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The immune ability of the elderly is not strong, and the functions of the body are

in a stage of degeneration, the ability to clear PM2.5 is reduced, and the

cardiopulmonary system is easily affected. Accurate prediction of PM2.5 can

provide guidance for the travel of the elderly, thereby reducing the harm of

PM2.5 to the elderly. In PM2.5 prediction, existing works usually used shallow

graph neural network (GNN) and temporal extraction module to model spatial

and temporal dependencies, respectively, and do not uniformly model

temporal and spatial dependencies. In addition, shallow GNN cannot capture

long-range spatial correlations. External characteristics such as air humidity are

also not considered. We propose a spatial-temporal graph ordinary differential

equation network (STGODE-M) to tackle these problems. We capture spatial-

temporal dynamics through tensor-based ordinary differential equation, so we

can build deeper networks and exploit spatial-temporal features

simultaneously. In addition, in the construction of the adjacency matrix, we

not only used the Euclidean distance between the stations, but also used the

wind direction data. Besides, we propose an external feature fusion strategy that

uses air humidity as an auxiliary feature for feature fusion, since air humidity is

also an important factor affecting PM2.5 concentration. Finally, our model is

evaluated on the home-based care parks atmospheric dataset, and the

experimental results show that our STGODE-M can more fully capture the

spatial-temporal characteristics of PM2.5, achieving superior performance

compared to the baseline. Therefore, it can provide better guarantee for the

healthy travel of the elderly.
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1 Introduction

The immune ability of the elderly is not strong, and the

functions of the body are in a stage of degeneration, the ability to

clear PM2.5 is reduced, and the cardiopulmonary system is easily

affected. When PM2.5 enters the body of the elderly through the

respiratory system, it will cause acute respiratory infections and

corresponding inflammations in the elderly, such as colds and

pharyngitis. If the elderly have some primary diseases, it is likely

to cause the disease to worsen. When the elderly are exposed to

high concentrations of PM2.5 for a long time, they are prone to

chest tightness, shortness of breath and shortness of breath, and

severe cases can induce asthma. Other studies have shown that

PM2.5 will not only cause cognitive impairment in the elderly

over 65 years old, but also accelerate the cognitive aging of the

elderly’s brain, thereby increasing the risk of Alzheimer’s disease.

Therefore, accurate prediction of PM2.5 can provide effective

guidance for the travel of the elderly, which is of great

significance in reducing the risk of disease occurrence.

PM2.5 refers to particulate matter with a diameter of less than or

equal to 2.5microns in the atmosphere, also known as fine particulate

matter or particulatematter that can enter the lungs (Yue et al., 2020).

Scientists use PM2.5 concentration to represent the content of this

particle per cubic meter of air. The higher the value, the more serious

the air pollution is. Its main sources are industrial fuel, dust, motor

vehicle exhaust, photochemical smog and other pollutants (Tian

et al., 2021). Although fine particulate matter is only a very small

component of the Earth’s atmosphere, it has an important impact on

air quality and visibility. Compared with coarser atmospheric

particulate matter, fine particulate matter has a small particle size

and is rich in a large amount of toxic and harmful substances, and it

has a long residence time in the atmosphere, so it has a greater impact

on human health and atmospheric environmental quality.

Researches have shown that the increase in PM2.5 concentration

is closely related to the increase in the risk of leukemia in the elderly

(Puett et al., 2020).

According to the “2020 China Ecological Environment

Bulletin” released in 2021, among the 337 cities at the

prefecture level and above, 135 have ambient air quality

exceeding the standard value, accounting for 40.1% of the

total number of cities in China. The days exceeding the

standard with PM2.5, O3, PM10, NO2 and SO2 as the main

pollutants accounted for 51.0%, 37.1%, 11.7%, 0.5% and less than

0.1% of the total exceeding days, respectively. Among these

337 cities, there were 345 days of severe pollution and

1,152 days of severe pollution in 2020, the days with PM2.5,

PM10 and O3 as the primary pollutants accounted for 77.7%,

22.0% and 1.5% of the days with severe and above pollution,

respectively. It can be seen that PM2.5 has become the first

pollutant affecting air quality.

