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The mountain goat (Oreamnos americanus) is an iconic wildlife species of

western North America that inhabits steep and largely inaccessible terrain in

remote areas. They are at risk from human disturbance, genetic isolation,

climate change, and a variety of other stressors. Managing populations is

challenging and mountain goats are particularly difficult and expensive to

inventory. As a result, biologists often rely on models to estimate the

species’ abundance and distribution in remote areas. We used landscape

characteristics evident at point locations of mountain goat visual

observations, tracks, and telemetry locations, along with random locations,

to learn the structure and parameters of a Bayesian network that predicted the

suitability of habitats for mountain goats. We then used the model to map

habitat suitability across 285,000 km2 of potential habitat in mountain ranges of

the south and central Canadian Pacific coast. Steep slopes, forest cover

characteristics, and snow depth were the important drivers. Modeling the

system as a Bayesian network provided several advantages over more

common regression methods because input variables were heterogenous

(i.e., a mix of discrete and continuous), autocorrelated, and animals exhibited

non-linear responses to landscape conditions. These common characteristics

of ecological data routinely violate the assumptions of parametric linear

models, which are commonly used to map habitat suitability from animal

observations.
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Introduction

Mountain goats (Oreamnos americanus) occur in mountainous terrain from

southeast Alaska and southern Yukon and Northwest Territories in the north to

Oregon, Idaho and Montana in the south, and have been introduced into sites in

several US states (Myatt and Larkins, 2010). It is a species of particular interest in
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British Columbia (BC), where more than half of the global

population resides and occupies most of the Province’s major

mountain ranges (Shackleton, 2013).

Mountain goats are prominent in the cultures of First

Nations peoples of BC, where the species’ wool was woven

into blankets and clothing horns were fashioned into powder

containers and utensils, while hides, skulls, and hooves were used

in ceremonial regalia (Shackleton, 2013).

While globally secure, mountain goats in BC are ranked

Special Concern, reflecting evidence of declining populations in

some regions (BC Conservation Data Centre, 2022). While

reasons for these declines are unclear, there are several factors

that may be contributing, including loss of habitat and

connectivity (Fox et al., 1989; Parks et al., 2015; Wolf et al.,

2020), displacement from preferred habitat due to human-related

disturbance (Côté, 1996; Cadsand, 2012), and climate-induced

changes in mountain goat habitat (White et al., 2018). A key

objective for the BC government is to maintain suitable,

connected mountain goat habitat throughout the species’

range in the Province (BC Ministry of Environment, 2010).

Winter is a critical season for mountain goats because of the

limited availability of food resources, higher vulnerability to

predators, and increased energetic costs of moving through

deep snow (Festa-Bianchet and Côté, 2008). The winter

habitat use of mountain goats occupying ranges along the

Pacific coast is unique because very deep, unconsolidated

snowpacks force most goats to use low-elevation winter

ranges, where old forest plays an important role in providing

snow interception cover (Fox et al., 1989; Taylor et al., 2006;

Taylor and Brunt, 2007). Moving inland from the coast, the snow

packs become shallower and mountain goats transition from

wintering primarily at low elevations to escape deep snow to

wintering at higher elevations in areas that readily shed snow

(Schoen and Kirchhoff, 1982).

Managing mountain goats in the Pacific ranges of BC is

challenging because they occur at relatively low densities over

large areas of largely remote and inaccessible terrain. As a result,

biologists must rely on limited data to estimate the species’

abundance and to predict the distribution of important

habitats to support conservation and management decisions.

