission intensity were mainly the outer

suburbs of Beijing and the carbon emission intensity of most

FIGURE 3
Distribution of carbon emission intensity in 2015.

FIGURE 4
Distribution of carbon emission intensity in 2020.
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areas in Beijing was at the medium level. As shown in Table 1,

except Fangshan District, Shunyi District and Daxing District,

carbon emission intensity of other districts experienced a decline

in 2009, 2015 and 2020, among which Mentougou District

witnessed the most significant downturn of 92.018. The

carbon emission intensity of Xicheng District dropped below

1 for the first time in the year of 2015. And in 2020, the carbon

emission intensity of Dongcheng District, Xicheng District,

Chaoyang District and Haidian District dropped below 1, with

the lowest value of 0.580 in Xicheng District. Besides, Mentougou

District recorded the highest carbon emission intensity in

2009 and 2015 and Fangshan District in 2020 in Beijing.

3.3.2 Calculation of industrial structure
upgrading level

In order to understand the changes of industrial structure

upgrading level in each district of Beijing from 2009 to 2020, we

conduct analysis on the data of the years of 2009, 2015 and 2020.

In Figures 5–7, the value is getting higher with color from red to

green. As can be seen from Figures 5–7, the industrial structure

upgrading level of Beijing radiated gradually from the center to

the surrounding areas: the closer to the center, the higher the

upgrading level; the further to the center, the lower. In general,

the industrial structure upgrading of Beijing was on the rise in the

3 years. In 2009, 2015 and 2020, the upgrading level of central

areas, such as Dongcheng District, Xicheng District, Chaoyang

District, Haidian District, Fengtai District and Shijingshan

District was at a high level, while that of surrounding areas

was at a low level. As shown in Table 2, the industrial structure

upgrading level of each district in Beijing has been improved to

some extent in 2009, 2015 and 2020. The industrial structure

upgrading level of Dongcheng District has exceeded 7.8 in all

3 years whereas that of Xicheng District exceeded 7.8 for the first

time in 2020. Also in 2020, the industrial structure upgrading

level of Chaoyang District and Haidian District was between

TABLE 1 Carbon emission intensity of each district in Beijing in 2009,
2015 and 2020.

Districts 2009 2015 2020

Dongcheng District (DC) 1.848 1.265 0.823

Xicheng District (XD) 1.693 0.953 0.580

Chaoyang District (CY) 2.987 1.492 0.983

Fengtai District (FT) 4.510 3.022 1.935

Shijingshan District (SJS) 20.491 2.484 1.149

Haidian District (HD) 2.380 1.258 0.666

Mentougou District (MTG) 93.882 47.690 1.864

Fangshan District (FS) 6.457 4.358 8.778

Tongzou District (TZ) 21.877 15.254 2.279

Shunyi District (SY) 3.250 1.936 4.292

Changping District (CP) 6.264 3.553 2.423

Daxing District (DX) 2.202 1.050 2.643

Huairou District (HR) 5.859 3.817 2.314

Pinggu District (PG) 7.093 4.790 3.084

Miyun District (MY) 5.862 4.331 2.785

Yanqing District (YQ) 6.138 4.984 2.504

FIGURE 5
Distribution of industrial structure upgrading level of Beijing Districts in 2009.
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7.7 and 7.8 while that of Fengtai District and Shijingshan District

was between 7.6 and 7.7, which was followed by that of

Mentougou District, Shunyi District and Yanqing District,

between 7.4 and 7.5; meanwhile the industrial structure

upgrading level of Changping District, Daxing District,

Fangshan District, Huairou District, Miyun District, Pinggu

District and Tongzhou District was lower than 7.4. The

results show the significant effect of industrial transformation

of each district in Beijing and the industrial structure upgrading

level of Beijing has been remarkably improved.

FIGURE 6
Distribution of industrial structure upgrading level of Beijing Districts in 2015.

FIGURE 7
Distribution of industrial structure upgrading level of Beijing Districts in 2020.
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4 Results

4.1 Analysis of spatial data

This study utilizes Moran scatterplot to explore the spatial

agglomeration of carbon emission intensity and industrial

structure upgrading in each district of Beijing. The results are

shown from Figures 8,–13.

