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In responding to climate change, energy efficiency is one of the key factors for

sustainable development, where the high-tech industry can play an important

role. However, whether the development of high-tech industry impacts energy

efficiency as well as themechanisms behind still remain unclear. Thus, based on

the dynamic spatial Durbinmodel, this study aims to investigate: 1) the impact of

high-tech industry development on energy efficiency from three perspectives

of high-tech industry development, i.e., scale, productivity, and agglomeration,

and 2) the mechanisms behind such impact especially through technological

innovation and industrial structure. The results confirm the influence of high-

tech industry development on energy efficiency both directly and indirectly. On

the one hand, our analysis contributes on the existing body of scientific

knowledge by expounding the relationship between scale, productivity, and

agglomeration of high-tech industry development and energy efficiency. On

the other hand, it further deepens the understanding on such relationship by

revealing two underlying mechanisms behind, i.e., through promoting

technological innovation, the productivity and agglomeration of high-tech

industries can either completely or partially improve energy efficiency, while

the scale and agglomeration of high-tech industries can hinder energy

efficiency to a certain level through the industrial restructuring. Based on

these findings, this paper provides some policy implications, which are

believed to facilitate the practices of energy conservation and emission

reduction in China.
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1 Introduction

Carbon dioxide (CO2) emissions from energy consumption are

considered as the main source of global warming (Marra et al.,

2015; Xu and Lin, 2018; Yu et al., 2020a; Jiang et al., 2022), which

further lead to serious changes in global climate. Along with the

exploitation and utility of fossil fuel, there have been simultaneously

dual pressure of resource exhaustion and environmental pollution

(Shao et al., 2019; Chishti et al., 2020; Ullah et al., 2020; Noureen

et al., 2022). Against this background, improving energy efficiency

is considered as one of the most critical steps to achieve carbon

emission reduction without necessary economic decline (Yuan

et al., 2012). To improve energy efficiency, high-tech industries

have been playing a significant role in implementing innovation-

driven development and high-quality economic strategy (Tsai et al.,

2009). Thus, most countries have been promoting High-Tech

Industry Development (HTID) to achieve positive potentials

(Bregman et al., 1991). For example, China attaches great

importance to the development of digital, high-tech and modern

service industries to improve energy efficiency rapidly and control

the total energy consumption growth, for reaching the peak of CO2

emissions by 2030 and achieving carbon neutrality by 2060 (75th

UN General Assembly, 2020).

Despite its rising practical importance, the extant research on

HTID still suffers from two major gaps. First, most studies have

focused on a central question of “does HTID have the positive

effect on economic growth (Coad and Rao, 2008; Delgado et al.,

2014; Wolf & Terrell, 2016; Goldschlag &Miranda, 2020) or does

it promote high-quality economic development” (Li et al., 2019).

Only handful studies pay attention to the relationship between

HTID and energy efficiency. However, it is also shown in the

extant research that the development of high-quality economics

has to depend on energy efficiency (Bieri, 2010; Cieslik and

Ghodsi, 2015; Chen et al., 2018a), as energy efficiency provides

the specific and visible sources of competitive advantages to build

friendly environments and energy security critical for high

quality economics (Zhang et al., 2017; Chishti et al., 2021;

Zhu & Chishti, 2021; Chishti et al., 2022). Therefore, it is

essential to take a closer examination the effects of HTID on

energy efficiency (Goldschlag & Miranda, 2020). The second

research gap is that the existing studies have scarcely examined

the mechanism about how HTID influences energy efficiency

and accordingly provided limited insight into “how does it

contribute to energy efficiency” (Marra et al., 2015). In other

words, it remains unclear what factors can be caused by HTID

that in turn facilitate the improvement of energy efficiency

(Zandiatashbar et al., 2019). Therefore, both theoretically and

practically, the questions remain: what impacts HTID has on

energy efficiency; and if so, through what mechanisms it works

(Cao et al., 2020).

To fill two research gaps, this paper aims to explore the

HTID’s impact on energy efficiency in terms of the HTID’s scale,

productivity, and agglomeration, following the conventions of

the existing studies such as Drucker & Feser (2012), Chen et al.

(2018b), and Gui (2018), among others. Besides, it is generally

agreed that high-tech industries are different from traditional

industries, in terms of the facts that their competitiveness lies in

technological innovation (Aydalot & Keeble, 2018); and their

enabling ecological environment is industrial cluster

(Wanzenböck & Piribauer, 2018). Thus, this paper further

pays specific attention to technological innovation and

industrial structure and examines their mediating roles on the

relationship between HTID and energy efficiency.

In order to enhance the feasibility, the research scope of this

study is set as HTID in China due to two considerations: 1) the

research on HTID and energy efficiency is focused more on the

Western countries than on the Asian ones (Bakouros et al., 2002;

Goldschlag & Miranda, 2020); 2) China calls for such research to

provide scientific foundation for policy making. In fact, China with

its rapid economic growth over the past 40 years has become the

largest energy consumer in the world (World Energy Statistical

Yearbook, 2021), as illustrated in Figure 1. Besides, as the world’s

largest developing country, it is in the stage of deepening

industrialization and urbanization. The demand for energy

continues to grow, and the task of ecological and environmental

protection is arduous. In this case, improving energy efficiency is the

key measure that China can take for energy conservation and

emission reduction. Therefore, it has more motivations to

improve energy efficiency for energy saving and emission

reduction. Meanwhile, it has regarded HTID as one of the most

important forces for adjusting the industrial structure, transforming

the economic growth mode, and improving innovation capability

for national sustainability (Johansson et al., 2015). More recently,

“Made in China 2025” was initiated as an important program to

improve HTID and was expected to result in significant

improvement of energy efficiency (Li et al., 2019). All these in

turn make China a suitable context for this study.

The remainder of this paper is organized as follows. Section 2

provides a literature review on the relevant topics. Section 3

develops the hypotheses and outlines the theoretical framework.

Section 4 explains the researchmethodology and data sources. The

empirical analysis and results are presented in Section 5 and

further discussed in Section 6. Finally, Section 7 provides a

conclusion by highlighting the theoretical contributions and the

policy implications of the paper and suggesting the future research

directions.

2 Literature review

2.1 Research on HTID and energy
efficiency

The Organization for Economic Cooperation and

Development (OECD) uses the strength of research and

development (R&D) to define high-tech industries (Bierly &
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Chakrabarti, 1996). Similarly, the European Union (2016) also

states that high-tech industries are based on high and new

technology and engaged in R&D, new production, and

technical services with greater economic and social benefits. In

short, high-tech industries invest heavily in R&D and advance

technology rapidly (Alsleben, 2005). These knowledge- and

technology-intensive industries are normally with higher

efficiency, more added value, and relatively lower resource

consumption than traditional industries (Adams, 2005; Bauer

et al., 2012). Therefore, the research tended to reach a consensus

that high-tech industry can be considered as green and low-

carbon (Bieri, 2010; Li & Lin, 2018) and HTID could lead to

sustainable economics by developing innovation, improving

efficiency, and reducing pollution (Delgado et al., 2014).

However, the current studies have mainly focused on

HTID’s impact on energy consumption and the consequent

CO2 emission, other than on energy efficiency. For example, Xu

and Lin (2018) applied nonlinear and panel models to study the

positive impact of HTID on CO2 emissions. Li et al. (2019)

confirmed the spatial agglomeration and spillover effect of

HTID, while showing carbon emission is negatively

correlated with HTID in local and adjacent regions. Chen

et al. (2019) argued that the scale of HTID has a lagging

effect on improving green economy efficiency in the Yangtze

River economic belt. Liu et al. (2019) found that R&D

investment in some high-tech industries can reduce regional

energy consumption. In addition, instead of taking HTID as a

whole, researchers tended to explore one specific industry’s

impact on energy consumption (Bonilla-Camposab et al.,

2020), e.g., renewable energy (Weber & Cabras, 2017),

electric vehicle (Haddadian et al., 2016), or information and

communication (Zhang & Liu, 2015).

FIGURE 1
Top ten energy consuming countries in the world in 2021.