Researchers have relied primarily on resource selection

functions (RSFs; Manly, 2010) to model mountain goat

habitat use and suitability (Lele and Keim, 2006; Taylor et al.,

2006; White and Gregovich, 2017). This approach is common in

studies of wildlife habitat selection (Boyce and McDonald, 1999;

Burnham and Anderson, 2011; Fieberg et al., 2021). “Selection” is

defined as use of a habitat unit disproportionately greater than its

availability (Manly, 2010) and, typically, multiple logistic

regression models are fit using a set of explanatory factors to

a binary dependent variable of point observations of animals and

random locations. Usually, “biologically plausible” candidate

models, using different combinations of factors, are evaluated

(Boyce et al., 2002) and then the most parsimonious model or set

of models is selected, using an information-theoretic measure

such as Akaike Information Criterion (AIC; Burnham and

Anderson, 2011). RSF analyses need to meet the standard

assumptions of parametric tests, which can be challenging

with ecological data, where explanatory factors are often

correlated and responses non-linear. Explanatory factors may

also interact, although interaction terms are rarely included in

candidate models.

RSFs have advanced in several respects over the years, most

notably with the development of step-selection functions, which

refines the habitat units considered “available” to wildlife as they

move throughout their habitats (Thurfjell et al., 2014). While

important, these advances have not addressed the underlying

constraints that parametric, regression-based models impose on

the evaluation and interpretation of habitat selection by wildlife.

In addition to RSFs, other analytical approaches are

increasingly being employed in ecology and are particularly

well-suited for characterizing complex non-linear relationships

among covariates. Such models can generate high predictive

accuracy, although often at the expense of transparency or the

ability to interrogate the effects of individual factors (Ramazi

et al., 2021).

FIGURE 1
Study area in the Pacific coastal region of British Columbia,
Canada. Population unit boundaries are illustrated, which served
as the area over which the habitat suitability model was projected.
Purple points illustrate the distribution of observations.
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Here, we applied a Bayesian network approach to model

mountain goat winter habitat suitability in coastal BC to inform

conservation and management strategies for the species, and to

highlight potential benefits of the technique compared to RSFs.

Bayesian networks are probabilistic graphical models that encode

conditional dependencies among factors (Pearl, 2009).

Conceptually straightforward and graphically presented,

Bayesian networks are interpretable by a variety of audiences

and, as a non-parametric approach, are not constrained by the

same assumptions of regression-based models.

Materials and methods

Study area

The study was conducted along the mainland coast of BC

from the US border in the south to Tweedsmuir Provincial Park

in the north, and inland to the eastern slopes of the Coast

Mountains (Figure 1). The area covers approximately

285,000 km2 and is stratified into 130 mountain goat

population units for management purposes. Terrain is

generally rugged, except for some low-lying islands along the

outer coast. Peaks of 2,000–3,000 m are common, rising steeply

from numerous fjords that extend inland. Lower elevations are

dominated by temperate rainforests withmixed stands of western

hemlock (Tsuga heterophylla), western redcedar (Thuja plicata),

and Sitka spruce (Picea sitchensis). Higher-elevation forests are

dominated by mountain hemlock (Tsuga mertensiana), Pacific

silver fir (Abies amabilis), and Alaska yellow-cedar (Callitropsis

nootkatensis) stands, transitioning to Englemann spruce (Picea

engelmannii) and subalpine fir (Abies lasiocarpa) forests in drier

areas on the eastern slopes. Alpine is extensive, with low-lying

ericaceous shrubs and expansive un-vegetated rock and glaciers.

Rainfall varies between 1,000–5,000 mm annually, with 0–80%

falling as snow in any given year, depending on elevation and

latitude (Meidinger and Pojar, 1991).

Field data collection

Data used in this study were retrieved from BC government

databases and were collected via surveys and telemetry studies

conducted between March 1990 and January 2022 (Figure 1).

Mountain goats were surveyed by provincial government

biologists during most years from helicopters in different

parts of the region using various flightpaths and observers. At

a minimum, the number of goats observed, or the presence of

tracks were recorded, as well as the estimated geographic

coordinates of the observations. Precision of observations was

generally ±100 m.