According to our study, the carbon emission intensity of

most districts of Beijing was high-high or low-low agglomeration,

while that of several districts was high-low or low-high

agglomeration. It should be noted that in 2020, the industrial

structure upgrading of all the districts was basically high-high

and low-low agglomeration. Specifically, in 2009, Dongcheng

District, Xicheng District and Chaoyang District were in low-

low agglomeration areas, that is, carbon emission intensity of

these areas and their neighboring areas was low. Shijingshan

District, Mentougou District, Fangshan District, Changping

District and Yanqing District were in high-high

agglomeration area, that is, these areas and their adjacent

areas had higher carbon emission intensity. The carbon

emission intensity of Haidian district, Shunyi District and

Daxing District was in low-high agglomeration area, that is,

the carbon emission intensity of these areas was low but that of

neighboring areas was high. The regions such as Tongzhou

District and Pinggu District were in the high-low agglomeration

area, that is, the carbon emission intensity of these regions was

high while the carbon emission intensity of their neighboring

regions was low. The change in 2015 was not very obvious

compared with that in 2009. It is worth mentioning that the

spatial correlation in 2015 was negatively correlated. In 2020,

the spatial agglomeration type of each district in Beijing has

changed greatly and the agglomeration was obvious, mainly

low-low and high-high agglomeration. The carbon emission

intensity of Dongcheng District, Xicheng District, Chaoyang

District, Shijingshan District and Haidian District was in low-

low agglomeration area, that is, the carbon emission intensity

of both these areas and their neighboring areas was low. The

carbon emission intensity of Fangshan district, Tongzhou

District, Shunyi District, Daxing District, Huairou District,

Pinggu District, Miyun District and Yanqing District was in

high-high agglomeration area, that is, the carbon emission

intensity of both these areas and their neighboring areas

was high.

Note: the figures representing the districts of Beijing as

follows: 1 Dongcheng District, 2 Xicheng District, 3 Chaoyang

District, 4 Fengtai District, 5 Shijingshan District, 6 Haidian

TABLE 2 Industrial structure upgrading level of each district in Beijing
in 2009, 2015 and 2020.

Districts 2009 2015 2020

Dongcheng District (DC) 7.804 7.810 7.829

Xicheng District (XC) 7.741 7.755 7.801

Chaoyang District (CY) 7.727 7.770 7.779

Fengtai District (FT) 7.537 7.587 7.673

Shijingshan District (SJS) 7.165 7.396 7.664

Haidian District (HD) 7.669 7.714 7.767

Mentougou District (MTG) 6.976 7.070 7.468

Fangshan District (FS) 6.601 6.766 7.223

Tongzou District (TZ) 6.961 6.967 7.262

Shunyi District (SY) 7.046 7.189 7.456

Changping District (CP) 7.043 7.259 7.397

Daxing District (DX) 6.999 7.027 7.369

Huairou District (HR) 6.590 6.782 7.209

Pinggu District (PG) 6.635 6.643 7.337

Miyun District (MY) 6.482 6.800 7.370

Yanqing District (YQ) 6.908 7.170 7.437

FIGURE 9
Moran scatterplot of carbon emission intensity in 2015.

FIGURE 8
Moran scatterplot of carbon emission intensity in 2009.
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District, 7 Mentougou District, 8 Fangshan District, 9 Tongzhou

District, 10 Shunyi District, 11 Changping District, 12 Daxing

District, 13 Huairou District, 14 Pinggu District, 15 Miyun

District, 16 Yanqing District. The Same below.