Since the 1960s, research on air quality prediction has

gradually emerged, and it has become an urgent need to

explore the changing laws and trends of air pollution. Among

them, multi-site air quality prediction belongs to the category of

spatial-temporal sequence prediction. Spatial-temporal sequence

prediction has large-scale applications in our daily life, such as air

quality prediction (Xu et al., 2018; Amato et al., 2020;Wang et al.,

2020a; Pak et al., 2020; Zeng et al., 2021; Zhou et al., 2021),

cellular flow prediction (Chen et al., 2018a; Feng et al., 2018;

Zhang et al., 2018; Zhang et al., 2019; Zeng et al., 2020), traffic

flow Predict (Yu et al., 2018; Cui et al., 2019; Guo et al., 2019;

Zhao et al., 2019; Xiao et al., 2020a) etc. With the further

development of deep learning, spatial-temporal sequence

prediction has been extensively studied. In this paper, we

study the prediction of PM2.5 concentration in home-based

care parks. A variety of algorithm models proposed by

domestic and foreign scholars have achieved some staged

results, which can be roughly divided into statistical

prediction methods based on statistical law models, prediction

methods based on traditional machine learning, and prediction

methods based on deep learning.

Statistical prediction methods mainly include SVM (Li et al.,

2020a), ARMA (Wang et al., 2020b), random forest model (Zhao

et al., 2020), etc. These methods require time series data to be stable

sequences and have poor ability to capture nonlinear relationships.

Prediction methods based on traditional machine learning mainly

include BP neural network and its variants (Huang et al., 2015).

Compared with statistical prediction models, these methods have

stronger ability of learning and fitting nonlinear relationships.

However, with the exponential increase in the amount and

complexity of time series data, these traditional forecasting

methods cannot meet the practical requirements due to the

difficulty in effectively extracting more complex nonlinear

features, long training time and limited forecasting accuracy. With

the further development of deep learning, many excellent algorithms

have been developed. The predictionmethods based ondeep learning

mainly include LSTM (Tong et al., 2019), XGBoost-LSTM (Dai et al.,

2021), CNN-LSTM (Li et al., 2020b), RNN (Chang-Hoi et al., 2021),

WLSTME (Xiao et al., 2020b), CTM (Xiao et al., 2021), RBF-LSTM

(Chen and Li, 2021) based on grid data, STGCN (Zhou et al., 2021),

PM2.5-GNN (Wang et al., 2020c), GLSTM (Gao and Li, 2021), GC-

LSTM (Qi et al., 2019) based on graph data et al. Since the

distribution of monitoring stations is irregular in the home-based

care parks scenario, it is difficult to construct grid data, so our

research will start from the graph neural network based on

graph data.

In recent years, the graph neural network (GNN)has beenwidely

used in spatial-temporal sequence prediction due to its excellent

performance in processing graph data (Wu et al., 2020). For example

(Li et al., 2018a; Yu et al., 2018; Zeng et al., 2021; Zhou et al., 2021),

exploited GNN to extract spatial features in spatial-temporal

sequences (Li et al., 2018a), combined GNN with RNN to capture

spatial and temporal dependencies, respectively (Yu et al., 2018; Zeng

et al., 2021; Zhou et al., 2021), improved the recurrent structure by

convolutional structure, and obtained better stability and results.

(Zhu and Lu, 2016) proposed a new prediction technique based on
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ARMA and improved BP neural network to forecast the

PM2.5 concentrations. The study showed that compared with the

ARMA + BP neural network combined model, ARMA + improved

BP neural network combined model can better predict the value

of PM2.5.