Data also included telemetry locations from four research

studies, including VHF-collared goats (n = 15) from the

Kingcome drainage (51.2° E, -126.0° W) collected during

1994–1996 (Taylor and Brunt, 2007), GPS-collared goats (n =

24) from the Bute-Toba area (50.6° E, -124.4° W) studied from

2001–2003 (Taylor et al., 2006), GPS-collared goats (n = 2) on

Mount Pauline (50.7° E, -123.0° W) from 2015–2017 (BC

government, unpublished data), and GPS-collared goats (n =

31) from the vicinity of Meager Mountain (50.6° E, -123.6° W),

2018—January 2022 (Nietvelt, 2020; BC government

unpublished data). There were 29,978 winter observations of

mountain goats available for the analysis. Of these, 85%were GPS

telemetry locations, 8% track observations, 6% visual

observations, and the remainder VHF locations (<1%).

We included observation type in an initial model to check for

bias in visual and track observations compared to telemetry

points and found only that GPS telemetry locations occurred

on average at higher elevations (expected value 1,270 ± 580 m)

than tracks or visual observations (expected value 988 ± 560 m),

based on the conditional probability distribution in the model.

This was attributed primarily to bias in the distribution of GPS

collared goats; only visual and track observations were available

for some portions of the study area with the deepest snow and,

consequently where goats wintered at the lowest elevations. In

addition, fix rates of GPS collars are variable and accurate

locations more difficult to acquire without a clear view of the

sky, which is less likely to occur in low-elevation, forested valleys

(Taylor et al., 2006). The network structure included no edges

with other habitat factors and we elected to pool observation type

in the final model by removing this node.

Location data from all sources were pooled from all studies;

however, we ignored redundant locations in raster cells to avoid

overfitting the model to high frequency GPS fixes. This resulted

in evidence of use by goats in 13,295 raster locations. These

observations were still spatially autocorrelated within our study

area because of the distribution of sampling; however,

subsampling to eliminate this autocorrelation and re-running

our model did not substantially change our results and we

therefore concluded that this spatial autocorrelation did not

introduce significant bias.

Model factors

Factors included in the model were selected to capture

characteristics of habitat that are either known or suspected to

be important to wintering coastal mountain goats, based on past

research (Lele and Keim, 2006; Taylor et al., 2006; White and

Gregovich, 2017) and in consultation with biologists who had

experience with surveying or studying the species in the region.

All factors were represented as 25 by 25-m raster cells and

projected in NAD83/BC Albers (EPSG:3005) for model

processing. The following were the factors included in the model:

Distance to escape terrain: non-vegetated areas from the BC

Vegetation Resources Inventory data (https://www2.gov.bc.ca/
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gov/content/industry/forestry/managing-our-forest-resources/

forest-inventory) and slopes 30–60° were used to characterize

potential escape terrain. The variable was discretized into four

classes for model building: 0 m (i.e., the point location was within

escape terrain), ≤150 m, 151–300 m, and >300 m (Hamel and

Côté, 2008).

Elevation: Elevation was derived from a 25-m resolution

Digital Elevation Model (DEM) and discretized into the

following classes: ≤500 m, 501–900 m, 901–1,300 m,

1,301–1700 m and >1700 m.

Forest age class: Forest cover was derived from Vegetation

Resources Inventory data (https://www2.gov.bc.ca/gov/content/

industry/forestry/managing-our-forest-resources/forest-inventory)

and discretized into the following classes: Early (0–40 years), Mid

(41–80 years), Mature (81–140 years), Old (>141 years), and Non-

forested. These data are derived from photo interpretation and are

subject to unknown classification error, particularly at higher

elevations and in remote areas. Current habitat conditions might

not match those that existed at the time of some older observations,

due to forest harvesting or aging of the forest. Older forests intercept

more snow and are correlated with lower snow depths under canopy

(Kirchhoff and Schoen, 1987). Data on canopy closure were not

available for all areas and therefore could not be used in the model.

Snow zone: Broad snow zones were interpreted from the

characteristics of different ecosystem zones. Snow zones were

assigned to unique biogeoclimatic subzone variants, which is a

level of the Biogeoclimatic Ecosystem Classification system

developed by the Government of BC (https://www.for.gov.bc.

ca/hre/becweb/). Documentation for each subzone variant in the

study area was reviewed and assigned a snow zone based on the

description of the local climate and precipitation characteristics

(see Supplemental Material).