Then the spatial agglomeration of industrial structure

upgrading in each district of Beijing is analyzed. On the

whole, most regions were in the areas of high-high and low-

low agglomeration, a few regions were in low-high

agglomeration area and no region was in high-low

agglomeration area. Specifically, in 2009, Dongcheng District,

Xicheng District, Chaoyang District, Fengtai District,

Shijingshan District and Haidian District were in high-high

agglomeration areas, that is, these areas and their adjacent areas

had a high level of industrial structure upgrading; Mentougou

District, Fangshan District, Tongzhou District and Daxing

District were in low-high agglomeration areas, that is, the

industrial structure upgrading level of these areas was lower

while that of their neighboring areas was higher. Shunyi

District, Changping District, Huairou District, Pinggu

District, Miyun District and Yanqing District were in low-

low agglomeration area, that is, both these areas and their

neighboring areas had a lower level of industrial structure

upgrading. In 2015, Mentougou District and Tongzhou

District were in low-high agglomeration area, while other

areas were in high-high or low-low agglomeration area. In

2020, there was no significant change in the spatial

agglomeration of industrial structure upgrading in each

district of Beijing since there was no significant change in

terms of district and number of districts in each quadrant.

FIGURE 10
Moran scatterplot of carbon emission intensity in 2020.

FIGURE 11
Moran scatterplot map of industrial structure upgrading in
2009.

FIGURE 12
Moran scatterplot map of industrial structure upgrading in
2015.

FIGURE 13
Moran scatterplot map of industrial structure upgrading in
2020.
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4.2 Analysis of spatial spillover effect

4.2.1 Estimated results of spatial spillover
Columns 2 to 6 of Table 3 show the estimation results of fixed

effect by Spatial Durbin Model, random effect estimation by

Spatial Durbin Model, fixed effect estimation by Spatial

Autocorrelation Model, fixed effect estimation by Spatial

Autoregressive Model, and random effect estimation by

Spatial Autoregressive Model respectively. The spatial weight

matrix used for the estimated results in the table is Spatial

Adjacency Matrix (Queen Adjacency). The same below.

In the five spatial models, the regression coefficient of the

direct effect of industrial structure upgrading on carbon emission

intensity is negative and significant at different levels, indicating

that the industrial structure upgrading in a certain region has a

significant inhibitory effect on the local carbon emission

intensity. In terms of indirect effect of the five models, those

of SDM-FE, SDM-RE and SAR-FE models are positively

significant at different levels, indicating that the industrial

structure upgrading in neighboring areas has a significant

promoting effect on local carbon emission intensity. In terms

of total effect, that of the five models presents positive or negative

significance, indicating that the industrial structure upgrading

levels of local and neighboring areas influence local carbon

emission intensity at the same time, and the actual impact

should be judged by the specific levels of the two.

TABLE 3 Estimated results of spatial spillover.

SDM-FE SDM-RE SAC-FE SAR-FE SAR-RE

Direct effect

lnts −19.524*** −12.710*** −6.069*** −6.553** −1.302

(3.468) (3.686) (2.079) (2.597) (1.859)

lnfdi −0.111*** −0.095*** −0.139*** −0.117*** −0.102***

(0.030) (0.033) (0.031) (0.033) (0.033)

lnpgdp −1.695*** −0.907** −2.139*** −2.127*** −0.948***

(0.405) (0.363) (0.382) (0.424) (0.299)

lnpcon 0.881 0.614 −1.094** −0.985 −0.448

(0.783) (0.784) (0.486) (0.638) (0.310)

lnlab −0.154 −0.126 0.076 0.014 −0.082

(0.445) (0.244) (0.455) (0.491) (0.192)

Indirect effect

lnts 18.839*** 18.154*** −1.138 1.391* 0.243

(4.731) (4.860) (1.313) (0.732) (0.398)

lnfdi −0.102 −0.097* −0.027 0.025** 0.022*

(0.066) (0.059) (0.032) (0.012) (0.012)

lnpgdp −0.921 −0.318 −0.390 0.461** 0.205*

(0.686) (0.376) (0.446) (0.196) (0.114)

lnpcon −3.281*** −1.263 −0.197 0.219 0.106

(0.995) (0.782) (0.241) (0.157) (0.092)

lnlab −1.123 0.336 0.010 −0.003 0.019

(0.782) (0.295) (0.151) (0.111) (0.043)

