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The rapid development of the tertiary industry has made the energy

consumption of public buildings grow too fast during the operation stage,

which has become a key area of energy conservation and emission reduction in

China’s construction industry. This study uses the Minimum Distance to Strong

effective Frontier function (MinDS) and Malmquist-Luenberger (ML) index

analysis methods to measure the public building carbon emission efficiency

(PBCEE) of 30 provincial-level units in China’s eight economic regions from

2010 to 2019, and analyze regional differences and evolution. Then, the

influencing factors of PBCEE in different regions were analyzed using the

fixed-effect panel data model. The results show that: 1) China’s PBCEE is

generally low, with an average efficiency value of only 0.74, and there are

great differences among regions, showing the spatial characteristics of “high in

the east and low in the west.” 2) Relying on the positive impact of technological

progress, the PBCEE in the eight regions increased year by year, with an annual

growth rate of 1.82%. 3) The influence results and degrees of various factors on

PBCEE are different in different economic zones, but increasing the proportion

of electricity consumption has a certain positive effect on improving PBCEE.

The same influencing factor has obvious threshold characteristics for PBCEE in

different regions, so the government needs to consider the actual situation of

the region when formulating carbon emission reduction policies for public

buildings.
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Introduction

Sustainable development and global warming are still the main issues affecting world

development. In recent years, the frequent occurrence of extreme weather and energy

crises has brought great challenges to human society (Shan and Hwang, 2018). As one of

the three major energy-consuming industries in China, the construction industry not only

promotes economic development but also emits a large amount of carbon dioxide. In

2018, the total carbon emission of China’s construction industry was 4.93 billion tons,
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accounting for 51.2% of the country’s total carbon emissions

(China Building Energy Consumption Research Report, 2021).

To this end, the Chinese government has pledged to reduce

carbon emissions per unit of gross domestic product (GDP) by

around 65% by 2030 compared with 2005 (UNFCCC, 2016). To

achieve this binding target, efforts are required to reduce carbon

emissions by various industries, especially the construction

industry (Lai et al., 2019), where the key to carbon emission

reduction is to improve carbon emission efficiency.

Public buildings, also known as commercial buildings, as a typical

part of the construction industry, and undertake most of the

production activities of the tertiary industry. Therefore, the rapid

development of the tertiary industry has made the carbon emissions

of public buildings soar, accounting for more than 30% of the carbon

emissions of the construction industry in 2018. In the whole life cycle

of carbon emissions from public buildings, the proportion of carbon

emissions generated in the operation stage is the largest (Building

Energy Conservation Research Center of Tsinghua University, 2020).

It is foreseeable that with the development of the tertiary industry,

public buildings will also lead to a continuously high level of carbon

emissions during operation. The newly promulgated “China’s Carbon

Neutral Strategy and Path to Peak Carbon” point out that the priority

concept of energy saving is adhered to, and the energy efficiency of the

whole society is continuously improved to facilitate the green

transformation of production and life. Therefore, the improvement

of carbon emission efficiency of related industries with public

buildings as the main body (public building industry) plays an

important role in realizing China’s carbon peak in 2030.

Most studies on carbon emission efficiency focus on single-

factor efficiency and total factor efficiency. The former defines

carbon emission efficiency as the ratio of carbon emission to a

certain factor of production. Such as Song et al. (2018) calculated

the carbon emission intensity of China’s construction industry;

Li et al. (2021) analyzed that the change in intermediate input

structure caused the change in the carbon intensity of the

construction industry. However, this indicator does not

consider the actual connection with other production factors,

so it cannot be accurately measured (Hu and Wang, 2006). The

commonly used methods in total factor efficiency research are

the non-parametric method represented by Data Envelopment

Analysis (DEA) and the parametric method represented by

Stochastic Frontier Analysis (SFA). Compared with SFA, DEA

has the advantages of multiple inputs and multiple outputs and

has become the mainstream model for evaluating carbon

emission efficiency. But under the traditional DEA model, the

optimal value obtained is the maximum efficiency ratio, leading

to the accuracy of efficiency measurement suffering. Relevant

scholars are currently paying more attention to which model can

better reflect the essence and significance of efficiency evaluation.

In the study of public buildings, related scholars have carried out

work fromdifferent perspectives. Xiang et al. (2022a) used a structural

decomposition approach to assess the progress of decarbonization of

commercial buildings in 16 countries between 2010 and 2019, and the

decarbonization efficiency of 16 economies was 10.1%. Soonsawad

et al. (2022) calculated thematerial consumption and carbon emission

of commercial buildings during the construction stage. Xiang et al.

(2022b) estimated peak emissions from the commercial building

sector at 1,264.81 MtCO2 using the LASSO-WOA method, with the

peak year of 2030. Xiang et al. (2022c) developed a carbon emission

index decomposition tool for the construction industry—PyLMDI.

Du et al. (2022) discussed the spatiotemporal distribution of carbon

emissions from public buildings in 30 provinces in China using the

GTWR model and believed that there were east-west differences in

the carbon emissions of public buildings in various provinces in

China. Li G J. et al. (2022) studied the commercial buildings in China

from 2001 to 2016 changes in carbon emission reduction in the

operation phase and established an evaluation framework for

emission reduction intensity, emission reduction amount, and

carbon emission reduction rate for the decomposition of carbon

intensity. Liu L. Q et al. (2021) evaluated the static environmental

efficiency of the public building industry but did not analyze the

dynamic analyze it from an angle. So far, scholars have done a lot of

research on public buildings, but there is still less research on the

carbon emission efficiency of provincial public buildings in the

operation stage, and the imbalance of regional economic

development and differences in resource endowments will increase

the carbon emission efficiency of public buildings (PBCEE). The big

difference is not in line with China’s strategy of coordinating regional

development. Therefore, it is necessary to study the PBCEE from a

regional perspective.

This paper evaluates the PBCEE of 30 provinces in China from

2010 to 2019, divides the 30 provinces into eight economic zones

according to the criteria of the Development Center of The State

Council, then discusses the regional differences in PBCEE, and

analyzes the PBCEE in each region main driver. Finally, through

the analysis of PBCEE and its influencing factors, the corresponding

emission reduction measures in each region are proposed. The main

contributions of this study are as follows: 1) Research the subject of

public buildings, and calculate the PBCEE of China from the

provincial level, to fill the gap in the current evaluation of total

factor carbon emission efficiency. 2) Selected efficiency calculation

model overcomes the inherent defects of the traditional DEA model

andmakes the PBCEEmore consistent with the actual situation. The

calculation results can provide a better basis for the government to

make decisions. 3) The combination of static and dynamic dual

perspectives is more helpful to reveal the evolution law and

influencing factors of PBCEE differences, and can provide

decision-making references for improving PBCEE in various

regions and accelerating energy conservation, emission reduction

and coordinated development.