FIGURE 2
The research conceptualized framework.
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2.2 Research on HTID and technological
innovation/industrial structure

It is generally agreed that HTID has become an important

symbol of the level of scientific progress and productivity

development in a country or a region (Shahzad et al., 2022).

However, its relationship with technological innovation has not

been confirmed. Some studies have suggested the role of high-

tech industrial development (such as high-tech industrial

agglomeration) in promoting technological innovation

(Murshed et al., 2021). Furthermore, these studies tend to

argue technological innovation is the key source for

enterprises to survive in high-tech industries (Shahzad et al.,

2022). In contrast, other studies believe that high-tech industrial

agglomeration hinders its access to external knowledge and

results in the phenomenon of “free riding” (Yang et al., 2021),

which implies a negative relationship between HTID and

technological innovation.

Meanwhile, it is also indicated in the existing studies that

high tech industries have become the most dynamic growth point

of the world economy, the leading industry (Song & Ding, 2019;

Dong et al., 2021) to promote economic development, and the

backbone to promote the optimization and adjustment of

industrial structure. Accordingly, the role of HTID in

boosting the development of industrialization and the

adjustment of industrial structure has received more academic

attention. The findings are generally two-fold. On the one hand,

the regional scale differences in the development of high-tech

industries will inevitably affect the allocation of regional high-

tech industrial resources and the upgrading of industrial

structure (Ze-Lei et al., 2017). On the other hand, high-tech

industrial agglomeration is conducive to have a spillover effect on

the development of other industries, thus promoting the

upgrading of industrial institutions and realizing economic

transformation (Wolf & Terrell, 2016; Yin & Guo, 2021).

Nevertheless, there also exist studies that report no impact of

HTID on industrial structure. For example, Zhang (2016)

believed that HTID strengthens China’s financial structure

dominated by indirect finance but fails to promote the

upgrading of industrial structure. Furthermore, Jin et al.

(2017) found for regions with relatively backward economic

development level, HTID has a long lag period, and its role in

promoting the upgrading of industrial structure is not obvious.

2.3 Research on technological innovation/
industrial structure and energy efficiency

Scholars use to decompose the influencing factors of

energy efficiency from two aspects of technological and

structural changes, proving that these two aspects play an

important role in improving energy efficiency (Sun et al., 2021;

Chishti & Sinha, 2022; Dogan et al., 2022; Jahanger et al.,

2022). On the one hand, as the main source of technological

progress, it has become a common sense that technological

innovation helps to improve energy efficiency (Chen & Liu,

2021), although the extent to which technological innovation

improves energy efficiency might be affected by factors such as

energy price (Cheng & Li, 2010), environmental regulation

(Fisher-Vanden et al., 2006), and foreign direct investment

(Zhang & Fu, 2022). In contrast to such main-stream

understanding, Luo et al. (2015) showed that technological

progress has a negative effect on energy efficiency, which stems

from the impact of energy rebound effect. Similarly, Chen &

Liu, (2021) believe that technological progress has different

effects on energy intensity, in which biased technological

progress has a more significant impact through factor

substitution.

On the other hand, it is normally believed that the

optimization of industrial structure is closely related to the

improvement of energy efficiency (Dong et al., 2021). Lewis

(1954) put forward the “structural dividend hypothesis,” which

was the first to study the relationship between industrial structure

and energy efficiency. Since then, a large number of scholars

started to explore this topic, but they reached different

conclusion. Most scholars believe that industrial structure

adjustment has a significant and positive impact on energy

efficiency (Yu et al., 2020b); while other scholars show that

the contribution of industrial structure change to energy

efficiency is not obvious (Zhou and Lin, 2005; Yuan et al.,

2012; Liu & Tian, 2019), or even has a reverse effect (Wang,

2003; Wu and Cheng, 2006).

2.4 Literature analysis

The literature review above provides strong supports to two

research gaps proposed in the introduction. On the one hand,

there are few studies specifically focusing on the relationship

between HTID and energy efficiency. While more research like

Dong et al. (2021) that investigated how the development of

traditional industries affects the energy efficiency, we are only

able to identify two studies, i.e., Jia and Zhang (2013) and Chen

et al. (2019), which specifically focused on HTID and energy

efficiency. In other words, the effect of HTID on energy efficiency

has yet fully clarified and verified. On the other hand, it can also

be seen from the above literature review that scholars tend to

discuss the relationships between HTID, technological

innovation, industrial structure, and energy efficiency two-by-

two, rather than building an analytical framework to understand

these relationships in a more systematic manner. Besides, the

results are rather inconsistent. Corresponding to these gaps, the

research questions of this study can further be illustrated in

Figure 2 and specified as:

RQ1: Whether does HTID have the impact on energy

efficiency?
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RQ2: Whether do technological innovation and industrial

structure play a role in the impact of HTID on energy efficiency?

3 Hypothesis development and
research framework

In this Section, we aim to develop theoretical understandings

about the two research questions. Accordingly, three hypotheses

and a conceptualized framework regarding the relationships

between HTID, technological innovation, industrial structure,

and energy efficiency are developed, which will be elaborated

below in detail.

3.1 HTID and energy efficiency

In order to understand the relationship between HTID

and energy efficiency, it is important to examine three

characteristics of high-tech industries. First, high-tech

industries compose production factors different from

traditional manufacturing (Gil et al., 2019). With their key

elements being intellectual resources rather than fixed

assets, it is possible for high-tech industries to replace the

inputs of energy factors with non-energy ones (Diwan &

Chakraborty, 1990). Besides, HTID can facilitate to attract

foreign direct investment and other advanced capital,

along with a large number of professional and technical

personnel, hence leading to higher labor productivity

(Bregman et al., 1991). These together reduce energy

consumption and improve energy efficiency through factor

substitution. Besides, through its rapid flow and integration

of resources, HTID can also improve the productivity of

industry machinery and equipment, thus leading to less

input of energy and other resource (Weber & Cabras, 2017)

and further the improvement of energy efficiency (Rogers, 2001).

Second, with the competitive advantage of technological

innovation, products manufactured by high-tech industries

should be highly efficient. Thus, HTID promotes a low-carbon

lifestyle among the adopters of high-tech products (Haschka,

& Herwartz, 2020), such as solar water heaters and new

energy vehicles. Therefore, energy efficiency is improved

through advanced technologies. Third, in the ecological

environment of industrial agglomeration, new technologies,

processes, and management methods used in high-tech

industries provide a good environment for local enterprises

through external spatial overflow (Fallah et al., 2014). In other

words, high-tech companies in the clusters might share

infrastructure, including energy and power, pollution control,

and other facilities (Fosfuri & Thomas, 2004; Li et al., 2019).

Additionally, the clusters might also provide potential knowledge

spillover, as employees from different companies or departments

could learn from each other (Autant-Bernard & LeSage, 2011),

which hence improves energy efficiency. Accordingly,

Hypothesis 1 is proposed as:

Hypothesis 1: HTID has a positive impact on energy efficiency.

3.2 Mediating roles of technological
innovation and industry structure

Although the existing studies have scarcely addressed the

mechanisms of how HTID contributes to energy efficiency, they

have indeed proved that HTID can promote technological

innovation and industrial transformation (Merchant, 1997),

which can further improve energy efficiency (Gerstlberger et al.,

2014). This implies that the HTID may have not only a direct

impact on energy efficiency but also indirect mediating impacts

through technological innovation and industrial structure. In

other words, promoting technological innovation and

optimizing industry structure might be the underlying

mechanisms, which can facilitate HTID positively

influencing energy efficiency. Therefore, it is also relevant to

examine the potential mediating effects of technological

innovation and industry structure on the relationship of

HTID and energy efficiency.