We used the following snow zone definitions:

1. Shallow: snow usually <30 cm and ephemeral;

2. Moderate: persistent winter snow, usually shallow

(30–100 cm) with occasional periods of deep snow (>1 m);

3. Deep: persistent, deep (>1 m) snow for the entire winter, with

periods of very deep snow (>3 m)

4. Very deep: very deep (>3 m) snow for the entire winter, with

snow cover in most years in early fall through late spring, with

common, permanent snowfields and glaciers in some areas.

Other model inputs were assumed to modify these broad

snow zones to reflect local snow conditions (i.e., elevation, slope,

and solar insolation).

Slope: Slope was derived from the DEM and was discretized

into the following classes: ≤35%, 36–100%, and >100%.
Solar insolation: Solar insolation was calculated from the

DEM as well as from latitude using the ArcGIS Area Solar

Radiation script (https://pro.arcgis.com/en/pro-app/latest/tool-

reference/spatial-analyst/area-solar-radiation.htm). Units are

kW hours per square meter (kWh/m2).

Modeling

Bayesian networks are directed acyclic graphs (DAGs)

composed of nodes connected by directed edges. Each node

encodes a random variable as a series of discrete states and the

edges represent the conditional dependencies amongst variables

(Marcot et al., 2006). The probability distribution of states within

a node is determined by the probability distributions of the

node’s “parents” upstream in the network. The joint probability

distributions are derived fundamentally from Bayes Rule:

P(a, b) � P(a | b)*P(b) (1)

That is, the joint probability of both a and b occurring is the

conditional probability of a occurring given that b occurred,

multiplied by the probability of b occurring. This specific case of

two variables is extended to n variables via the chain rule

(Heckerman, 2022):

p(x) � ∏
n

i�1p(xi|parents(xi)) (2)

That is, the joint probability distribution for a node x is equal

to the product of the probability of each state xi of the node, given

all the parents of xi.

When “evidence” is entered for any node in the network (i.e.,

the probability distribution for a node is revised in some way), the

chain rule propagates the evidence throughout the network and

updates the probability distributions for all the connected nodes

in a manner consistent with Bayes Rule. In our application, the

“target“ node for updating is the one that predicts the habitat

suitability of a map raster based on various predicting factors

represented as other nodes in the network.

Structural learning is the process of determining the

configuration of edges based on learning data associated with

each node. There are many different structural learning

algorithms that all attempt to represent the joint probability

distribution of the network through a parsimonious

configuration of edges (Friedman et al., 1997). Following

structural learning, the data set is again used to learn the

distributions for all of the states within all of the nodes of the

network. This is accomplished by finding the maximum

likelihood network, which is the set of parameters that is the

most likely, given the data. Expectation maximization (EM) is the

algorithm most often employed (Do and Batzoglou, 2008).

Finally, a set of evidence data, in our case representing the

value of each habitat variable at each pixel in our study area,

is run through the model to infer the habitat suitability.

For our application, we used a binary target variable, with a

class representing locations with evidence of goat use and a class

representing random locations within the study area. We used

the same number of random locations as observations to prevent

overfitting to one class or the other. The random locations were

drawn from the distributions of all the predictor variables to

ensure that they reflected the composition of the study area.
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The network structure was fit using the Sons and Spouses

classifier (Madden, 2009). This classifier is similar to the tree-

augmented Naïve Bayes classifier (Friedman et al., 1997) but

allows for relationships not directly linked to the response node

(Costello et al., 2020). The joint probability distribution (i.e., the

frequencies associated with the marginal or conditional

probability tables of each node) was then fit using expectation

maximization (Bilmes, 1998). Probabilities of >50% of being

classified as an observation (as opposed to a random location)

were interpreted as evidence of habitat selection (Wilson and

DeMars, 2015).