Literature review

The carbon emission efficiency research and sustainable

development of public buildings need to attract global
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attention, and DEA is widely used in the current carbon emission

efficiency evaluation. DEA evaluates the relative efficiency of the

decision-making unit (DMU) with multiple input and output

indexes based on linear programming. Thus a nonparametric

production frontier is constructed (Charnes et al., 1978). Hu and

Liu (2015) used the traditional DEA model to measure the

carbon emission efficiency of the Australian construction

industry, and the results show that the carbon emission

efficiency has improved in most regions. Han et al. (2022)

also used the DEA model to measure the static energy

efficiency of buildings. Zhou and Yu (2021) evaluated the

carbon dioxide emission efficiency of the construction

industry using three-stage DEA and found that environmental

factors and random errors are serious in its carbon emission

efficiency. To eliminate the influence of environmental factors.

Zhang et al. (2018) adopted a three-stage DEA model to measure

the carbon emission efficiency of China’s construction industry,

thereby improving the objectivity of the results. Simar and

Wilson (2007) later developed the dual-bootstrap DEA

method to measure environmental efficiency and improve the

statistical efficiency of the second-stage regression.

These models are all radial DEA models, and the inefficiency

level of DMU can only cover the part that the input-output index

can be reduced or increased in equal proportion, which is

inconsistent with the actual situation and effects the accuracy of

efficiency measurement (Yu, 2020). Tone (2001) proposed the SBM

model tomore effectively study the redundancy of input indexes and

the deficiency of output indexes of each DMU. The SBMmodel can

not only solve the problem of slack variables but also solve the

problem of DMU efficiency evaluation under the existence of

undesirable outputs. Zhou et al. (2019) measured the total-factor

carbon emission efficiency of the construction industry from 2003 to

2016 by applying the Super-SBM DEA approach, the results show

that the carbon emission efficiency of the construction industry is

declining year by year. Considering environmental and

technological heterogeneity, Du et al. (2021) employed a meta-

frontier method to measure carbon emission efficiency. To remove

the influence of environmental factors and statistical noise, Li K et al.

(2022) used the super-efficiency SBM model combined with the

three-stage DEA model to calculate the green building efficiency

value and obtain a value closer to the actual situation.

However, the SBM model also has an obvious disadvantage,

that is, the objective function minimizes the efficiency value, and

the projection point is the farthest point from the evaluation

object on the front plane, which leads to the overestimation of the

improvement potential of DMU (Song and Cong, 2016). In

contrast, the Minimum Distance to Strong effective Frontier

function (MinDS) proposed by Aparicio et al. (2007) was

adopted to effectively solve the inherent defects of the SBM

model, and make carbon emission efficiency evaluation results

closer to the real situation. Guo et al. (2022) used the super-

efficiency MinDS model to measure China’s eco-efficiency,

providing a reliable basis for the improvement of the carbon

emissions trading market. Therefore, considering the undesired

output, this study combined with the MinDS model to measure

the total factor PBCEE during operation.

The above efficiency analysis model is a static evaluation model,

which can make a horizontal comparison of the efficiency of DMUs.

To analyze PBCEEmore completely, a dynamic evaluation of PBCEE

is needed to observe whether the efficiency improves in different

periods. Themost common dynamic efficiency evaluationmodels are

the Malmquist index model and the Malmquist-Luenberger (ML)

index model. As the basic Malmquist index model cannot deal with

the situation containing unintended outputs, Chung et al. (2007)

extended the study on the index and constructed theMLmodel. This

not only inherited the advantages of theMalmquist model, and when

calculating the change rate of carbon emission efficiency, it is required

to obtain a larger expected output with smaller unexpected output.

Many scholars used the above two models to measure the change in

total factor productivity of carbon emissions. Fernández et al. (2018)

used DEA-Malmquist to evaluate industrial energy efficiency. Ran

et al. (2018) studied the growth capacity and convergence of

agricultural energy efficiency through the ML index decomposition

model; Wang and Guo (2018) used the combination of the super-

efficiency SBM model and ML index model to evaluate the carbon

emission efficiency of Beijing public transportation. Therefore, based

on the MinDS model and combined with the ML model, this study

conducted a dynamic evaluation of the PBCEE.

To further study the influencing factors of carbon emission

efficiency, many scholars have combined the DEA model with the

econometric model for analysis. Wang et al. (2019) used the DEA

model to measure the carbon emission efficiency of 30 provinces in

China and combined the Tobit regression model to analyze the

influencing factors of carbon emission efficiency. Considering the bad

output of carbon emissions, Kuang et al. (2020) used the SBMmodel

to measure the cultivated land-use efficiency in China and used the

Tobit regression model to analyze the influencing factors of the

difference in cultivated land-use efficiency. It is worth noting that

when using the Tobit regressionmodel to analyze, the efficiency value

needs to be between 0 and 1, but the carbon emission efficiency value

calculated by the MinDS model overcomes the defect that the

traditional efficiency value can only be 1 at most. Therefore, this

paper chooses a panel data model that is more suitable for theMinDS

model to analyze the influencing factors of carbon emission efficiency.

Although the research methods are different, scholars’ research

on the driving factors of carbon emission efficiency shows that

industrial structure, the urbanization process, FDI, economic

development, energy structure, etc. are the main factors affecting

efficiency changes. As a low-carbon and environmentally friendly

industry with high added value, the tertiary industry has a much

lower energy consumption per 10,000 yuan of added value than the

secondary industry (Ma et al., 2017), from the perspective of

development trends, it is the industry that is most conducive to

energy conservation. Xiang et al. (2022a) believed that the industrial

structure is the key to decarbonization in the operation stage of

public buildings. But Jiang and Zhao (2018) believed that the
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optimization of the industrial structure will lead to an increase in

carbon emissions. The acceleration of urbanization may accelerate

the generation of agglomeration effects, reduce energy consumption,

and improve carbon emission efficiency (Su et al., 2018). It may also

be that cities, as agglomeration areas of population and industries,

will lead to an increase in carbon emissions (Qi et al., 2020). Scholars

at home and abroad have different views on the impact of FDI on

carbon emission efficiency. Li and Qi (2016) believe that foreign

investment is still mainly in energy-intensive industries, ignoring the

improvement of development technology, resulting in low efficiency,

which means that FDI is not conducive to carbon emission

efficiency. Ntom and Selin (2021) and Liu X. W et al. (2021)

believe that when a region is closely connected with the rest of

the world, it is easier to introduce advanced foreign technology and

management experience, reduce the consumption of energy-

intensive products, and improve carbon emission efficiency. From

the perspective of economic growth, Li (2021) believed that under

China’s extensive economic development model, its economic

growth will significantly promote the growth of its carbon

emissions, and Zhong et al. (2020) have shown through empirical

research that GDPhas the highest correlationwith carbon emissions.