3.2.1 Technological innovation
The HTID promotes the generation and diffusion of

technological innovation (Perry-Smith & Mannucci, 2017)

through technology innovation network to strengthen the

learning effect, stimulate the overflow (Feldman & Kelley,

2006), and reduce the cost of information, transactions, and

finance among enterprises (Franzen et al., 2007). The high-tech

industries not only promote and spread their own industrial

technological innovation (Artz et al., 2010), but also provide a

foundation for subsequent technological innovation and

progress in all industries (Sinton & Levine, 1994). For the

firms in high-tech industries, it is possible to achieve more

effective allocation of resources, accelerate the flow of

innovation elements, improve the technological innovation

efficiency, and promote productivity (Chambers et al., 2002;

Cho & Pucik, 2005; Chen et al., 2019). For the firms in other

industries, HTID facilitates them to acquire new knowledge,

methods, technologies, and management systems through

widespread adoption of modern production processes and

equipment (Kemeny & Osman, 2018). Besides, HTID also

stimulates the interaction of technology spillover across

organizational units and external parties, especially among

firms in high-tech industries and from the firms in higher-

tech industries to those in lower-tech industries (Zhang et al.,

2017).

All the technological innovations from HTID foster the

improvement of energy efficiency by developing novel solutions

for energy problems (Costa-Campi et al., 2015). Furthermore, high
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energy efficiency is the result of optimization in production,

processes, and systems, which can be described as the

technology progress (soft and hard technology) (Jaffe, 1986;

Gerstlberger et al., 2014). More importantly, higher energy

efficiency can be gained through the process of search-and-learn

technological innovations (Broekel & Brenner, 2011), especially

those referring to the processes of acquiring, purchasing,

distributing, and using energy (Cagno et al., 2015). By acquiring

and using dissimilar yet complementary new energy in various

industries derived from technological innovation, critical insights

for energy efficiency are generated (Hodson et al., 2018). In

summary, energy efficiency can be increased due to the creation,

accumulation, and spillover of technological innovation created by

HTID. Accordingly, Hypothesis 2 is proposed as:

Hypothesis 2: Technological innovation plays a significant

positive intermediary role in the effect of HTID on energy efficiency.

3.2.2 Industrial structure
Supported by HTID, industrial structure can be optimized in

two ways. One way is related to industrial transformation,

i.e., raising the share of high-tech industries in the economy

(Kemeny & Osman, 2018). The other way refers to industrial

upgrading, i.e., advancing technology in lower-end industries

through diffusion, spillover, and integration of technology,

information, knowledge, and resources (Apa et al., 2018). Tang

et al. (2017) found that HTID has a certain influence on the

optimization of industrial structure and the growth of industrial

labor productivity in most countries. Liu et al. (2019) concluded

that HTID drives total-factor productivity of medium and low

technology industries through multiplier effect on related

industries. Therefore, HTID is believed to have a positive

influence on industrial restructuring (Wolf & Terrell, 2016).

Meanwhile, the industrial structure is confirmed as a decisive

factor accused to huge discrepancies in energy efficiency among

different industries. For example, Xiong et al. (2019) tested the

impact of the industrial structure on provincial energy efficiency

using a regressionmodel. In fact, industrial transformation derived

from the proportion increase of high-tech industries implies that

high-tech and high-efficiency industries replace traditional high-

pollution and energy-intensive industries (Tsai et al., 2009). Thus,

along with the reduced energy consumption, energy efficiency can

be improved (Borozan, 2018).Meanwhile, the industrial upgrading

in traditional industries also adds higher value and promotes total

factor productivity for the industries (Ameer & Othman, 2020),

which in turn increase energy efficiency. Based on these,

Hypothesis 3 is proposed as:

Hypothesis 3: Industrial structure plays a significant intermediary

positive role in the effect of HTID on energy efficiency.

Taking all above into consideration, a conceptualized

framework illustrating the key elements and research hypotheses

are provided as illustrated in Figure 2.

4 Research methodology

4.1 Measurement of HTID and energy
efficiency

There are generally twomethods tomeasure HTID: evaluation

index system and single index (Broekel, 2008). For the evaluation

index system, scholars have proposed different measurement

methods. Xiao & Du (2017) measured HTID based on

comprehensive performance in terms of two aspects: efficiency

of technology and economics. Yang et al. (2016) established four

aspects for evaluation: production and operation, science and

technology, employees, and fixed assets investment. Tang et al.

(2017) considered three aspects of HTID: industrial scale,

industrial innovation ability, and industrial benefit. Gui (2018)

evaluated HTID based on fixed assets investment, R&D

institutions, R&D activity, development and sales of new

products, and production and operation situations of high-tech

industries. For the single index, it is concluded that the indicators

widely used in the existing literature tend to focus more on three

characteristics of HTID. The first is scale, represented by the

output of high-tech industry (Xu & Lin, 2018). The second is

productivity, measured by the proportion of output (Fritsch &

Slavtchev, 2011), main business income to gross domestic

production (GDP) (Liu et al., 2019), total factor productivity

(Chen et al., 2018b), or divesting technological progress from

R&D capital (Chen et al., 2019). The third is industry

agglomeration measuring the concentration level through an

index, such as special agglomeration, diversified agglomeration,

or market competition (Brenner, 2012); Cluster Quotient index

(CQ) (Yum, 2019); or the location entropy (Chen et al., 2019).

In short, the evaluation index system and single index have

their own pros and cons. However, considering HTID has large

gaps in different aspects mentioned above among different

regions in China, we decide to use more than one index for

measuring HTID. Specifically, we consider scale, productivity,

and agglomeration. They are respectively corresponding to the

perspectives of scale, quality, and space (Ellison et al., 2010),

which are the key components of high-tech industries with

significant heterogeneity (Bieri, 2010). Besides, these

perspectives also have important policy value expressing the

different strategic orientations to balance for every

government and its stakeholders. Thus, to measure HTID,

three variables are applied in this study, as follows:

(1) HTID1 (scale): The ratio of main business income of high-

tech industries to GDP1, (Chen et al., 2018b).

1 Since 2008, China’s high-tech industry yearbook has ceased
publishing value-added data. Starting in 2012, the total output data
was no longer published. Therefore, this study adopts main business
income data from 1996 to 2016.
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(2) HTID2 (productivity): The ratio of main business income to

the average number of employees in high-tech industries

(Gui, 2018).

(3) HTID3 (agglomeration): calculated as LQ � (Sij/Sj)/(Si/S),
where Sij represents main business income of high-tech

industry j in region i, Si represents main business income

of all industries in province i, Sj represents main business

income of high-tech industry j in China; and S represents

main business income of all industries in China (Drucker &

Feser, 2012)2.

The measurement of energy efficiency normally includes

variables, such as energy intensity, energy productivity, total

factor energy efficiency, etc. (Cagno et al., 2015; Borozan,

2018; Dunlop, 2019). Following most of the existing literature,

energy productivity, expressed by GDP per unit of energy

consumption, is used to measure energy efficiency (EE) in this

study (Cagno et al., 2015; Bonilla-Camposab et al., 2020).

4.2 Control variables and mediating
variables

The existing studies also suggest other factors that might have

strong impacts on energy efficiency, such as foreign direct

investment (Xu & Lin, 2018), energy structure (Li et al., 2019),

urbanization (Xu & Lin, 2018), marketization degree (Yang et al.,

2016), and energy price (Wu & Gao, 2019). Thus, a set of relevant

control variables composing of these five is introduced.

(1) Foreign direct investment (FDI): Share of GDP. FDI brings

advanced technology, equipment, and management

experience for improving energy efficiency (Borozan,

2018). However, China is at the lower end of the global

value chain, according to the “pollution paradise” theory.

Thus, FDI may have a negative impact on energy efficiency.

(2) Energy consumption structure (ES): Proportion of coal

consumption to total energy consumption. Different

energy structures produce different energy mix efficiency.

Coal accounts for more than 70% of energy consumption in

China, but the coal utilization efficiency is generally low.

Hence, an increase of coal consumption is expected to

negatively influence energy efficiency (Borozan, 2018).

(3) Urbanization (Urb): Proportion of urban population to the

total population. Urbanization is expected to have negative

scale effect and positive technology effect on energy

efficiency, with the total effect dependent on the net

effects of the above two (Cheng et al., 2016).