Model fit was assessed using k-fold (k = 10) cross-validation

(Fielding and Bell, 1997), the Receiver Operating Characteristic

(ROC) index (Nakas et al., 2003), and by examining the ratio of

correct predictions to the total number of observations in

resulting confusion matrices.

Input data were run through the model, with each mapped

25-m pixel corresponding to a case of the six inputs, and the

output probability of selection was then mapped across the study

area. The predicted habitat suitability of each observation was

ordered and then binned based on proportion, such that, for

example, locations within the study area with a predicted

suitability equal to or greater than the 25% of observations

with the highest suitability were considered to be the most

suitable habitat (“best 25%“). This was repeated for the best

50, 75, and 95%.

Spatial processing employed QGIS 3.26 (QGIS Association)

and modeling was conducted in BayesiaLab 10.2 (Bayesia S.A.S.,

Laval, France). Landscape metrics were calculated using R

version 4.0.5 and library landscapemetrics 1.5.4 (Hesselbarth

et al., 2019).

Results

Sites used by goats occurred overwhelmingly in old forest or

non-forested areas and on moderate-steep slopes (Figure 2).

More than 87% were located at elevations between 900 and

1,700 m, and approximately 75% were in moderate and deep

snow zones. About 65% of sites were located <300 m from escape

terrain and in areas of high solar insolation. Most of the study

area (but proportionally smaller than used sites) is also composed

of either old forest or non-forested areas, farther from escape

terrain, on shallower slopes, and in areas of less solar insolation

(Figure 3). Elevational bands and snow zones were distributed

relatively equally throughout the study area.

K-folds cross-validation indicated a good fit of the final

model with an ROC index of 95.0% (Figure 4) and a mean

precision (percentage of points correctly classified by the model)

of 90.8% for observations and 85.5% for random locations. The

mean reliability (percentage of modelled locations correctly

classified) was 86.3% for observations and 90.3% for random

locations.

In addition to the relationships between the target node and

the explanatory factors, there were also significant relationships

among some of the explanatory factors (Table 1). For example,

elevation was correlated with snow zone (r = 0.27) and solar

insolation (r = 0.20), while forest age class was correlated with

FIGURE 2
Bayesian network model of mountain goat winter range for coastal British Columbia, Canada, illustrating the distribution of states for input
variables when setting evidence on observations.
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distance to escape terrain (r = -0.16) because of the coincidence of

non-forested and non-vegetated areas.

The model was most sensitive to changes in slope, forest age

class, and snow zone, followed by solar insolation, distance to

escape terrain, and elevation (Figure 5). The final model

identified 69,675 km2 of potential mountain goat habitat

broadly distributed throughout the study area, but more

concentrated in the mid-coast region, with only 0.7%

corresponding to the highest 25% habitat suitability

(Figure 6). High suitability patches were generally small with

a patch cohesion index of 87.6% (Schumaker, 1996). The habitat

capturing the best 50% estimated suitability covered 6.8% of the

potential habitat with a patch cohesion index of 96.9%.

Discussion

This project extends the application of Bayesian networks to

a common application in wildlife conservation and management;

namely, modeling habitat selection and mapping habitat

suitability. RSFs are commonly used for generating such

models for mountain goats (e.g., Taylor et al., 2006; White

and Gregovich, 2017).

Despite its widespread use, multiple logistic regression is not

an ideal statistical model for estimating habitat selection. First,

the dependent variable in a logistic regression is assumed to be

binary; however, data used for analyses are usually not stratified

into “used” and “unused” units, but rather into “used” and

“available” units. As a result, some subset of the “available”

units are likely to have been “used.” This is referred to as

“zero contamination” and generates bias in estimates (Johnson

et al., 2006). Care must be exercised in analyses to accommodate

these “pseudoabsences” (Avgar et al., 2017). Our Bayesian

FIGURE 3
Bayesian network model of mountain goat winter range for coastal British Columbia, Canada, illustrating the distribution of states for input
variables when setting evidence on random points.