While Chen et al. (2021) believed that economic development also

helps to invest more in environmental protection and improves

carbon emission efficiency. The optimization of the energy structure

will slow down the generation of carbon emissions (Sun and Ren,

2021), and the energy consumption dominated by coal will lead to

more carbon emissions, which is not conducive to the improvement

of carbon emission efficiency.

In addition to the above factors, public building areas can also be

used as another factor effecting carbon emission efficiency. On the

one hand, the increase in public building areas will promote the

development of the tertiary industry, but it will also increase the

electricity consumption of the tertiary industry (Chen et al., 2016).Ma

et al. (2017) analyzed the driving factors of carbon emissions from the

operation of public buildings in China and believed that the per capita

floor area of public buildings is themain driving force for the increase

in carbon emissions. However, few related studies use the public

building area as an influencing factor of carbon emissions efficiency.

Methodology and data

MinDS model

In this study, PBCEE was calculated by applying the MinDS

model of undesired output. This model limits all the evaluated DMU

reference benchmarks to the same hyperplane by adding constraints.

After all the effective DMUs are determined through the SBMmodel,

use the effective subset as the reference set to solve the planningmodel.

Let’s say the number of DMUs is n, Each DMU has m

inputs, q1 expected outputs and q2 unexpected outputs,λ is the

weight of DMU, s−, s+, and sz− represents the relaxation

variables of input, expected output and unexpected output

respectively, ]i, μr, and μb are the weights of input, expected

output and unexpected output respectively, ρ is the efficiency

value of DMU.

Firstly, find the effective DMU set of DEA through the SBM

model, and record it as set E.

Minρ �
1 − 1

m ∑m
i�1

s−i/xik

1 − 1
q1+q2 (∑q1

r�1
s+r/yrk

+ ∑q2
b�1

sz−b /zbk ⎞⎠ (1)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑n

j�1,j ≠ k

xijλj − s−i ≤ xik, ∑n
j�1,j ≠ k

yrjλj + s+r ≥yrk,

∑n
j�1,j ≠ k

zbjλj − sz−b ≥ zbk, λ≥ 0, s− ≥ 0, s+ ≥ 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (2)

Where, i � 1, 2, 3,/, m; j � 1, 2, 3,/, n; j ≠ k; r �
1, 2, 3,/, q1; b � 1, 2, 3,/, q2.

Secondly, using set E as the initial reference set, the following

mixed linear programming is solved to obtain the MinDS efficiency

value. Among them, ρk represents the carbon emission efficiency

value of the Kth province; bjis expressed as a variable between 0–1, if

bj � 0, thendj � 0, at this timeDMUj is the reference benchmark of

DMUk; if bj � 1, thendj ≤M, at this time DMUj is not the

reference bar of DMUk. It can be concluded from the following

formula that if the evaluated DMUwants to reach the best efficiency,

the necessary and sufficient condition is that all slack variables are

zero.

Max ρk �
1
m
∑m
i�1
(1 − s−i

xik
)/⎡⎢⎢⎣1 + 1

q1 + q2
⎛⎝∑q1

r�1

s+r
yrk

+∑q2
b�1

sz−b
zrk

⎞⎠⎤⎥⎥⎦
(3)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈E

xijλj+s−i � xik, i � 1, 2,/, m∑
j∈E

yrjλj−s+r � yrk, r � 1, 2,/, q1∑
j∈E

zbjλj+sz−b � zbk, b � 1, 2,/, q2

∑q1
r�1
μryrj +∑q2

b�1
μbybj + dj � ∑m

i�1
]ixij∑

j∈E
λj � 1; dj ≤Mbj, λj ≤M(1 − bj)

λ, si, sr, sb, dj ≥ 0
]i, μr, μb ≥ 1
bj ∈ {0, 1}, j ∈ E

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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ML index model

This paper draws on theML indexmodel proposed by Chung

et al. (2007) that considers undesired output to measure the

PBCEE. TheML index constructed based on theMinDSmodel is:

MLt+1
t �

������������������������������������������������������
1 + �E

t+1
0 (it , rt, bt; rt,−bt)

1 + �E
t+1
0 (it+1 , rt+1 , bt+1; rt+1 ,−bt+1)

×
1 + �E

t

0(it, rt, bt; rt,−bt)
1 + �E

t

0(it+1 , rt+1 , bt+1; rt+1 ,−bt+1)

√√
(5)

Furthermore, the ML index can be further decomposed into

the product of the technical efficiency change index ECt+1
t and

the technology change index TCt+1
t to explore the main reasons

for the changes in PBCEE. The function expression is as follows:

MLt+1
t � ECt+1

t × TCt+1
t � 1 + �E

t

0(it, rt, bt; rt,−bt)
1 + �E

t+1
0 (it+1, rt+1, bt+1; rt+1,−bt+1) ×�����������������������������������������������

1 + �E
t+1
0 (it, rt, bt; rt,−bt)

1 + �E
t

0(it, rt, bt; rt,−bt) ×
1 + �E

t+1
0 (it, rt, bt; rt,−bt)

1 + �E
t

0(it+1, rt+1, bt+1; rt+1,−bt+1)
√√

(6)
Among them, EC measures the change of the production

possibility boundary of technical efficiency from period t to

period t+1. The degree of closeness between its observations

and the production frontier represents the change in the level of

DMU management organization capabilities in the two periods,

also known as the “catch-up effect.”When the EC is greater than

1, it means that technological advancement contributes to the

growth of PBCEE; if it is less than 1, the opposite is true. TC

measures the degree of advancement of the technological frontier

in two periods, reflecting the degree of technological change or

technological innovation, and is called the “frontier movement

effect.” TC greater than 1 indicates the improvement of PBCEE

and technological progress, while less than 1 indicates the

deterioration of efficiency and technological regression.

To further explore the source of the technical efficiency

change index, Fare et al. (1994) decompose the technical

efficiency change index into a pure efficiency change index

and a scaling efficiency change index. The expression is:

ECt+1
t � PECt+1

t × SECt+1
t (7)

Panel data model

This paper takes the influencing factors as independent

variables and PBCEE derived from the MinDS model as

dependent variables to establish a panel data model, to judge

the influence degree of independent variables on PBCEE.

Hausman statistical test results were used to determine whether

to build a random effect model or a fixed-effect model. The original

hypothesis of its test is that individual effects are independent of

explanatory variables. If true, the random effect estimation results are

more valid. In addition, the fixed-effect model is better. The basic

measurement model set is:

EE � β0 + β1ISit + β2URBit + β3FDIit + β4EDit + β5ESit

+ β6PBAit + εit (8)

To eliminate the heteroscedasticity existing between the

variables and enhance the stability of the panel data, all

variables are processed logarithmically, and the final

regression model constructed is:

lnEE � β0 + β1 ln(IS)it + β2 ln(URB)it + β3 ln(FDI)it+
β4 ln(ED)it + β5 ln(ES)it + β6 ln(PBA)it + εit

(9)

Where, EE is the PBCEE, ISit, URBit, FDIit, EDit, ESit, PBAit

are constant terms, representing 6 independent variables,β1,

β2, β3, β4, β5, β6 are the regression coefficients of the respective

variables, i stands for province or city,tmeans year,εit is the

residual.