Total effect

lnts −0.685 5.444*** −7.207*** −5.162** −1.059

(3.499) (1.985) (2.712) (2.121) (1.520)

lnfdi −0.213*** −0.192*** −0.166*** −0.092*** −0.080***

(0.066) (0.051) (0.050) (0.027) (0.026)

lnpgdp −2.616*** −1.226*** −2.530*** −1.666*** −0.742***

(0.611) (0.265) (0.578) (0.352) (0.241)

lnpcon −2.400*** −0.649** −1.291** −0.766 −0.342

(0.556) (0.277) (0.618) (0.508) (0.233)

lnlab −1.277 0.210 0.086 0.010 −0.063

(0.823) (0.208) (0.562) (0.390) (0.153)

***, ** and * represent significance at 1%, 5% and 10% confidence level respectively; Standard deviations are shown in brackets.
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Investment level and economic development level have

similar effects on carbon emission intensity, therefore this

study only selects investment level for analysis. In the five

models, the direct effect of investment level on carbon

emission intensity is significantly negative at the significance

level of 1%, indicating that the increase of investment level has a

significant inhibitory effect on local carbon emission intensity.

The indirect effect of investment level on carbon emission

intensity has both positive and negative coefficients in the

five models and the significance level is not obvious,

indicating that the improvement of investment level in

neighboring areas has no obvious effect on the carbon

emission intensity in this region. The total effect of

investment level on carbon emission intensity is negative in

the five models and passed the significance level test, indicating

that investment level has a significant inhibitory effect on local

carbon emission intensity under the combined influence of

local and neighboring areas.

Among the five models, the direct effect of consumption

level on carbon emission intensity is significantly negative

TABLE 4 Model selection test.

Test methods Statistic p Value

LR-spatial lag 45.81 0.0000

Wald-spatial lag 259.48 0.0000

Model obs df AIC BIC

SDM-FE 192 12 174.6039 213.6938

SAC-FE 192 8 204.1507 230.2107

TABLE 5 Robustness test results.

Economic geographic matrix Distance matrix Inverse distance matrix

Direct effect

lnts −4.650 −7.974** −6.417*

(2.907) (3.521) (3.795)

lnfdi −0.073** −0.114*** −0.108***

(0.029) (0.033) (0.033)

lnpgdp −2.628*** −2.097*** −2.223***

(0.432) (0.452) (0.434)

lnpcon −0.443 −0.549 −0.447

(0.610) (0.714) (0.775)

lnlab −0.405 0.178 −0.355

(0.488) (0.505) (0.526)

Indirect effect

lnts −22.44*** 0.569 2.019

(4.938) (3.629) (3.612)

lnfdi −0.0339 −0.122** −0.080

(0.063) (0.061) (0.055)

lnpgdp 0.493 0.399 1.607***

(0.814) (0.480) (0.514)

lnpcon 0.126 −0.470 −0.430

(0.908) (0.844) (0.823)

lnlab −1.974** 1.248 2.097***

(0.967) (0.775) (0.761)

Total effect

lnts −27.09*** −7.404*** −4.398**

(5.587) (2.446) (2.092)

lnfdi −0.107 −0.236*** −0.188***

(0.071) (0.062) (0.050)

lnpgdp −2.135** −1.699*** -0.616

(0.987) (0.551) (0.445)

lnpcon −0.318 −1.020 −0.877*

(1.213) (0.699) (0.489)

lnlab −2.379** 1.427* 1.742***

(1.014) (0.808) (0.633)
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only in SAC-FE model, and there is no significant effect in

other models. In term of indirect effect, only in the SDM-FE

model consumption level has a significantly negative effect on

carbon emission intensity, while in the other models it has no

significant effect. In term of total effect, the regression results

of all the five models show that the influence coefficient of

consumption level on carbon emission intensity is negative

and is significant only in SDM-FE, SDM-RE and SAC-FE

models.

The direct effect, indirect effect and total effect of labor input

level on carbon emission intensity are not significant in the

regression results of the five models and there are both positive

and negative regression coefficients, indicating that the

improvement of labor input level in both local and

neighboring regions has no obvious inhibitory effect on local

carbon emission intensity.