FIGURE 4
Receiver Operator Characteristic (ROC) curve illustrating the
goodness-of-fit of the mountain goat winter habitat suitability
model, plotting the rate of true positives against false positives for
the target variable classifying observations versus random
points under different discrimination thresholds.
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approach makes no explicit claim about “unused” units and

instead models the contrast between “used” and “available” units

directly.

The definition of habitat “available” to animals has itself been

a focus of research, because analyses of habitat selection are

influenced as much by the characterization of what is considered

“available” as by what animals use (Northrup et al., 2013). We

used a simple characterization that considered the entire study

area as “available.”We based this decision on the intended broad-

scale interpretation and application of the resulting model for

regional planning purposes. That is, the model is intended to be

used to stratify the land base into areas of different habitat

suitability for mountain goats, rather than to understand

habitat selection decisions of individuals at a home range

scale. This latter approach would have demanded a different

strategy for defining “available” habitat (e.g., step-selection

functions; Thurfjell et al., 2014).

Second, Bayesian networks can accommodate mixes of

continuous (if discretized), ordinal, and categorical variables

in the same network. Accommodating different data types in

regression can be awkward and complicates interpretation. For

example, categorical variables must be coded as a series of

dummy variables and interpreted in relation to a reference

category that is excluded from the function.

Third, multiple logistic regression is supposed to meet the

standard assumptions of parametric analyses, including no

multicollinearity among explanatory variables, and a linear

relationship between the explanatory variables and the logit of

the response variable. These assumptions are rarely met in

ecological systems and are usually addressed by omitting

highly correlated explanatory variables and applying

transformations to linearize relationships. These adjustments

are unnecessary when fitting non-parametric Bayesian

networks because they can represent any arbitrary relationship

among variables as conditional dependencies. As a result, the

effect of any subset of explanatory variables on the response

variable can be computed in such a structure (Ramazi et al.,

2021). Non-linearities were observed in the response of

mountain goats to several explanatory variables in this study

and modeling these variables directly rather than applying

transformations simplified interpretation.

Fourth, the output of a Bayesian network is relatively simple

to interpret for a variety of audiences. Network diagrams,

illustrating connections among key variables are more

accessible than equations (Ramazi et al., 2021), and the

probabilistic relationships are easier to interpret than the

tables of raw or standardized regression coefficients that are

usually presented.

Finally, there is little guidance on how “biologically plausible”

candidate models should be structured in such an analysis.

Specifically, which highly correlated factors should be

omitted? Which interactions should be included? How many

competing models should be evaluated and what constitutes

sufficient evidence of support and what if several models meet

that threshold? These decisions, along with the issues listed

above, can lead to analysis results that can be more

obfuscating than illuminating. The issues increase as more

explanatory variables are added. The Bayesian network

approach can accommodate more complex model structures

than can be accommodated in regression equations and

requires fewer a priori decisions regarding alternative model

structures to be tested.

Of course, generating a Bayesian network still requires

decisions regarding which explanatory variables to include

initially, learning algorithms to apply (Acid et al., 2004), and

decisions regarding discretization of continuous variables

(Bertens et al., 2012; Nojavan et al., 2017). Learning Bayesian

networks also tends to require large sample sizes to minimize the

TABLE 1 Relationships among nodes in the mountain goat winter habitat suitability model.

Parent node Child node KL divergence Mutual information Pearson’s correlation

Snow zone Elevation 0.29 0.16 0.27

Location Elevation 0.29 0.08 -0.07

Forest age class Distance to escape terrain 0.28 0.14 -0.16

Location Distance to escape terrain 0.20 0.07 -0.26

Location Slope 0.13 0.14 0.42

Location Snow zone 0.10 0.06 -0.11

Solar insolation Elevation 0.09 0.07 0.20

Solar insolation Snow zone 0.07 0.03 0.14

Location Forest age class 0.04 0.02 0.10

Elevation Forest age class 0.03 0.01 0.06

Location Solar insolation 0.02 0.02 0.17

Elevation Slope 0.02 0.03 -0.08

KLDivergence andMutual Information are information-theoretic measures of the strengths of relationships. Pearson’s correlations are not strictly valid for non-parametric models because

variates are not normally distributed, but the values are presented for general interpretation
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risk of bias generated by sparse joint probability distributions

(Wocjan et al., 2002). However, on balance the Bayesian

approach requires fewer adjustments and decisions and

generates more interpretable results than using a regression-

based approach.