Variables and data

Based on the total factor productivity theory and input-

output model, this paper calculates the PBCEE of

30 provinces in China from 2010 to 2019 and selects

relevant indicators to analyze the influencing factors of

PBCEE. The basic data of the related variables are mainly

derived from the “China Statistical Yearbook” (2011–2020)

and the “China Energy Statistical Yearbook” (2011–2020).

For individual data missing and outliers, the mean is used to

correct.

There are three input indicators in this paper, namely capital

input, labor input, and energy consumption; the value-added of

related industries is selected as the expected output; the carbon

emission of public buildings is the undesired output. The specific

indicators are explained as follows, and the descriptive statistics

of each indicator are shown in Table 1.

Capital input
This study adopts the perpetual inventory method

(Goldsmith, 1951; Shan, 2008) to estimate the capital

investment in the public buildings industry (Wu, 2016), and

then uniformly adjusts it to the constant price based on 2010.

Labor input
Since the labor time invested in the actual production

process cannot be obtained (Feng et al., 2014), the labor force

indicator represents the number of people engaged in social

labor and obtained reasonable remuneration, reflecting the

utilization of labor resources in actual production during a

certain period (Zhang and Jia, 2019). Therefore, following

Lin and Wang (2016), this article regards 90% of the number
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of employees in the tertiary industry as the number of

employees in the public building industry.

Energy consumption
This paper adopts the macro model of building energy

consumption based on an energy balance table to measure the

energy consumption of public buildings. It can be seen from Cai

et al. (2017) that the energy consumption of public buildings are

concentrated in the three major industries “Transport, Storage

and Post,” “Wholesale, Retail Trade and Hotel, Restaurants” and

“Others.” Therefore, the energy consumption of public buildings

is based on these three items, and the energy consumption of

transportation is deducted from them. The deduction method of

transportation energy consumption refers to the method of

Wang (2007) and Zhao (2008). This paper selects eight types

of energy for calculation, respectively raw coal, gasoline, diesel

oil, fuel oil, kerosene, liquefied petroleum gas, natural gas, heat,

and electricity, and converts the processed energy consumption

into standard coal equivalent. The energy consumption of public

buildings in 2019 is shown in Table A1.

Value added of related industries
Since the value added of the transportation industry does not

occur in public buildings, the value added of the relevant

industries calculated in this article is the value added of the

tertiary industry in each province from 2010 to 2019 minus the

value added of the transportation industry (Lin andWang, 2016),

and converted it into the constant price in 2010, excluding the

impact of inflation.

Carbon emissions from public buildings
Carbon emission refers to the emission of greenhouse

gases such as CO2 and methane. For the convenience of

calculation, carbon emission from public buildings is

specifically referred to as CO2 emission in this paper. The

carbon emission coefficient method is used to calculate the

CO2 emissions during the operation phase of public buildings.

The calculation formula is:C � ∑n
i�1Ei ×EFi, where Ei is the ith

energy consumed by public buildings, and EFi is the CO2

emission coefficient of the ith energy. Among them, the

carbon emission factors of electricity and heat refer to the

data given in the document “Guidelines for Accounting

Methods and Reporting of Greenhouse Gas Emissions for

Public Building Operators.”

Based on previous studies, this article selects indicators of

Industrial Structure, Urbanization Level, Foreign Direct

Investment, Development Level, Energy Structure, and Public

Building Area, combined with the characteristics of the public

building industry, to conduct an empirical analysis of the

influencing factors of PBCEE. The meaning of each variable is

shown in Table 2.

Study area

This paper conducts PBCEE research according to the eight

comprehensive economic regions classified in the report

“Strategies and Policies for Regional Coordinated

Development” by the Development Research Center of the

State Council. The specific classifications are shown in Table 3.

Analysis of empirical results

Static efficiency analysis of PBCEE

This study uses MAXDEA 8 Ultra software to calculate the

super-efficiency MinDS model considering undesired output,

and obtains the PBCEE in various provinces from 2010 to

2019, as shown in Table 4 and Figure 1.

Table 4 shows that there is a large difference in PBCEE

between provinces, the maximum PBCEE is about 2.5 times the

minimum, indicating that quite a few provinces still have a large

improvement and chasing space, and the overall PBCEE in China

could be further improved.

From Figure 1, among the eight economic zones, the first

echelon of PBCEE during the study period is the coastal areas,

eastern coastal > southern coastal > northern coastal; the second

echelon is the southern inland region, the middle reaches of the

Yangtze River> the southwest region, and around the national

average carbon emission level fluctuate up and down; the third

echelon is the northern inland region, the middle reaches of the

Yellow River > the northwest region; the fourth echelon has the

lowest efficiency value in the northeast region. This result is

TABLE 1 Descriptive statistics of Input-Output indicators.

Indicators Variables Unit Min Max Mean Std.

Input Capital stock 100 million Yuan 616.71 36402.15 10697.38 6,902.03

Labor ten thousand persons 99.18 3,040.22 919.97 566.93

Energy ten thousand tce 147.07 4,104.87 1,109.24 727.74

Desirable output Added value of related industries 100 million Yuan 506.12 41552.81 8,084.08 7,116.23

Undesirable output CO2 emissions ten thousand tons 247.12 7,528.76 2,487.94 1,617.83
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consistent with the study by Li et al. (2019). It can be seen that

PBCEE is consistent with the level of economic development.

Specifically, the analysis is:

(1) The southern and eastern coastal areas represented by

Guangdong and Jiangsu have the highest carbon emission

efficiency values. On the one hand, due to the open

geographical location and the support of national

preferential policies, they have accumulated capital and

technological advantages. On the other hand, the tertiary

industry accounts for a large proportion, has high technical

proficiency, and is in the forefront of production, resulting in

an increase in PBCEE (Niu et al., 2020).

(2) From the northern coastal areas, Beijing and Tianjin are

municipalities directly under the Central Government,

enjoying more policy dividends, a relatively developed

economy, a higher degree of popularization in the concept

of low-carbon development, and higher energy efficiency

(Lin and Wang, 2016). As a part of the coordinated

development of Beijing-Tianjin-Hebei Province, Hebei has

accepted a large number of enterprises that have moved out

of Beijing, with high energy demand and low carbon

emission efficiency, and is facing huge pressure to reduce

emissions.

(3) In the middle reaches of the Yangtze River, the PBCEEs of

the four provinces were the same. The highest is Hunan and

the lowest is Hubei. During the study period, the PBCEEs

increased the fastest in Jiangxi Province, with an increased

value of 0.4125. As one of the first provinces in China to be

included in the construction of the first demonstration zone

for ecological civilization, Jiangxi Province adheres to the

concept of “ecology first and green development,” and

continuously promotes the adjustment of industrial

structure and energy structure. The efficiency calculation

results confirm that Jiangxi has made great progress in low-

carbon development, but there is still room for

improvement.