(4) Marketization (Mar): Proportion of non-state economic

fixed asset investment in the total social fixed asset

investment. Marketization is one of the effective ways to

allocate resources. The scarcity of resources will be reflected

by the price level; foreign and private companies tend to be

more energy efficient than state-owned companies. The

improvement of marketization degree is conducive to

improving resource allocation efficiency and energy

utilization efficiency (Shao et al., 2011; Shao et al., 2019).

Therefore, the influence of marketization on energy

efficiency may be positive (Yang et al., 2016).

(5) Energy prices (EP): China’s fuel and power price index.

According to the substitution effect theory, it is assumed

that all factors in economics have equal marginal

productivity and rising energy prices can improve energy

efficiency because of its positive elasticity coefficient on total

energy consumption (Wu & Gao, 2019).

According to Hypotheses 2, 3, two mediating variables,

i.e., technological innovation and industrial structure, need to

be investigated, respectively, in order to further explore the

underlying mechanisms. They are measured as follows.

(1) Technological innovation (TI): The number of authorized

domestic patent applications (Malinauskaitea et al., 2019).

(2) Industrial structure (IS): The sum of added value of the

secondary and tertiary industries per GDP (Yuan et al., 2012).

The information of all the variables is summarized in Table 1.

4.3 Model for examining the impact of
HTID on energy efficiency

Existing studies have proved that strong spatial correlation exists

in bothHTID (Li et al., 2019) and energy efficiency (Shao et al., 2019).

Therefore, the spatial panel model is considered for empirical

research, incorporating the spatial lag of HTID and energy

efficiency to control the spatial correlation. The commonly used

spatial econometric models include spatial lag model, spatial error

model, and spatial Durbin model. The spatial lag model is mainly

used to detect whether dependent variables have spatial overflow

effects between regions. The spatial error model is used to investigate

the spatial effects of missing variables that are not included in the

explanatory variables or unobservable random shocks (Cho & Pucik,

2005). Differently, the Spatial DobbinModel proposed by Lesage and

pace (2009) has the spatial lag term of both dependent and

independent variables, which is more general form than spatial lag

model and spatial error model. It reflects the spatial effect more

comprehensively than the other two methods, hence being more

objective and practical. Moreover, Spatial Dobbin Model integrates

the spatial correlation of explained variables and explained variables

into the model, which has more realistic explanatory power and can

2 From 1996 to 1998, there was no main business income of industrial
enterprises, and the ratio of total industrial output value to main
business income in 1999 was used for smoothing.
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consider the direct influence of explained variables by local variables

and the indirect influence of explained variables and explained

variables in other adjacent regions at the same time (Lesage and

pace, 2008). Actually, in empirical studies, when spatial lag and spatial

error exist at the same time, a spatial Durbin model is usually

constructed for analysis (Cirillo et al., 2018). Therefore, this study

adopts the spatial Durbin model for empirical testing. Additionally,

considering the possible time-lag effect, the time-lag phase I of energy

efficiency is introduced into the static space panel Durbin model to

construct the dynamic space panel Durbin model as suggested by the

existing studies, e.g., Shao et al. (2019), Feng & Wang (2019), Lee &

Yu (2016), and Lv et al. (2019):

EEit � β0 + β1EEit−1 + ρ1∑
n

i�1ωijEEjt + β2HTIDit

+ρ2∑
n

i�1ωijHTIDjt + δ∑Xit + λ∑
n

i�1ωijXjt + μi + εit (1)

Where i represents the region i, t represents the year, EE is energy

efficiency, EEit-1 represents the energy efficiency with a lag period.ωij

is the element of the spatial weightmatrix used to describe the spatial

proximity relationship between regions. The most commonly used

binary spatial weight matrix is adopted, i.e., when two regions are

geographically adjacent,ωij = 1, otherwise ωij = 0. μ denotes the local

fixed effect, and ε denotes the random disturbance term.

4.4 Model for intermediary effect between
HTID and energy efficiency

A mediating effect means that the explanatory variable has

indirect influence on the explained variable through the

intermediate variable. The widely used method to test the

mediating effect is the step-by-step method proposed by Baron &

Kenny (1986). In order to test the mediating effects of technological

innovation and industrial structure suggested in Hypotheses 2, 3, we

also follow the spatial econometric method (Shao et al., 2019). As

illustrated in the equations and Figure 3 below, the steps are: 1)

testing the regression coefficient c of the explanatory variable X to

the explained variable Y; 2) testing the regression coefficient a of the

explanatory variable X on the mediating variable M, and b of the

mediating variableM on the explained variableY, and if both a and b

are significant, the indirect effect is significant; and 3) testing

whether the regression coefficient c′ of explanatory variable X to

the explained variable Y is significant or not. An insignificant result

indicates a complete mediating effect (i.e., only the mediating effect

exists without a significant direct effect); and a significant result

indicates that both the direct and the indirect effects are significant

(Cincera, 1997; Shao et al., 2019).

Y � cX + e1 (2)

TABLE 1 Description and data resource of each variable.

Variable
categories

Symbol
and data
resource

Meaning Metrics and specifications Unit

Explained variable EE (1) Energy productivity Energy consumption per unit of GDP Tons per
1,000 yuan

Primary explanatory
variable

HTID1 (3) High-tech industries
development

Scale percent

HTID2 (3) Productivity 10,000 yuan per
people

HTID3 (3) Agglomeration Ratio

Control variables FDI (2) Degree of openness Foreign direct investment as a share of GDP Percent

ES (1) Energy consumption
structure

Coal consumption accounts for the proportion of total energy
consumption

Percent

Urb (2) Urbanization The proportion of urban population in the total population Percent

Mar (2) Degree of marketization 1- The proportion of fixed assets investment in the state-owned economy
in the total fixed assets investment

Percent

EP (1) Energy prices China’s fuel and power price index Percent

Mediator variables TI (2) Technological innovation Number of domestic patent applications authorized Item

The number of patent applications accepted Item

IS (2) The industrial structure The added value of the secondary and thirdary industries accounts for the
proportion of GDP

Percent

Thaier index Ratio

Note: The number in () of column 2 means the data resource: (1) China energy statistical yearbook; (2) China statistical yearbook, 60 years of new China, and the statistical yearbook of

29 provinces; (3) China statistics yearbook on high technology industry.
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M � aX + e2 (3)
Y � c′X + bM + e3 (4)

According to Hypotheses 2, 3, technological innovation and

industrial structure are the intermediary variable M, energy

efficiency is explained variable Y, and HTID is explanatory

variable X. The time lag and spatial lag item of the energy

efficiency are the control variables, as well as FDI, ES, Urb,

Mar, EP. Taking technological innovation and industrial

structure as the mediating variable, respectively, the models

for testing the mediating effects are set as follows:

TIit � γ0 + γ1TIit−1 + θ1∑
n

i�1ϖijTIjt + γ2HTIDit

+θ2∑n

i�1ϖijHTIDjt + ς∑Xit
′ + θ3∑

n

i�1ϖijXjt
′ + ψi + τit (5)

EEit � α0 + α1EEit−1 + π1∑
n

i�1ωijEEjt + α2HTIDit

+π2∑
n

i�1ωijHTIDjt + α3TIit + φ∑Xit
′ + π3∑

n

i�1ωijXjt
′ + υi + ξ it

(6)
ISit � γ0 + γ1ISit−1 + θ1∑

n

i�1ϖijISjt + γ2HTIDit

+θ2∑n

i�1ϖijHTIDjt + ς∑Xit
′ + θ3∑

n

i�1ϖijXjt
′ + ψi + τit (7)

EEit � α0 + α1EEit−1 + π1∑
n

i�1ωijEEjt + α2HTIDit

+π2∑
n

i�1ωijHTIDjt + α3ISit + φ∑Xit
′ + π3∑

n

i�1ωijXjt
′ + υi + ξ it

(8)
Where TI and IS represent the technological innovation and

industrial structure, respectively. TIit-1 and ISit-1 denote the

technological innovation and industrial structure with lag period,

respectively. Other variables are similar to Eq. 1. More specifically,

Eqs 5, 7 can be viewed as the extension of Eq. 3, and Eqs 6, 8 can be

viewed as the extension of Eq. 4 in the context of our study.