(Wang et al., 2017) proposed a new hybrid-Garch

(Generalized Autoregressive Conditional Heteroskedasticity)

methodology, the experimental results demonstrate the

effectiveness of the method. (Wang et al., 2020c) identified a set

of critical domain knowledge for PM2.5 forecasting and developed a

novel graph based model, PM2.5-GNN, being capable of capturing

long-term dependencies. Finally, the effectiveness of the model is

verified on a real dataset and examined its abilities of capturing both

fine-grained and long-term influences in PM2.5 process. (Chang-Hoi

et al., 2021) improved CMAQ by incorporating a recurrent neural

network (RNN) algorithm for the Seoul Metropolitan Area, and

experimental results show that the RNN model yields higher

performance than current prediction methods. (Qi et al., 2019;

Gao and Li, 2021) used graph convolutional neural networks to

extract the spatial correlation of PM2.5, and used LSTM to capture

the temporal correlation of PM2.5, both achieved good results

compared with the baseline models. (Xiao et al., 2020b) proposed

a weighted long short-termmemory neural network extendedmodel

(WLSTME), which addressed the issue that how to consider the effect

of the density of sites and wind conditions on the spatiotemporal

correlation of air pollution concentration in PM2.5 concentration

prediction, the experimental results show that themethod is effective.

(Xiao et al., 2021) reviewed and summarized four types of gap-filling

strategies, and applied them to a random forest PM2.5 prediction

model that incorporated ground observations, chemical transport

model (CTM) simulations, and satellite AOD for predicting daily

PM2.5 concentrations. (Chen and Li, 2021) proposed two concepts to

solve the feature selection problem of PM2.5, this approach is faster

and simpler than other methods using deep learning models to

extract key features of PM2.5. Finally, the effectiveness of the

proposed method is demonstrated on 3 years of historical

meteorological data from central Taiwan.

However, they model spatial and temporal correlations

separately and do not consider their interactions. In addition,

graph convolutional neural networks have also been shown to

suffer from over-smooth (Li et al., 2018b), over-smoothing is that

in the training process of the graph neural network, with the increase

of the number of network layers and the number of iterations, the

hidden layer representation of each node will tend to converge to the

same value, that is, the same location in space, which greatly limit the

representational capabilities of the models (Fang et al., 2021). Air

humidity is an important factor affecting PM2.5 (Wang et al., 2019;

Jeong et al., 2021; Chen et al., 2022), when the air humidity is high,

the PM2.5 value is relatively small, and when the air humidity is

relatively low, the PM2.5 value is relatively large. This is becausewhen

the air humidity is too high, the water vapor content in the air

increases, and the PM2.5 solid particles are surrounded by moisture.

Due to the increase in moisture, the density of PM2.5 particles

decreases and the concentration decreases, resulting in a decrease in

the PM2.5 value. However, most of the existing works do not

consider the effect of air humidity on PM2.5.

In view of the shortcomings of the above methods, we

focus on solving these problems in the STGODE-M model.

First, to describe the spatial correlation in the home-based

care parks, we jointly construct an adjacency matrix using the

Euclidean distance between monitoring stations in the home-

based care parks and dynamic wind field information (Zeng

et al., 2021). Second, in order to avoid the problem of over-

smoothing, we introduce a continuous GNN with residual

connections, which can model long-range spatial-temporal

dependence. At the same time, we construct a spatial-

temporal tensor to consider spatial-temporal interactions

(Fang et al., 2021). In addition, the neural ordinary

differential equation network has fewer parameters and

thus has higher model training efficiency. Finally, we

propose an external feature fusion strategy to extract

features from air humidity data through an auxiliary

feature extraction module to further improve the

prediction accuracy of PM2.5. The main contributions of

this paper are summarized as follows:

(1) The Euclidean distance between monitoring stations in the

home-based care parks and dynamic wind field information

FIGURE 1
Monitoring station distribution in home-based care parks.
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are used to construct an adjacency matrix to define the

spatial correlation between stations, which can better

describe the spatial relationship.