(4) In the southwest region, except for Guizhou, the average

PBCEE of other provinces is 0.7724, which exceeds the

national average. As one of the important development

regions for China to implement the “Western

Development Strategy” since the 21st century, the tertiary

industry led by the tourism economy has made considerable

development, and the introduction of foreign capital

investment is an important factor in reducing the

intensity of carbon emissions (Zhang et al., 2019). Among

them, Guangxi and Chongqing have the fastest growth in

PBCEE in the southwest region, with growth values

exceeding 0.3. For example, the output value of

Chongqing’s tertiary industry accounted for 49% of GDP

in 2015, which has become the main driving force for

Chongqing’s economic growth. 92.5% of Guizhou’s

geomorphic structure is mountainous and hilly, which

severely restricts the development of the local tertiary

industry and makes the PBCEE the lowest.

(5) From the perspective of the economic zone in the middle

reaches of the Yellow River, Henan has the fastest increase in

the PBCEE during the study period, with a growth value of

0.4105. The vigorous development of tourism and service

industries has brought great economic output to related

industries that rely on public buildings. The growth rate

of the added value of economic output in related industries

was 138% between 2010 and 2019, making Henan’s

economic development level rank first in Chinese central

and western. In addition, due to the backward development

of the tertiary industry in Shanxi and Inner Mongolia, and

the use of raw coal as the main energy consumption, the

PBCEE is at the end of the country, with an average value of

only 0.5404.

(6) The PBCEE of Northwest China is Ningxia, Xinjiang, Gansu,

and Qinghai in order from the highest to the bottom. The

efficiency values of the four provinces are not much different,

fluctuating around 0.6070. The reason for the low PBCEE

may be that on the one hand, the geographical location is

relatively remote, far from the political and economic center,

and it is difficult to access advanced foreign technology and

capital investment; on the other hand, the infrastructure

construction is not perfect and the economic development is

relatively backward. Among them, the PBCEEs in Gansu and

Qinghai have a reciprocal ranking. These areas have large

land areas, sparse populations, large proportions of

mountainous plateaus, and extremely underdeveloped

economies.

(7) As a traditional old industrial base in China, the Northeast

mostly consumes raw coal as the main energy source, while

the tertiary industry accounts for a relatively small

proportion. This has led to lower public buildings’ energy-

saving effects and the lowest PBCEE.

Dynamic efficiency analysis of PBCEE

On the basis of analyzing the static characteristics and

prosperity of PBCEE in various provinces and cities, the

dynamic characteristics of PBCEE are further analyzed, and

the ML index and its decomposition value of the public

building industry by time period are obtained as shown in

Table 5 by using MAXDEA 8 Ultra software.

As can be seen from table 5, the PBCEE is showing a trend of

continuous improvement. During the study period, the average

annual growth rate of PBCEE was 1.82%, and the fastest growth

rate of PBCEE in 2015–2016 was 3.61%. Generally, the development

of China’s PBCEE is showing a goodmomentum of steady progress.

Moreover, the TC index indicating that the average annual

growth rate of the production technology frontier of public buildings

is 2.92% considering carbon emission; the EC index showing that
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PBCEE’s catching-up speed on the production frontier has an

average annual growth rate of 0.27%. This also means that the

improvement of the overall PBCEEmainly depends on technological

progress, while PBCEE’s catch-up of the production frontier is

advancing in volatility, and the “catch-up effect” has slowed down.

Further breakdown, the average annual growth rate of the

PEC index is 0.46%, and the SEC index is -0.06%. This shows that

changes in technical efficiency are mainly affected by changes in

pure technical efficiency, while changes in scale efficiency reflect

that there is a gap between the level of production input in public

buildings and the amount of input under the optimal production

scale, and the ratio of input and output needs to be further

coordinated.

Figure 2 show the dynamic changes in the PBCEE of the eight

economic regions. Especially the PBCEE in the middle reaches of

the Yangtze River has made the fastest progress, with a growth

rate of 2.42%. Followed by the northern coast and the middle

reaches of the Yellow River regions, the growth rates were 2.27%

and 2.09% respectively. The PBCEE of the northwest, southwest,

and northeast regions ranks behind, the growth rate is low, and

there is plenty of room for improvement.

Combining the ML index, TC index, and EC index measured

above, the development of PBCEE from 2010 to 2019 can be studied,

and targeted measures can be formulated for the problems in each

region. For example, the ML index in the middle reaches of the

Yellow River ranks third, the TC index ranks first, and the EC index

ranks fourth. It can be seen that the PBCEE of this region has

improved significantly, and technological progress is the most

important reason for the improvement of PBCEE. At the same

time, its carbon emission efficiency has slightly lagged in catching up

with the production frontier. In other words, the rapid technological

advancement in the region can drive the rapid development of the

production frontier, but the PBCEE catching upwith the production

frontier is relatively slow, causing the industry’s production frontier

to advance faster than the region’s own PBCEE improvement speed.

To further increase the PBCEE in the region, it is necessary to start

with the EC index. It is recommended to strengthen the absorption

and utilization of high-tech by the public building industry and

increase the degree of knowledge conversion.

The significance of the further decomposition of the EC

index is to be able to find the deep-seated reasons for the changes

in the PBCEE, to propose more targeted improvements and

promotion measures. For example, the EC index in Southwest

China is 1.0056, the PEC index is 1.0100, and the SEC index is

0.9978. This shows that the improvement of the technical

efficiency of the public building industry is mainly caused by

the improvement of pure technical efficiency, that is, the public

building industry has realized the rapid promotion and

application of high-tech as a whole, but because the industry

scale is not at the optimal scale, the scale efficiency change index

TABLE 2 Influencing factors and variable description of PBCEE.

Variables Abbr. Processing References Data sources

Industrial Structure IS Since the activities of the tertiary industry mainly occur in public buildings, it
is expressed as the proportion of the added value of the tertiary industry
in GDP

Ma et al. (2017) China Statistical Yearbook

Urbanization Level URB Urbanization rate is used to represent the urbanization level Wu et al. (2020) China Statistical Yearbook

Foreign Direct
Investment

FDI The proportion of direct investment comes from foreign enterprises in
Chinese enterprises to GDP

Li et al. (2019) China Statistical Yearbook

Economic
Development Level

ED Economic development is measured by the impact of GDP per capita on
PBCEE

Liu et al. (2020) China Statistical Yearbook

Energy Structure ES Electricity is the main energy consumed in the public building industry, so the
ratio of electricity to terminal energy consumption is used to represent the
energy structure

Lin and Wang,
(2016)

China Energy Statistical Yearbook

Public Building Area PBA The completed area of public buildings is taken as the newly added area to
illustrate the influence of public building areas on PBCEE

Ma et al. (2017) China Construction Industry
Statistical Yearbook

TABLE 3 Division of eight major economic regions in China.