4.5 Sample data description

Based on the data availability and statistical caliber consistency,

our sample includes 29 administrative regions (Tibet and

Chongqing are eliminated due to missing data) at the provincial

level in China (province, municipality directly under the central

government, or autonomous regions) from 1996 to 2016. The data

for total energy consumption, the proportion of coal consumption,

China’s fuel and power price index are from the “China Energy

Statistical Yearbook” for the periods from 1996 to 2017. The data

related to GDP, patent applications, main business income of

industrial enterprises, FDI, urbanization, and industrial structure

are from the “China Statistical Yearbook”, “60 Years of NewChina,”

and the statistical yearbooks of 29 provinces for the periods from

1996 to 2017. Furthermore, according to the classification of China’s

high-tech industries yearbook, five major sectors (pharmaceutical,

aerospace, electronics and communication equipment, computer

and office equipment, and medical equipment industries) are

selected for our study (Liu et al., 2019). The data for variables

related to high-tech industries, such as the main business income

and the average annual number of employees, are from the “China

Statistics Yearbook on High Technology Industry” for the periods

from 1996 to 2017. Value terms are adjusted to the price of 1996. In

order to reduce the dispersion degree of sample data in empirical

analysis and weaken multicollinearity and heteroscedasticity

problems, the variable data (EE,HTID2,HTID3) in non-

percentage units are logarithmic. Since the number of authorized

domestic patent applications may be zero, technological innovation

(TI) is also logarithmic. The statistical descriptions of variables can

be seen in Table 2.

As shown in Table 2, the observations number is 609 from

29 provinces during the period from 1996 to 2016. The mean of

EE is 1.4912, less than its Std. dev., and the gap between its Max

and Min is large, as well as HTID2 (Productivity) and HTID3

(Agglomeration). The scale of HTID of China in the sample

period is in the range between 53.8519 and 0.2266, with the

average being 10.1982.

5 Results

Before the parameter estimation of the spatial panel model, the

spatial correlation test is conducted for the residual error of the

ordinary least squares (OLS) estimation. The results show that the

explained variables of the equation have significant spatial

correlation, making it necessary to apply the spatial panel

model for research. Considering the correlation of time and

space and the possible endogeneity of the explained variables,

the dynamic spatial Durbin model is estimated using the

generalized method of moments (GMM), which allows some

independent variables to be endogenous and thus makes it a

better estimation method for the possible endogeneity of the

explained variables. For comparative analysis, the estimation

FIGURE 3
Schematic diagram of mediating effects test.
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results of the dynamic spatial Durbin model fixed effect (FE) and

static spatial panel Durbin model feasible generalized least square

method (FGLS) are also reported. Especially, the latter, which

reduces intra-group heteroscedasticity and autocorrelation, is used

for comparative analysis of the static panel model.

5.1 Test of hypothesis 1: Impact of HTID on
energy efficiency

Table 3 provides the estimation results regarding the impact of

HTID on energy efficiency. In this table, columns (1), (4), and (7) are

TABLE 2 Statistical description of variables.

Variable Observations Mean Std. dev. Max Min

EE 609 1.4912 0.5350 5.3026 −2.1882

HTID1 (Scale) 609 10.1982 11.4255 53.8519 0.2266

HTID2 (Productivity) 609 28.1796 0.9444 219.3788 2.0610

HTID3 (Agglomeration) 609 5.7454 1.1216 53.8499 −4.4128

FDI 609 59.2465 14.9453 87.4551 13.1201

ES 609 61.5384 16.1643 95.5645 8.6326

Urb 609 46.3843 16.9879 89.6000 16.7746

TI 609 4095.7290 1.7151 269952.15 43.0000

IS 609 86.0637 7.6642 102.1287 63.5549

Mar 609 59.0898 15.2812 87.9504 15.5759

EP 609 191.3956 87.2614 744.7856 98.2376

TABLE 3 Impact of HTID on energy efficiency.

Durbin model for static space panel
(FGLS)

Durbin model of dynamic space
panel (FE)

Durbin model of dynamic space
panel (GMM)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

L.EE 0.8712***
(0.0190)

0.8704***
(0.0189)

0.8693***
(0.0195)

0.9659***
(0.0081)

0.9684***
(0.0082)

0.9566***
(0.0094)

HTID1 0.0141***
(0.0017)

0.0002 (0.0006) 0.0006**
(0.0003)

HTID2 0.3433***
(0.0236)

0.0237***
(0.0100)

0.0129**
(0.0056)

HTID3 0.2076***
(0.0167)

0.0005
(0.0078)

0.0192***
(0.0042)

FDI −0.0036
(0.0029)

−0.0056**
(0.0027)

−0.0022
(0.0027)

0.0002 (0.0007) 0.0002
(0.0007)

0.0002
(0.0007)

−0.0001
(0.0008)

0.0000
(0.0008)

0.0000
(0.0007)

ES −0.0009
(0.0013)

−0.0019*
(0.0011)

−0.0005
(0.0012)

−0.0005**
(0.0002)

−0.0006**
(0.0002)

−0.0005**
(0.0002)

−0.0006**
(0.0003)

−0.0006**
(0.0003)

−0.0006**
(0.0003)

Urb 0.0047***
(0.0012)

0.0031***
(0.0011)

0.0051***
(0.0011)

−0.0002
(0.0003)

−0.0002
(0.0003)

−0.0002
(0.0003)

0.0004**
(0.0002)

0.0004
(0.0002)

0.0004*
(0.0003)

Mar 0.0047 (0.0029) 0.0064**
(0.0026)

0.0037 (0.0027) −0.0002
(0.0006)

−0.0001
(0.0006)

−0.0001
(0.0006)

−0.0003
(0.0007)

−0.0003
(0.0007)

−0.0004
(0.0006)

EP −0.0000
(0.0002)

−0.0002
(0.0002)

−0.0000
(0.0002)

−0.0000
(0.0000)

−0.0001
(0.0000)

−0.0001
(0.0000)

−0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

ω·EE −0.1260***
(0.0190)

−0.0730***
(0.0164)

−0.1294***
(0.0173)

−0.0120***
(0.0056)

−0.0123**
(0.0056)

−0.0123**
(0.0056)

−0.0028
(0.0029)

0.0003
(0.0025)

0.0006
(0.0027)

ω·HTID1 0.0031***
(0.0009)

−0.000
(0.0003)

−0.0004***
(0.0001)

ω·HTID2 0.0022 (0.0110) −0.0678
(0.0636)

−0.0066***
(0.0022)

ω·HTID3 0.0230***
(0.0085)

0.0018
(0.0036)

−0.0007
(0.0015)

R2 0.9596 0.9600 0.9596 0.9888 0.9888 0.9889

Note: *significant at 10%; **significant at 5%; ***significant at 1%; L. means lag phase one.
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the regression results with HTID1 (the scale of HTID) as the

explanatory variable; columns (2), (5), and (8) refer to the regression

results with HTID2 (the productivity of HTID) as explanatory variable;

and columns (3), (6), and (9) show the regression results with HTID3

(the agglomeration of HTID) as the explanatory variable.

According to the estimated results of columns (7), (8), and

(9) in Table 3, the impacts of scale (HTID1), productivity

(HTID2), and agglomeration (HTID3) of HTID on energy

efficiency are positive. Nevertheless, HTID3 has a more

significant effect at 1% with a higher coefficient, showing that

the agglomeration of HTID is likely to outperform the scale and

productivity on increasing energy efficiency. In other words,

Hypothesis 1 is confirmed that HTID can significantly improve

energy efficiency in terms of scale, productivity and

agglomeration.

Furthermore, comparing the impacts of three aspects of local

HTID on energy efficiency, the scale and productivity of HTID in

neighborhoods (i.e., ω·HTID1 andω·HTID2) could significantly

decrease local energy efficiency. The possible reason is that

available resources for HTID are limited, and resource

occupation by high-tech industries in neighborhoods would be

detrimental to local HTID, thus inhibiting the increase of energy

efficiency. According to the Durbin model for static space panel

(FGLS), all three perspectives (HTID1, HTID2, HTID3) have the

statistically significant positive effect at 1%. The scale and

agglomeration of HTID in neighborhoods (i.e., ω· HTID1 and

ω· HTID3) can have a positive impact on local energy efficiency,

meaning that HTID has a significantly positive spatial spillover

effect through scale and agglomeration, while the productivity is

not significant, which may be due to its own spatial

characteristics.