(2) We use a new continuous representation of GNNs in the

form of a tensor to improve the ability to extract spatial-

temporal correlations over longer distances.

(3) An external feature fusion strategy is proposed to perform

feature fusion on air humidity features.

This paper is divided into five subsections, and the rest of the

structure is as follows. In Section 2, we introduce the source of the

dataset, complete data preprocessing and data analysis. Our

model is described in detail in Section 3. In Section 4, the

experimental results are presented and analyzed. Finally, we

conclude this paper in Section 5.

2 Dataset

2.1 Data sources

The dataset used in this paper comes from the real

atmospheric data of home-based care parks. The

distribution of monitoring stations in home-based care

parks is shown in Figure 1. The devices that collect these

data are mainly IoT sensing devices that monitor the flue gas

and toxic and harmful gases emitted by the home-based care

parks.

2.2 Data preprocessing

In the home-based care parks, each sensing device uploads

the collected data to the database through the atmospheric

monitoring gateway device using 4G or wired network, the

process is shown in Figure 2, and the data upload frequency

is 30 s.

The data preprocessing in Figure 2 mainly has the following

three steps, as shown in Figure 3.

(1) For missing values in the data, we fill in the values of the

monitoring stations with the largest correlation coefficients.

(2) Due to network delay and other reasons, the time stamps of

each atmospheric monitoring gateway device uploading data

to the database are inconsistent. In order to keep the time

stamps of the data of each monitoring station consistent, the

data is resampled and the time interval is uniformly adjusted

to 10 min, so as to ensure the regularity of the dataset. If the

resampling time interval is too long, the inherent

characteristics of the data will be lost, and if the

resampling time interval is too short, there will be data

redundancy, because the change trend of pollutant

concentrations in a short period of time is not obvious.

(3) The data is normalized by the z-score method to speed up the

training process. Its calculation formula is as follows:

xp � x − �x

σ
(1)

where �x is the mean of the original data, σ is the standard

deviation of the original data, z-score is one of the most

commonly used data normalization methods.

The basic content of the preprocessed dataset is shown in

Table 1.

2.3 Data analysis

In order to analyze the change rule of PM2.5 concentration, we

visualized some PM2.5 concentration data, as shown in Figure 4. It

can be seen from the figure that the highest concentration of

PM2.5 occurs in the morning, and the concentration value

gradually drops to the bottom in the afternoon, and gradually

rises at night until the next morning, showing a periodic change.

FIGURE 2
Dataset construction process.

FIGURE 3
Data preprocessing.

TABLE 1 Dataset.

Item Value

Park name Home-based care parks

Number of monitoring stations 9

Monitoring indicators PM2.5, wind direction, air humidity

Time span 2020/8/25–2021/2/2

Time interval 10 min

The amount of data 23,185
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There is a strong correlation between different monitoring stations,

and there are differences in the value.

At a certain time, a certain pollution source produces PM2.5,

which makes the indicators of surrounding monitoring stations

larger. Under the influence of the wind field, the pollutants will

spread along the wind direction, causing the indicators of

downstream monitoring stations to increase, which leads to

Spatial correlation of PM2.5. The temporal correlation can be

explained in the time dimension, the PM2.5 concentration is high

in the morning and the PM2.5 concentration is low in the afternoon,

reflecting the periodicity of PM2.5. Therefore, PM2.5 is correlated in

both time and space, and we need to capture this spatiotemporal

correlation if we want to predict PM2.5.