The output of our mountain goat winter habitat suitability

model generally aligned with the results of other studies of winter

habitat selection. Steep slopes, escape terrain, and solar insolation

are key characteristics of suitable mountain goat habitat in this

critical season (e.g., Taylor et al., 2006; Festa-Bianchet and Côté,

2008; Wolf et al., 2022). In addition, old forest with relatively

dense canopies is important for coastal populations where deep,

unconsolidated snow drives mountain goats to lower elevations

in seek of lower snow loads and accessible forage (Shackleton,

2013; White and Gregovich, 2017). Our study area also included

areas consistent with more interior climatic conditions where

mountain goats typically winter at high elevations (e.g., Wolf

et al., 2022). The model identified suitable habitat associated with

both strategies, as well as transitional areas.

Because Bayesian networks formulate the joint probability

structure, they are well-suited for interrogating models about the

effects of individual factors or subsets of factors on the response

variable, even where factors are correlated (Ramazi et al., 2021).

For example, setting evidence on the Bayesian model suggested

FIGURE 5
Independent (direct) effects of model input variables on the probability of a point being classified as an observation or a random location, based
on soft evidence (Peng et al., 2010). Probabilities above 0.5 indicate habitat selection. Steeper slopes indicate a stronger effect size.
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that old forest on moderate slopes in the low snow zone is

generally avoided by mountain goats (probability of selection

40%); however, in the deep snow zone, such areas are selected

(probability of selection 68%). So, while our model identified a set

of important predictor variables that was similar to other studies,

it presents an opportunity to better discriminate the

contributions of those predictors to the observed patterns of

habitat use.

Although most often used to model species’ distributions

rather than habitat suitability, MaxEnt is a “presence-only”

approach to mapping probability of occupancy and defines

available habitat similarly to our model and shares some

similar advantages, such as the ability to model non-linear

responses (Merow et al., 2013); however, MaxEnt models

require that the model structure be fully described a priori

and the response of the target variable to changes in

individual factors or subsets of factors cannot be estimated

(Ramazi et al., 2021).

Our model was likely affected by limitations in our source

data, which included repeated sampling on GPS-collared goats in

spatially limited portions of the study area during relatively short

time frames, as well as more spatially widespread visual

observations and tracks on unknown individuals over decades.

We mitigated the effect of frequent GPS samples by removing

redundant observations in each cell, and our results were robust

to the spatial autocorrelation exhibited by our observations. Still,

sampling bias remains a risk because there were portions of the

study area that were under-sampled (e.g., no telemetry studies

conducted and few or no aerial surveys).

The model has subsequently been used to assess the

effectiveness of current protected areas established for

wintering mountain goats, to identify additional areas of

suitable habitat that might be occupied, and to generate

preliminary habitat-based population estimates and objectives.

Other potential uses could involve analyzing habitat connectivity

and forecasting future changes in habitat suitability under

different management regimes and expected shifts in snow

zones with climate change. Future survey data will be used to

validate and further refine the model, and a similar approach is

planned for the development of a summer habitat model.

Because our Bayesian network approach generated results

similar to previous studies based on RSFs, our support for this

method is driven primarily by its apparent theoretical advantages

and its interpretability, rather than by a conclusion that RSFs are

inappropriate for modeling our system. We suggest that these

advantages become more important as the number and

interrelationships among explanatory variables grows, and

with an increasing diversity of data types. This makes

Bayesian networks an attractive alternative for researchers and

may offer advantages over RSFs, depending on the specifics of the

systems studied.
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