For the control variables, the effects of urbanization (Urb)

and technological innovation on energy efficiency are

significantly positive, perhaps due to the advance technology

and increased electricity consumption efficiency with advanced

electricity consumption facilities in cities along with urbanization

(Xu & Lin, 2018). The impact of energy consumption structure

(ES) on energy efficiency is significantly negative, indicating that

the increase in coal consumption proportion can have a negative

impact on energy efficiency. Reducing the proportion of coal in

the energy mix is necessary and has been in progress in China for

more than 20 years. The influences of openness (FDI),

marketization (Mar), and energy prices (EP) on energy

efficiency are uncertain (showing different effects in every

regression result of Table 3), but these are not the main

factors examined in this study.

5.2 Test of hypothesis 2: The mediating
effect of technological innovation

The GMM dynamic spatial Durbin model is applied to

estimate the mediating effect. According to the mediating

effect test model, the mediating effect of technological

innovation on the relationship between HTID and energy

efficiency is empirically tested by following Eqs 1, 5, 6.

Specifically, the test examines whether the coefficients of the

impact of HTID on technological innovation in Eqs 5, 6 are

statistically significant. When both are significant, technological

innovation has a mediating effect between HTID and energy

efficiency. In Table 4, columns (1) and (2) report the results while

considering the scale of HTID; columns (3) and (4) refer to the

productivity of HTID, and columns (5) and (6) show the

agglomeration of HTID.

In Table 4, columns (1), (3), and (5) inspect the impact of

HTID on the intermediary variable (technological innovation,

TI). Scale of HTID is shown to have no significant influence on

technological innovation, while productivity and agglomeration

of HTID has statistically positive effects at last 10% level. Column

(2) in Table 4 demonstrates that although the influence of

technological innovation on energy efficiency is significantly

positive, technological innovation has no mediating effect

between the scale of HTID (HTID1) and energy efficiency.

This is further confirmed by the Sobel test (Mackinnon et al.,

2002). Moreover, given the results in Table 3 showing that the

effects of HTID on energy efficiency are significantly positive,

columns (4) and (6) in Table 4 indicate the full mediating effect of

technological innovation on the relationship between

productivity of HTID (HTID2) and energy efficiency, and

partial mediating effect on the relationship between

agglomeration of HTID (HTID3) and energy efficiency. In

other words, the productivity of HTID can facilitate the

increase of energy efficiency fully through technological

innovation, and agglomeration impact partly through

technological innovation. Therefore, Hypothesis 2 is partially

supported.

5.3 Test of hypothesis 3: The mediating
effect of industrial structure

The mediating effect of industrial structure on the relationship

between HTID and energy efficiency is empirically tested by

following Eqs 1, 7, 8. The results are shown in Table 5,

indicating whether industrial structure plays an intermediary role

in the effect of HTID on energy efficiency. Again, in Table 5,

columns (1) and (2) report the results considering the scale of HTID;

columns (3) and (4) refer to the productivity of HTID, and columns

(5) and (6) indicate the agglomeration of HTID.

In Table 5, columns (1), (3), and (5) show that the influences of

scale and agglomeration of HTID on industrial structure are

significantly positive at the 10% level, while productivity of HTID

is negative and not significant. Columns (2) and (6) in Table 5 show

that the influences of scale and agglomeration of HTID on energy

efficiency are significantly at 10% level. Thus, in addition to the results

in Table 3 showing that the effects of HTID on energy efficiency are
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TABLE 4 Intermediary effect test of technological innovation.

(1) (2) (3) (4) (5) (6)

TI EE TI EE TI EE

L.EE 0.9854*** (0.0070) 0.9875*** (0.0068) 0.9724*** (0.0083)

L.TI 0.9745*** (0.0099) 0.9692*** (0.0102) 0.9713*** (0.0102)

TI 0.0125*** (0.0035) 0.0115*** (0.0035) 0.0112*** (0.0034)

HTID1 0.0015 (0.0011) 0.0007 (0.0018)

HTID2 0.0292* (0.0163) 0.0035 (0.0058)

HTID3 0.0268** (0.0126) 0.0150*** (0.0041)

FDI −0.0011 (0.0022) −0.0023 (0.0003) −0.0012 (0.0022) 0.0001 (0.0008) −0.0010 (0.0022) 0.0002 (0.0008)

ES 0.0007 (0.0009) −0.0006** (0.0003) 0.0007 (0.0009) −0.0006** (0.0002) 0.0006 (0.0009) −0.0006** (0.0003)

Urb −0.0006 (0.0007) −0.0005** (0.0002) −0.0008 (0.0007) −0.0005** (0.0002) −0.0004 (0.0007) −0.0005* (0.0003)

Mar 0.0025 (0.0020) −0.0005 (0.0007) 0.0026 (0.0021) −0.0005 (0.0007) 0.0023 (0.0021) −0.0006 (0.0007)

EP −0.0004*** (0.0001) 0.00004 (0.00003) −0.0003*** (0.0001) 0.0004*** (0.0001) −0.0003*** (0.0001) 0.0004* (0.0002)

ω·EE 0.0065*** (0.0025) 0.0057*** (0.0022) 0.0020*** (0.0024)

ω·HTID1 −0.0010** (0.0004) 0.0004*** (0.0001)

ω·HTID2 −0.0116* (0.0064) 0.0050*** (0.0019)

ω·HTID3 −0.0045 (0.0043) −0.0000 (0.0015)

ω·TI 0.0116*** (0.0025) 0.0117*** (0.0029) 0.0100*** (0.0025)

R2 0.9889 0.9884 0.9889 0.9883 0.9888 0.9885

Note: *significant at 10%; **significant at 5%; ***significant at 1%; L. means lag phase one.

TABLE 5 Intermediary effect test of industrial structure.

(1) (2) (3) (4) (5) (6)

IS EE IS EE IS EE

L.EE 0.9734*** (0.0066) 0.9708*** (0.0066) 0.9682*** (0.0068)

L.IS 0.9540*** (0.0092) 0.9655*** (0.0082) 0.9579*** (0.0092)

IS −0.0013* (0.0007) −0.0006 (0.0007) −0.0018** (0.0008)

HTID1 0.0090* (0.0050) 0.0003** (0.0001)

HTID2 −0.0940 (0.0803) 0.0020 (0.0052)

HTID3 0.1050* (0.0468) 0.0075** (0.0034)

FDI 0.0052 (0.0098) 0.0000 (0.0008) 0.0080 (0.0098) 0.0001 (0.0007) 0.0075 (0.0098) 0.0002 (0.0007)

ES −0.0030 (0.0043) −0.0005* (0.0003) −0.0014 (0.0044) −0.0004 (0.0007) −0.0026 (0.0042) −0.0004* (0.0003)

Urb 0.0073** (0.0034) 0.0004 (0.0014) 0.0076** (0.0037) 0.0003* (0.0002) 0.0075** (0.0033) 0.0003 (0.0002)

Mar 0.0026 (0.0089) −0.0003 (0.0006) 0.0031 (0.0089) −0.0004 (0.0006) 0.0015 (0.0090) −0.0004 (0.0006)

EP −0.0003 (0.0005) 0.0004*** (0.0000) −0.0006*** (0.0000) −0.0000 (0.0000) −0.0005 (0.0005) 0.0004*** (0.0000)

ω·EE 0.0067** (0.0026) −0.0028 (0.0021) 0.0012 (0.0023)

ω·HTID1 0.0037* (0.0020) −0.0004** (0.0001)

ω·HTID2 −0.0984***(0.0292) −0.0019** (0.0009)

ω·HTID3 0.0667*** (0.0232) 0.0012 (0.0014)

ω·IS 0.0058** (0.0022) 0.0052** (0.0020) 0.0076** (0.0022)

R2 0.9859 0.9885 0.9860 0.9887 0.9861 0.9886

Note: *significant at 10%; **significant at 5%; ***significant at 1%; L. means lag phase one.
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significantly positive, industrial structure has a partial negative

mediating effect between the scale and agglomeration of HTID

(HTID1 and HTID3) and energy efficiency. Meanwhile, columns

(3) and (4) in Table 5 demonstrate that the influence of industrial

structure and productivity of HTID on energy efficiency is not

significant, which is further confirmed by the Sobel test

(Mackinnon et al., 2002). This further demonstrates that industrial

structure has no mediating effect between the productivity of HTID

(HTID2) and energy efficiency. Therefore, Hypothesis 3 is also

partially supported.