Economic region Provinces included Economic region Provinces included

Northeast Liaoning, Jilin, Heilongjiang Middle Yellow River Shanxi, Inner Mongolia, Henan, Shaanxi

Northern coastal Beijing, Tianjin, Hebei, Shandong Middle Yangtze River Anhui, Jiangxi, Hubei, Hunan

Eastern coastal Shanghai, Jiangsu, Zhejiang Southwest Guangxi, Chongqing, Sichuan, Guizhou, Yunnan

Southern coastal Fujian, Guangdong, Hainan Northwest Gansu, Qinghai, Ningxia, Xinjiang
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is less than 1, which harms the change in technical efficiency.

Therefore, the adjustment proposal of this study for the

development of the public building industry in the region is

that in the future development process, the overall scale of the

industry should be appropriately increased, the scale efficiency of

the industry should be improved, and then drive the

improvement of carbon emission efficiency level.

Analysis of driving factors of PBCEE

This paper uses Eviews10.0 statistical software to analyze the

influencing factors of PBCEE. First, the p-value is 0 from the

Hausman test results, so it is determined that the fixed-effects

model should be selected in this paper. The results obtained by

incorporating all explanatory variables into the fixed-effects

model are shown in Tables 6 and 7.

By analyzing the regression results in Tables 6 and 7, the

following conclusions can be obtained.

(1) IS inhibited the increase of PBCEE in the southeast coast,

northwest, northeast, and the middle Yellow River, but the

north coast and the southwest area have the promotion

effect. This is consistent with the findings of Zheng et al.

(2020), that is, the impact of IS on carbon emissions has

regional differences. There are three reasons for the

analysis:

The first is that the tertiary industry in the southeastern

coastal area has a relatively high degree of maturity. The

TABLE 4 Estimation results of PBCEE in China.

Province Max Min Mean Ranking

Guangdong 1.2195 1.1202 1.1341 1

Jiangsu 1.1173 1.0379 1.1006 2

Beijing 1.1115 1.0782 1.0971 3

Shanghai 1.0748 0.9351 0.9822 4

Zhejiang 1.0020 0.9120 0.9339 5

Fujian 1.0129 0.8042 0.8626 6

Chongqing 1.0469 0.7238 0.8167 7

Tianjin 0.8825 0.7805 0.8006 8

Henan 1.0303 0.6199 0.8006 9

Guangxi 1.0456 0.6545 0.7850 10

Shandong 1.0106 0.6532 0.7711 11

Hunan 0.8654 0.7293 0.7707 12

Yunnan 0.9010 0.6441 0.7604 13

Jiangxi 1.0305 0.5383 0.7489 14

Anhui 0.8117 0.6560 0.7375 15

Sichuan 0.7871 0.6275 0.7274 16

Hubei 0.8571 0.6064 0.7002 17

Hainan 0.7463 0.6237 0.6887 18

Shaanxi 0.7672 0.5973 0.6561 19

Ningxia 0.7136 0.6073 0.6548 20

Liaoning 0.7287 0.6057 0.6313 21

Xinjiang 0.6842 0.5659 0.6241 22

Jilin 0.7881 0.5773 0.6206 23

Hebei 0.6928 0.5916 0.6133 24

Gansu 0.6532 0.5529 0.5913 25

Qinghai 0.5847 0.5362 0.5579 26

Shanxi 0.5746 0.5292 0.5493 27

Inner Mongolia 0.6533 0.4479 0.5315 28

Heilongjiang 0.6679 0.3771 0.4914 29

Guizhou 0.4853 0.4045 0.4490 30

Mean 0.8516 0.6713 0.7396
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proportion of IS in most provinces has already exceeded 50%,

and the growth rate of the added value of the tertiary industry is

gradually slowing. The positive driving effect of economic growth

on PBCEE is less than the negative driving effect of carbon

emissions.

Second, in the northwest, northeast, and middle reaches of

the Yellow River, the increase in the share of the tertiary industry

hurts the increase of PBCEE. The reason is that in the

development process of the tertiary industry, the energy

structure dominated by coal consumption is unreasonable,

and the demand for energy consumption is huge. Increasing

the added value of the tertiary industry will generate more carbon

emissions, thereby reducing PBCEE.

The third category is the southwest and northern coastal

areas. Combined with the above ML index analysis, it can be seen

that the rapid development of the tertiary industry in the two

places is due to the improvement of pure technical efficiency, the

realization of the promotion and application of emerging

technologies, the reduction of energy consumption rate, and

the improvement of PBCEE.

(2) The URB does not have a significant impact on PBCEE in

half of the region. It only has a 1% significant negative impact

on the PBCEE on the northern coast, the middle reaches of

the Yangtze River, and the southwest region, while it has a

10% significant level of positive impact on PBCEE in

Northwest China. This shows that the impact of URB on

PBCEE is not always a driving or inhibiting effect, but has

obvious threshold characteristics. Different levels of

urbanization have different impacts on internal

mechanisms, leading to different impacts on carbon

emission efficiency.

FIGURE 1
Carbon emission efficiency values of public buildings in China’s eight economic zones.

TABLE 5 The ML index decomposition results of PBCEE in 2010–2019.

Period TC index EC index PEC index SEC index ML index

2010–2011 1.0104 1.0010 0.9960 1.0067 1.0069

2011–2012 1.0252 0.9948 0.9952 0.9998 1.0192

2012–2013 0.9948 1.0332 0.9861 1.0499 1.0211

2013–2014 1.1220 0.9244 0.9999 0.9248 1.0215

2014–2015 0.9596 1.0722 0.9774 1.1019 1.0167

2015–2016 1.1227 0.9318 0.9553 0.9745 1.0361

2016–2017 0.9103 1.1356 1.1287 1.0061 1.0176

2017–2018 1.1069 0.9307 1.0036 0.9274 1.0145

2018–2019 1.0106 0.9999 0.9989 1.0032 1.0102

Mean 1.0292 1.0027 1.0046 0.9994 1.0182
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FIGURE 2
Dynamic average growth rate in the PBCEE of the eight economic regions.

TABLE 6 Fixed effects model regression results (1).

Variables Northeast Northern coastal Eastern coastal Southern coastal

Coefficients t-Statistic Coefficients t-Statistic Coefficients t-Statistic Coefficients t-Statistic

lnIS −0.30* −1.56 0.16* 1.65 −0.69*** −2.78 −0.98*** −3.71

lnURB −0.02 −0.13 −0.18*** −1.00 −0.03 −0.27 0.20 1.32

lnFDI 0.13 0.12 −0.23 3.09 0.97*** 2.70 −0.02 −1.17

lnED 0.15*** 3.54 0.28*** −4.31 0.57*** 2.64 0.34*** 3.56

lnES 0.31*** 3.14 0.07*** 2.76 0.01 0.17 −0.34*** −6.29

lnPBA 0.07* 1.61 0.05 1.34 −0.01 −0.06 -−0.09** −2.23

Adjusted R2 0.82 0.99 0.94 0.96

TABLE 7 Fixed effects model regression results (2).