4.2.2 Model selection test
After the regression results of five spatial econometric

models shown in Table 3, we conduct a model test to select

the model suitable for this study. Fixed-effect models are more

suitable since the research objects of spatial econometrics are

mostly uninterrupted Spatio-Temporal data. Therefore, this

study selects from SDM-FE, SAR-FE and SAC-FE

econometric models and the test results are shown in

Table 4. First, we use the LR test and Wald test to select

between SDM-FE and SAR-FE. The test results reject the

null hypothesis that SDM could degenerate into SAR,

indicating that SDM-FE should be chosen out of the two.

Then we make choice between SDM-FE and SAC-FE by AIC

and BIC information criteria. The results show that both the

AIC value and BIC value of SDM-FE are less than the estimated

value of SAC-FE. Therefore SDM-FE is more suitable for this

study.

4.2.3 Robustness test
Since the regression results of the spatial econometric

model are largely influenced by the spatial weight matrix,

the robustness test is carried out by replacing the spatial

weight matrix. The above results are obtained based on the

Adjacency Space Weight Matrix. In order to prove the

reliability of the conclusion, this study uses economic

geographic matrix, distance matrix and inverse distance

matrix for model estimation. The economic geographic

matrix is calculated based on the per capita GDP of each

district in Beijing in 2020. The distance matrix and inverse

distance matrix are calculated with Euclidean Distance. As

shown in Table 5, the direct effect, indirect effect and total

effect of the core explanatory variables are significant, which is

consistent with the conclusion above and the control variables

do not change significantly, proving that the conclusion of this

study is reliable.

5 Discussion

Based on the panel data of each district in Beijing from

2009 to 2020, this study measures and analyzes the carbon

emission intensity and industrial structure upgrading. On this

basis, control variables are added to analyze the spatial spillover

effect of industrial structure upgrading on carbon emission

intensity, and the research conclusions are as follows:

First, the carbon emission intensity and industrial structure

upgrading of each district in Beijing showed an obvious spatio-

temporal evolution pattern from 2009 to 2020. The spatial

distribution of carbon emission intensity and industrial

structure upgrading in 16 districts of Beijing are shown in

Figures 2,–7. More specifically, in the 3 years of 2009,

2015 and 2020, the carbon emission intensity in most areas

showed a downward trend, indicating that Beijing has achieved

phased results in carbon emission reduction. The carbon

emission intensity dropped remarkably in some districts,

indicating that the carbon emission reduction reform in

Beijing has achieved significant results. The industrial

structure upgrading level in all districts has been improved to

some extent, indicating that the industrial transformation in

China has also achieved remarkable results. From the

perspective of space, both the carbon emission intensity and

the industrial structure upgrading of Beijing showed a radial

pattern of development. The areas with low carbon emission

intensity in Beijing were mainly agglomerated in Dongcheng

District, Xicheng District and their adjacent districts. Then the

carbon emission intensity gradually increased towards the

surrounding areas. The industrial structure upgrading of

Beijing had similar distribution characteristics as carbon

emission intensity with radial pattern: the central area was

better than the surrounding ones. Through the analysis of

data of these three years, it can be inferred that all of the

districts of Beijing have been constantly reducing carbon

emissions and optimizing the industrial structure.

Second, spatial spillover regression results show that the local

industrial structure upgrading has significant inhibitory effect on

local carbon emission intensity; the industrial structure

upgrading in neighboring areas plays a significant role in

decreasing local carbon emission intensity; the industrial

structure upgrading levels of local and neighboring areas

influence local carbon emission intensity at the same time and

the actual impact should be judged by the specific levels of the

two. The improvement of local investment level and economic

development level has a significant inhibitory effect on local

carbon emission intensity, while the improvement of

neighboring investment level and economic development level

has no obvious effect on local carbon emission intensity. The

increase of local consumption level has no obvious inhibitory

effect on local carbon emission intensity, while the increase of

neighboring consumption level has a significantly negative
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effect on local carbon emission intensity. The direct effect,

indirect effect and total effect of labor input level on carbon

emission intensity are not significant in the regression results

of the model and there are both positive and negative

regression coefficients, indicating that the improvement of

local and neighboring labor input level has no obvious

inhibitory effect on local carbon emission intensity. According

to the analysis results of spatial spillover effect, the influence of

industrial structure upgrading on carbon emission intensity in

Beijing varies among the districts and presents obvious spatial

spillover effect.