5.4 Robustness test

Although the above study shows that HTID can significantly

improve energy efficiency, there are different measurements for

energy efficiency and the mediating variables, which might affect

the robustness of the results. Therefore, we further evaluate our

results by changing the measurement of energy efficiency and the

mediating variables. We use the total-factor energy efficiency

based on the SFA model to measure energy efficiency (Zou et al.,

2019); Theil index (Gan et al., 2011) to represent the industrial

structure (replacing the proportion of the added value of the

secondary and tertiary industries in GDP), and the number of

accepted patent applications (Yuan et al., 2012) to represent

technological innovation (replacing the number of authorized

patent applications). As noted previously, only the optimal GMM

estimation is used. Table 6 reports the basic regression results of

the robustness test according to the above considerations. The

effect of HTID on energy efficiency is significantly positive,

which are consistent with results in Table 3.

Tables 7, 8 show further investigations of the mediating

effects of technological innovation and industrial structure by

using the new measures.

In Table 7, columns (2), (4), and (6) show that technological

innovation has a positive impact on energy efficiency, but only

productivity and agglomeration of HTID have significantly

positive influences on technological innovation as shown in

columns (1), (3), and (5). In addition to the results shown in

Table 6, we can get the same conclusion i.e., complete mediating

effect of technological innovation between productivity of HTID

(HTID2) and energy efficiency, while partial mediating effect

between agglomeration of HTID (HTID3) and energy efficiency.

In Table 8, columns (2), (4), and (6) illustrate that the impact

of industrial structure on energy efficiency is negative, while only

the influences of scale and agglomeration of HTID (HTID1 and

HTID3) on industrial structure and energy efficiency are

significantly positive. In addition to the results shown in

Table 6, we can achieve the same conclusion, i.e., industrial

structure has a partial negative mediating effect between the scale

and agglomeration of HTID and energy efficiency, meaning that

expansion of HTID scale and agglomeration negatively

influences energy efficiency through industrial structure.

6 Discussion

The impact of HTID on energy efficiency and its underlying

mechanisms derived from our empirical analysis are shown in

Figure 4. It is illustrated that, on the one hand, the scale,

productivity and agglomeration of HTID all have significant

positive effects on energy efficiency. On the other hand, the scale

of HTID also has an indirect negative impact through industrial

structure; the productivity of HTID has an indirect positive

impact on energy efficiency through technological innovation;

the agglomeration of HTID has an indirect positive impact

through technological innovation and an indirect negative

impact through industrial structure. These results will be

further discussed below.

First, HTID has a significant impact on energy efficiency,

which is important for the climate change. In other words, our

findings enrich the existing knowledge by suggesting that the

scale, productivity and agglomeration of HTID all could

improve the total-factor energy efficiency and increase

energy efficiency.

Second, the scale of HTID leads to not only a direct increase

of energy efficiency and but also an indirect reduction of energy

efficiency through industrial structure. This conclusion

conflicts with the expected results and previous studies, e.g.,

Kemeny & Osman (2018) and Ameer & Othman (2020). In

combination with China’s national conditions, the potential

explanation might be that like the traditional industries, HTID

in China still remains the extensive growth mode and depends

on the economies of scale to improve energy efficiency (Li et al.,

2017). In other words, HTID in China still focuses on the low-

end expansion now, rather than upgrading. Hence, the

optimization of industrial structure in China stimulated by

TABLE 6 Robust test of the impact of HTID on energy efficiency.

(1) (2) (3)

L.EE 0.9127***(0.0064) 0.9272***(0.0066) 0.9111***(0.0064)

HTID1 0.0032***(0.0002)

HTID2 0.0087**(0.0032)

HTID3 0.0122***(0.0002)

FDI 0.0002 (0.0006) 0.0002 (0.0006) 0.0002 (0.0006)

ES −0.0008**(0.0001) −0.0006**(0.0002) −0.0012***(0.0002)

Urb 0.0013**(0.0003) 0.0005***(0.0002) 0.0004**(0.0002)

Mar −0.0008 (0.0006) −-0.0008 (0.0006) −0.0008 (0.0006)

EP 0.0001***(0.0000) 0.0002**(0.0000) 0.0001***(0.0000)

ω·EE −0.0012 (0.0019) −0.0025 (0.0019) −0.0015 (0.0022)

ω·HTID1 −0.0012**(0.0001)

ω·HTID2 −0.0007***(0.0003)

ω·HTID3 −0.0002 (0.0012)

R2 0.9878 0.9878 0.9880

Note: *significant at 10%; **significant at 5%; ***significant at 1%; L. means lag

phase one.
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TABLE 7 Robust test of the intermediary effect of technological innovation.

(1) (2) (3) (4) (5) (6)

TI EE TI EE TI EE

L.EE 0.9905*** (0.0066) 0.9940*** (0.0067) 0.9792*** (0.0071)

L.TI 0.5170*** (0.0325) 0.5722*** (0.0292) 0.5637*** (0.0295)

TI 0.0045** (0.0020) 0.0046** (0.0020) 0.0038* (0.0020)

HTID1 0.0008 (0.0060) −0.0004 (0.0002)

HTID2 0.0638* (0.0431) 0.0037 (0.0052)

HTID3 0.1207** (0.0589) 0.0127*** (0.0030)

FDI −0.0266** (0.0127) −0.0000 (0.0006) −0.0314** (0.0126) 0.0000 (0.0006) −0.0306** (0.0127) −0.0000 (0.0006)

ES 0.0013 (0.0034) 0.0002 (0.0002) 0.0018 (0.0036) 0.0003 (0.0002) 0.0015 (0.0035) 0.0002 (0.0002)

Urb 0.0097** (0.0041) 0.0004** (0.0002) 0.0079* (0.0042) 0.0006*** (0.0002) 0.0067* (0.0038) 0.0002 (0.0002)

Mar 0.0262** (0.0118) −0.0006 (0.0005) 0.0309** (0.0120) −0.0006 (0.0005) 0.0292** (0.0119) −0.0007 (0.0005)

EP 0.0003 (0.0006) 0.0001*** (0.0000) 0.0004 (0.0006) 0.0001** (0.0000) 0.0005 (0.0006) 0.0001*** (0.0000)

ω·EE 0.0003 (0.0020) 0.0016 (0.0020) 0.0008 (0.0022)

ω·HTID1 0.0015 (0.0020) 0.0007*** (0.0003)

ω·HTID2 0.0000 (0.0001) 0.0006 (0.0021)

ω·HTID3 0.0007 (0.0025) −0.0001 (0.0012)

ω·TI 0.0124*** (0.0036) 0.0029 (0.0105) −0.0198 (0.0202)

R2 0.4989 0.9876 0.4890 0.9876 0.4923 0.9879

Note: *significant at 10%; **significant at 5%; ***significant at 1%; L. means lag phase one.

TABLE 8 Intermediate effect test of industrial structure (Theil index).