Variables Middle yellow
river

Middle yangtze
river

Southwest Northwest

Coefficients t-Statistic Coefficients t-Statistic Coefficients t-Statistic Coefficients t-Statistic

lnIS −0.14* −1.86 −0.14 −0.53 0.19*** 2.52 −0.39*** −5.74

lnURB 0.04 1.04 −1.74*** −2.99 −1.39*** −3.85 0.18* 1.89

lnFDI 0.05 0.84 0.15*** 2.76 0.18*** 4.62 0.02 1.29

lnED −0.01 −0.25 0.54*** 2.83 0.17 1.20 0.04 0.75

lnES 0.27*** 3.34 0.26*** 3.91 0.22*** 2.95 0.08** 2.27

lnPBA −0.06* −1.86 −0.03 −0.54 0.13** 1.90 0.04* 1.72

Adjusted R2 0.86 0.82 0.98 0.89

*, **, and *** represent significant at 10%, 5%, and 1% significance level, respectively.
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(3) The FDI has a relatively small degree of impact on PBCEE

in most regions and only has a significant positive impact

of 1% on PBCEE in the eastern coastal, southwestern and

middle reaches of the Yangtze River, especially the

positive effect on PBCEE in the eastern coastal is

stronger. This conclusion supports the analysis of the

static efficiency results of the above-mentioned relevant

regions. On the one hand, this situation arises because of

the capital and technological advantages brought by

foreign businessmen. On the other hand, although

foreign capital has advanced management models and

advantages in carbon emission reduction, investment in

China is often high energy consumption and high

pollution projects. Therefore, the impact of FDI on

PBCEE has a dual nature, namely, the pollution halo

hypothesis and the pollution haven hypothesis.

(4) The ED has a relatively small impact on the PBCEE in the

middle reaches of the Yellow River, southwest and

northwest, and has a positive impact of 1% significant

level in other regions. The tertiary industry activities

based on public buildings are closely related to the level

of local economic development. On one hand, the more the

economy develops, the more carbon dioxide is produced in

economic activities; but on another, as the economic level

improves, there will be more capital and technology to deal

with carbon emissions, to a certain extent, offset the carbon

emissions brought about by economic development. This

analysis is in line with the conclusions of the environmental

Kuznets curve.

(5) The ES, as the most influential factor of regional PBCEE, has a

positive impact of 1% on PBCEE in most regions, a negative

impact of 1% in the southern coastal, and no impact on the

eastern coast. Increasing the proportion of electricity

consumption has a positive effect on increasing PBCEE to a

certain extent in most regions. However, for the southeast

coastal areas, increasing the proportion of power

consumption in the final energy consumption is not an

absolute advantage. It is necessary to take advantage of local

resources and increase the use of clean energy such as

hydropower and nuclear power to further increase PBCEE.

(6) The influence of PBA on PBCEE can be roughly divided

into two categories. One is that the southern coastal area

and the middle reaches of the Yellow River have

significant negative influence on PBCEE at 5% and

10%, respectively. In addition, the southwest had a

significant positive effect on PBCEE at a level of 5%,

the northwest and northeast only had a positive effect

at a level of 10%. Therefore, the impact of the increase of

public building area on PBCEE also has regional

differences. The increase of public building areas lead

to the increase of corresponding public building activities,

which leads to the overuse of corresponding facilities and

intensifies the generation of carbon dioxide.

Conclusion and policy
recommendations

Conclusion

Based on the total factor productivity theory and panel data

of eight economic regions in China from 2010 to 2019, this study

evaluates PBCEE from static and dynamic perspectives by using

MinDS and ML index models. On this basis, a fixed-effect panel

data model is established to analyze the influencing factors of

PBCEE. On the one hand, this paper makes up for the relative

deficiency of PBCEE research in China’s eight economic regions;

On the other hand, suggestions can be put forward for the

sustainable development of economic zones and carbon

emission reduction of public buildings. The main conclusions

are as follows:

Firstly, from the analysis of static results, there are large

differences in the PBCEE in different regions, which makes the

overall level in China relatively low. The PBCEE is 0.74 during

the study period. From the point of the eight areas, PBCEE

present the space of the “east high west low” characteristics, the

eastern coastal area efficiency value is greater than the coastal

areas of southern and northern coastal areas, the second is the

area in the middle reach of Yangtze river and the southwest area

fluctuating around the national average level, the performance of

the middle reaches of the Yellow River and the northwest are a bit

times, and the northeast is the lowest. The PBCEE is consistent

with the level of economic development.

Secondly, from the analysis of dynamic results, the PBCEE

level of eight regions in China is further improving, with an

average annual growth rate of 1.82%. The improvement of

PBCEE mainly depends on technological progress. The reason

why the change of technological efficiency has a low positive

impact on PBCEE is that the scale efficiency is low. There is a gap

between the input level of the public building industry and the

input amount under the optimal production scale, which needs

further coordination. It is worth noting that the PBCEE in the

northwest, southwest and northeast regions is not only backward,

but also has a low growth rate, and there is still a lot of room for

improvement.

Lastly, as for the internal driving factors of PBCEE, due to the

different degrees of development in different regions, the impact

result and degree of each factor on each region are different, and

there is an obvious threshold effect. For the northern coastal region

and the middle reaches of the Yangtze River, the energy structure

and local economic development level have a positive impact on

PBCEE, and the urbanization process has a restraining effect. For the

eastern and southern coastal areas, the regional industrial structure

has a restraining effect on PBCEE, and the level of economic

development will promote PBCEE. Foreign investment can

promote PBCEE in the middle reaches of the Yangtze River and

eastern coastal. In southwest China, the industrial structure, foreign

investment and energy structure have a significant positive effect on
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PBCEE, and only the urbanization level has a negative effect on

PBCEE. For the northwest region and the middle reaches of the

Yellow River, the energy structure has a significant promoting effect

on PBCEE, while the industrial structure has a negative effect on

PBCEE. For northeast China, regional economic development and

energy structure have promoted PBCEE significantly. But in general,

increasing the share of electricity in final energy consumption will

improve the national PBCEE.

Policy recommendations

Based on the above conclusions and under the guidance of

China’s regional coordinated and sustainable development

strategy, this paper puts forward the following policy

recommendations.

There are great differences in geographical location, level of

economic development, and degree of openness among different

regions, leading to great differences in PBCEE in different regions

at present. Given this situation, it is suggested to make different

policies and emission reduction targets according to the actual

situation of different regions.