However, this study has two limitations. First, this study

takes the districts of Beijing as the research object which does

not take into account the influence of surrounding provinces

and cities on Beijing. And it is impossible to exclude these

influencing factors from the study. Second, the impact of

industrial structure upgrading on carbon emission intensity

in each district of Beijing from 2009 to 2020. However, there is

impact difference in different development stages and this

study does not conduct in-depth discussion on this impact

difference.

6 Conclusion

In response to the global climate change, it is a vital

challenge for China to coordinate economic development,

industrial transformation and environmental protection on

its way to “carbon peaking and carbon neutrality goals”.

Beijing is the center of scientific and technological

innovation and the leading area of the reform and

development of industrial structure in China. To some

extent, the development of the industrial structure of Beijing

can represent the reform direction of other regions in China in

the future. The industrial structure upgrading and the

optimization of carbon emission intensity in Beijing have

important reference significance for China to achieve the

goal of “carbon peaking and carbon neutrality goals”. Based

on the above analysis results, suggestions are proposed as

follows:

First, the carbon emission intensity and industrial

structure upgrading of Beijing have a fair development

condition. In 2020, the carbon emission intensity of most

districts in Beijing is below 3, and the industrial structure

upgrading level of them is above 7.2. It is worth mentioning

that the carbon emission reduction in Mentougou District

from 2009 to 2020 is remarkable, and other cities may use the

experience of this district for reference in policy-making.

Therefore, it is necessary to continuously develop low-

carbon technologies and promote scientific and

technological innovation of traditional energy industry,

thus effectively promoting the green and low-carbon

transformation of the industry and improving the use

efficiency and economic value of energy. For the

surrounding areas of Beijing, the policymakers should put

focus on optimizing the industrial structure through

promoting clean production and changing the energy

consumption structure dominated by high consumption

and high pollution, then they can achieve the goal of the

substantive transformation of economic growth mode. For the

central area of Beijing, the cultivation and development of

emerging industries and circular economy should be

continued, realizing the green and low-carbon growth goals

with equal emphasis on quality and efficiency.

Second, each district in Beijing should continue to speed up

the pace of transformation and upgrading of industry. On the one

hand, the transformation and upgrading of traditional industries

should be encouraged to improve the industry efficiency so that

the “low energy consumption-high output” can be achieved as

soon as possible. Meanwhile, it is necessary to speed up the

formation of knowledge- and technology-intensive industry,

such as the strategic emerging industries and high technology

industries. On the other hand, investment in scientific and

technological research and development should be increased

to improve the current energy structure. In this way, the

optimization of industrial structure of Beijing can be

facilitated to drive the reduction of carbon emission intensity

through a coupling effect.

Third, the government of Beijing should fully play the role of

macro-control and match each district with specific carbon

reduction policies according to the regional economic

development and industrial structure level. At the same time,

the spatial interaction of carbon intensity should also be

considered to achieve a reasonable and orderly pattern of

central area driving the development of surrounding areas. In

this way, the completion of “carbon peaking and carbon

neutrality goals” can be effectively guaranteed while developing

the economy.
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Appendix

TABLE A1 Appendix A is Variable declaration.

Types of variables Variables Symbol Variable declaration

Dependent variable Carbon emission intensity c Calculated by formula (Zhang, 2000) and (Cheng et al., 2018)

Core explanatory variable Industrial structure upgrading ts Calculated by formula (Moran, 1950) and (Pinto et al., 2014)

Control variables Investment level fdi Measured by actual utilized fdi/regional GDP

Economic development level pgdp Measured by GDP per capita

Consumption level pcon Measured by per capita consumer spending

Labor input lab Measure with on-duty worker gross wages

TABLE B1 Appendix B is Statistical description of variables.

Variables Obs Mean Std.Dev Min Max

Lnc 192 1.206 0.987 −0.545 4.542

lnts 192 1.980 0.055 1.869 2.058

lnfdi 192 3.122 1.112 −0.702 5.691

lnpgdp 192 11.124 0.724 9.969 13.034

lnpcon 192 10.159 0.359 9.378 10.944

lnlab 192 5.391 1.322 2.871 8.138
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