(1) (2) (3) (4) (5) (6)

IS EE IS EE IS EE

L.EE 0.9894*** (0.0065) 0.9929*** (0.0065) 0.9788*** (0.0071)

L.IS 0.3318** (0.0357) 0.3312*** (0.0351) 0.3297*** (0.0352)

IS −0.0372*** (0.0076) −0.0138 (0.0174) −0.0140** (0.0047)

HTID1 0.0014** (0.0006) 0.0006** (0.0002)

HTID2 −0.0068 (0.0077) 0.0048 (0.0051)

HTID3 0.0066** (0.0025) 0.0138*** (0.0031)

FDI 0.0002 (0.0016) 0.0002 (0.0006) 0.0001 (0.0016) 0.0002 (0.00063) 0.0002 (0.0016) 0.0001 (0.0006)

ES 0.0000 (0.0003) 0.0002 (0.0002) 0.0001 (0.0003) 0.0002 (0.0002) 0.0000 (0.0003) 0.0002 (0.0002)

Urb 0.0006 (0.0004) 0.0003 (0.0002) 0.0002 (0.0004) 0.0005*** (0.0002) 0.0002 (0.0003) 0.0001 (0.0002)

Mar 0.0004 (0.0015) −0.0008 (0.0006) 0.0005 (0.0015) −0.0008 (0.0006) 0.0003 (0.0015) −0.0008 (0.0006)

EP −0.0001** (0.0001) 0.0001 (0.0000) −0.0001** (0.0001) 0.0001** (0.0000) −0.0001** (0.0001) 0.0001*** (0.0000)

ω·EE 0.0013 (0.0019) 0.0025 (0.0019) 0.0015 (0.0000)

ω·HTID1 0.0001 (0.0002) 0.0000*** (0.0000)

ω·HTID2 0.0002 (0.0009) 0.0007** (0.0003)

ω·HTID3 −0.0006 (0.0018) −0.0002 (0.0012)

ω·IS 0.0835*** (0.0002) 0.0831*** (0.0078) 0.0829*** (0.0078)

R2 0.3776 0.9878 0.3784 0.9878 0.3787 0.9880

Note: *significant at 10%; **significant at 5%; ***significant at 1%; L. means lag phase one.
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HTID emphasizes scale exploration and centers more on

addressing the output growth of HTID (Tang et al., 2017;

Chen et al., 2018b; Malinauskaitea et al., 2019). Therefore,

the scale of HTID has failed to achieve the expected positive

effect on energy efficiency through promoting synchronous

growth and upgrading industrial structure.

Third, the productivity of HTID promotes energy

efficiency through technological innovation as expected.

Somehow, this is also implied in Chen et al. (2019) and

Cho & Pucik (2005), but it is beyond our expectation that

this mediating effect is complete. Nevertheless, such

unexpected result can be explained by applying the theory

of competition strategy and technological innovation

(Gerstlberger et al., 2014). According to this theory, some

advanced industries may stimulate innovation in other

industries through input-output linkages (Isaksson et al.,

2016). As mentioned above, high-tech industries are

normally knowledge- and technology-intensive, with the

key elements as intellectual resources rather than fixed

assets (Alegre et al., 2013). Therefore, their direct effect on

improving energy efficiency might be limited. However, high-

tech industries can promote productivity through continuous

technological progress and enhance the technical level in all

industries due to technology spillover and diffusion (Tang

et al., 2017). Accordingly, the marginal productivity increases

accused to widespread adoption of modern production

technology and equipment (Sinton & Levine, 1994). In

other words, technological innovation stimulates the

adoption of different but complementary new energy in

various industries, so as to improve energy efficiency

(Hodson et al., 2018). Therefore, the productivity of HTID

has a positive indirect influence on energy efficiency

completely through technological innovation, and such

indirect influence is complete.

Finally, the agglomeration of HTID not only significantly

promotes energy efficiency directly and indirectly through

technological innovation, but it also has a negative impact

through industrial structure. Such conflicting effects can be

further understood by applying industrial cluster theory (Drucker

& Feser, 2012; Delgado et al., 2014). According to this theory,

industrial agglomeration is beneficial to promote technological

innovation in high-tech industries (Yang et al., 2016). On the

one hand, due to “external economies,” the agglomeration of

HTID benefits enterprises through shared labor pools, specialist

suppliers, and public infrastructure (Kemeny & Osman, 2018),

especially for knowledge companies that rely on face-to-face

contact, social networks, and tacit knowledge exchange (Asheim

et al., 2011). The resulting technological innovation reduces energy

consumption and greenhouse gas emissions to a certain extent

(Cieslik & Ghodsi, 2015). However, on the other hand, we found

that agglomeration of HTID indirectly inhibits energy efficiency

through industrial structure, which is inconsistent with our

expectations and the conclusion of Tsai et al. (2009) and

Borozan (2018). In line with the spatial characteristics of high-

tech industrial agglomeration, the possible explanation is that the

level of energy efficiency mainly depends on technological progress

(Fisher-Vanden et al., 2004). During the sample investigation period,

Chinese technological level and the degree of HTID’ agglomeration

are relatively low, the economies of scale of energy consumption

have not yet formed, making it difficult for agglomeration to play a

significant role in promoting energy efficiency through its positive

externalities such as technology spillovers. Furthermore, the

“closure” characteristic of high-tech industry agglomeration

hinders its access to external knowledge and leads to the

phenomenon of “free riding” (Yang et al., 2021). Finally, the

increase of HTID’s agglomeration in some regions has

accelerated outputs, which boost energy consumption, and

thereby inhibit energy efficiency. Thus, the net influence is

FIGURE 4
The impact of HTID on energy efficiency and its underlying mechanisms.
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positive between the positive one from technological innovation and

negative one from industrial structure.

7 Conclusions and policy
recommendations

Along with global warming and energy resources

exhausting, energy efficiency has become one of the main

aspects of national policy strategies, where HTID is expected

to play an increasingly important role. However, it remains

unclear how HTID impacts on energy efficiency as well as the

mechanisms behind. In order to address these two gaps, this

study proposes two research questions related to the impact of

HTID on energy efficiency and the mediating effects of

technological innovation and industrial structure. Taking

China as research context and applying the dynamic panel

Durbin model and the intermediary effect model, it further

examines three hypotheses regarding the impact of HTID on

energy efficiency and the mediating effects of technological

innovation and industrial structure. In doing so, this study

makes two-fold theoretical contributions. On the one hand, it

contributes on the existing body of scientific knowledge by

expounding the relationship between scale, productivity, and

agglomeration of HTID and energy efficiency. More

specifically, our analysis confirms that HTID has a

significant positive impact on energy efficiency from three

aspects of scale, productivity, and agglomeration of HTID,

among which, agglomeration has the greatest influence on

energy efficiency. On the other hand, it further deepens the

understanding on such relationship by revealing two

underlying mechanisms behind, i.e., through promoting

technological innovation, the productivity and agglomeration

of HTID can either completely or partially improve energy

efficiency, while through reorganizing industrial structure the

scale and agglomeration of HTID can hinder energy efficiency

to a certain level.

Corresponding to the findings above, the following policy

recommendations can be proposed. First, actions should be taken

to develop high-tech industries. Especially, the productivity and

spatial agglomeration of high-tech industries should receive more

attention than scale expansion for improving energy efficiency, and

further for achieving the sustainable economics. Second, in the

current development stage of China, promoting technological

innovation is critical for higher energy efficiency, which further

helps to achieve climate change goal. Thus, technological innovation

should be set as the goal of strengthening industrial productivity and

agglomeration. Finally, the scale enlargement and agglomeration of

HTID currently decrease energy efficiency due to industrial

structure, indicating that HTID is in the low-end expansion

stage. Hence, efforts should be made to promote the

transformation and upgrading of industrial structure, in order to

increase energy efficiency.

This research has certain limitations, which present

opportunities for future research. First, the development level of

high-tech industries in different regions of China is uneven. The

eastern region of China has great superiority in HTID based on the

high quality of human resources and the abundant presence of

investment capital. The rich supply of natural resources in the

central and western regions makes them locked in a low value-

added position in the industrial chain (Dong et al., 2016).

Therefore, regional heterogeneity should be considered in the

future to gain an in-depth understanding of the relationship

between HTID and energy efficiency. Second, the measurement

of the high-tech industry scale only reflects output growth. As the

scale level inhibits energy efficiency through industrial structure,

different orientation strategies of HTID should be considered in

the future. Third, in addition to technological innovation and

industrial structure, it is also meaningful to investigate whether

economic growth has an intermediary impact between HTID and

energy efficiency. We hope future research will address these

issues.
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