The eastern and southern coastal areas should increase the

proportion of modern service industries, mainly finance and

information, in the tertiary industry, and continue to enhance the

level of high-tech and independent innovation. Reduce the use of

secondary energy such as electricity in local public buildings, make

more use of local natural conditions, increase the proportion of

renewable clean energy, and reduce carbon emissions from public

buildings. In addition, the government should establish a public

building energy consumption monitoring platform, promulgate

high carbon emission standards for public buildings, and take

measures such as mandatory renovation and fines for buildings

that meet high carbon emissions.

In the middle reaches of the Yangtze River and the

southwest region, play the pivotal role of the Yangtze

River Economic Belt, realize the joint reorganization of the

overall service industry, promote the development of the

knowledge-intensive tertiary industry, and enhance the

scale economy of the industry. It is suggested that the

focus of this area is to continuously improve the ability of

technological progress. On the one hand, the electrical

equipment in public buildings can be significantly

improved, and on the other hand, public building facilities

can be upgraded to energy-saving facilities to improve energy

efficiency.

For the middle reaches of the Yellow River and the northwest

region, the proportion of coal consumption in the operation of

public buildings should be reduced, and the use of electricity and

wind energy should be increased. Pay attention to the rational

allocation of the existing resource element structure and

technical level, and seek the continuous improvement of the

scale economy of public buildings. It can also create an

environment conducive to the low-carbon operation of public

buildings by promoting energy-saving technology innovation

and advocating low-carbon energy-saving consumption

methods.

For the northern coastal and northeastern regions, it is

necessary to increase the proportion of the tertiary industry,

speed up the transformation of traditional industries, and

promote local economic development. At the same time, clean

and low-carbon power supply technology should be developed to

reduce the carbon emissions of public buildings during the use

stage. Perhaps setting reasonable energy prices can foster good

energy use habits in public building operators.

Deficiencies and the next research
direction

This study calculates the PBCEE and the influencing factors of

efficiency change, providing the theoretical basis for formulating

energy saving and emission reduction measures and coordinating

regional development. However, the calculation results of this study

are all carried out at the provincial level, while the analysis of the

results is carried out at the regional level, ignoring the heterogeneity

between different cities. Therefore, the results of theoretical analysis

and policy making can be further refined. In the future, the research

scope should be narrowed, focusing on the PBCEE of different

prefecture-level cities in the region, and trying to expand the

selection of input indicators. Or the combined method of DEA

and SFA can also be used to measure PBCEE to improve the

objectivity and pertinence of efficiency analysis. In addition, this

study found that the same factor has different driving effects on

different regions, and the focus of future research should also be to

explore the mechanism of influence of different factors on PBCEE.
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TABLE A1 The energy consumption of public buildings in 2019.

Province Raw
Coal(104

tons)

Gasoline
(104

tons)

Diesel
Oil
(104

tons)

Fuel
Oil
(104

tons)

Kerosene
(104

tons)

Electricity
(108 kWh)

Heat(1010kJ) Liquefied
petroleum
Gas(104

tons)

Natural
Gas(108

cu.m)

Beijing 1.32 2.03 14.03 0.01 0.57 417.17 9,328.45 2.32 23.35

Tianjin 39.02 1.70 41.92 2.64 0.00 165.38 2,617.94 13.67 13.50

Hebei 150.00 2.04 13.13 0.00 0.00 534.02 8,893.99 0.00 28.33

Shanxi 327.06 1.41 5.36 0.00 0.26 211.31 3,260.87 0.37 20.35

Inner
Mongolia

669.85 3.71 41.42 0.00 0.00 227.97 7,644.68 4.55 11.94

Liaoning 10.87 7.96 110.64 0.00 0.00 316.13 2,866.41 60.07 7.18

Jilin 122.76 3.13 12.88 0.00 0.00 147.33 5,972.86 4.49 10.08

Heilongjiang 1,072.93 3.90 50.77 0.00 0.00 158.39 9,657.28 0.00 5.33

Shanghai 3.62 7.76 104.97 0.16 0.00 493.71 50.24 17.00 10.50

Jiangsu 3.69 0.80 4.86 0.00 0.00 856.50 244.51 1.83 19.56

Zhejiang 22.57 4.30 18.85 3.55 0.00 663.41 5,623.27 38.02 7.92

Anhui 0.36 6.04 16.82 0.00 0.00 350.09 3.14 0.03 15.28

Fujian 10.20 1.62 6.05 0.00 0.00 336.13 0.00 3.72 3.27

Jiangxi 52.03 2.40 27.95 0.00 0.00 234.41 0.00 15.96 5.31

Shandong 90.72 3.36 37.19 2.40 0.00 593.48 9,983.30 20.12 28.01

Henan 30.40 8.33 39.77 0.00 4.65 475.89 5,631.70 26.27 20.68

Hubei 543.06 8.52 60.74 2.45 0.00 351.37 1,073.70 53.35 16.09

Hunan 950.07 8.79 24.86 3.25 2.58 310.15 4.78 36.70 9.09

Guangdong 52.78 8.71 100.69 15.91 0.04 1,255.85 2.97 83.50 7.50

Guangxi 0.37 0.85 16.48 0.00 0.00 220.76 0.00 16.10 6.65

Hainan 0.00 2.50 2.36 0.00 0.00 119.66 0.00 2.62 1.31

Chongqing 9.93 3.39 9.91 0.00 0.00 230.53 0.00 14.15 13.76

Sichuan 25.85 9.54 88.17 0.00 0.50 410.57 0.00 13.21 25.59

Guizhou 1,354.61 10.10 156.00 0.00 0.00 155.00 0.00 7.00 17.00

Yunnan 166.89 3.58 14.98 0.00 0.13 217.84 3.13 45.04 1.60

Shaanxi 142.47 1.99 16.93 1.70 1.03 278.95 2,858.03 11.34 11.83

Gansu 62.20 3.04 14.30 0.00 0.00 129.77 2,151.00 1.60 15.20

Qinghai 26.10 0.55 10.90 0.00 0.00 38.36 171.23 9.31 12.54

Ningxia 24.72 0.11 0.62 0.00 0.00 48.79 1,348.17 0.32 4.49

Xinjiang 101.35 0.90 13.33 0.00 0.00 215.35 8,401.88 2.41 18.94

Sum 6,067.80 1,064.34 2002.09 978.89 957.25 10804.19 87793.53 1,418.44 1,333.16

Frontiers in Environmental Science frontiersin.org16

Wang et al. 10.3389/fenvs.2022.962264

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.962264

	Regional differences and influencing factors of the carbon emission efficiency from public buildings in China
	Introduction
	Literature review
	Methodology and data
	MinDS model
	ML index model
	Panel data model
	Variables and data
	Capital input
	Labor input
	Energy consumption
	Value added of related industries
	Carbon emissions from public buildings


	Study area
	Analysis of empirical results
	Static efficiency analysis of PBCEE
	Dynamic efficiency analysis of PBCEE
	Analysis of driving factors of PBCEE

	Conclusion and policy recommendations
	Conclusion
	Policy recommendations

	Deficiencies and the next research direction
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