Visualize the air humidity data, as shown in Figure 5. It

can be seen from the figure that the change trend of air

humidity is basically the same as that of PM2.5, both of which

are cyclical, but the change trend of air humidity is ahead of

PM2.5. When the air humidity reached the maximum value,

PM2.5 did not reach the maximum value, but when the air

humidity gradually decreased, PM2.5 showed an upward

trend until the maximum value. This is because when the

air humidity is too high, the water vapor content in the air

increases, and the PM2.5 solid particles are surrounded by

moisture. Due to the increase in moisture, the density of

PM2.5 particles decreases and the concentration decreases,

resulting in a decrease in the PM2.5 value. It can be seen from

the above analysis that air humidity is indeed an important

factor affecting PM2.5.

3 Model

In this subsection, according to the characteristics of home-

based care parks, we first introduce the construction method of

adjacency matrix, and then introduce our deep learning

prediction model.

3.1 Adjacency matrix construction

In the home-based care park, we abstract the spatial

distribution of N monitoring stations at a certain moment

into a graph G = (V, E, A). Where V is a finite set of

monitoring station sites; E is the edge set; A is the adjacency

matrix of graph G.

Graphs can represent spatial associations between

geospatial data, and when we predict

PM2.5 concentrations, we need to consider the spatial

associations between monitoring stations. In general, we

use the straight-line distance between stations to represent

the spatial association between stations. This value can be

understood as the difficulty of interaction between stations.

However, PM2.5 can diffuse completely freely and will be

affected by wind. Therefore, in the home-based care parks

scenario, we need to consider the effect of wind.

As we all know, the Gaussian diffusion model is the standard

model to solve the problem of wind field diffusion. In order to

obtain the influence of wind on the monitoring station, we

introduce the Gaussian diffusion model. The basic formula of

the model is as follows:

C0(x, y, z, u) � Q

πuσyσz
exp⎛⎝ − y2

2σ2y
− z2

2σ2z
⎞⎠ (2)

where C0 is the air pollutant concentration. x and y represent the

downwind distance and the horizontal distance from the

centerline of the wind direction, respectively. z represents the

height of the pollution source. u is the horizontal wind speed. σy

FIGURE 4
PM2.5 concentration change curve.

FIGURE 5
Air humidity and PM2.5 concentration change curve.
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and σz represent the diffusion standard deviation in the

horizontal and vertical directions, respectively. When only

horizontal diffusion is considered, the formula can be

simplified to Eq. 3 (Li et al., 2014), and the detailed

calculation process is shown in Figure 6.

cost(Eij) � [F(Di, DM) + F(Dj,DM)] × Lij (3)

where i and j are the start and end points; cost(Eij) is used to

describe the difficulty of diffusion of air pollutants from point

i to point j; Eij is the edge between two points; Di and Dj

represent the wind direction azimuth of these two points; DM

represents the azimuth of Eij; Lij represents the length of Eij,

that is the distance between point i and point j; F represents a

function that calculates the absolute value of the azimuth

difference.

Since the geographical space of the home-based care

parks is not very large, the wind direction of each

monitoring station at the same time can be regarded as the

same, so the Eq. 3 can be simplified to Eq. 4, and the constant

term can be omitted.

cost(Eij) � [2 × F(Di, DM)] × Lij (4)

Based on the above analysis, we denote the elements aij of the

adjacency matrix as Eq. 5:

aij �
⎧⎪⎪⎨⎪⎪⎩

1

cost(Eij), i ≠ j

0, i � j

(5)

where cost(Eij) represents the difficulty of diffusion of air

pollutants from monitoring station i to j.

3.2 Proposed prediction model

We use xi
t to denote the PM2.5 concentration of node i at time t,

Xt � (x1
t , x

2
t , . . . , x

N
t )Τ ∈ RN×1 represents the PM2.5 concentration

of all nodes at time t, χ � (X1,X2, . . . ,Xm)Τ ∈ RN×1×m represents

the PM2.5 concentration value of all nodes in m time slices,

ŷi � (ŷi
m+1, ŷ

i
m+2, . . . , ŷ

i
m+n) represents the predicted value of

node i at n times in the future, Ŷ � (ŷ1, ŷ2, . . . , ŷN)Τ ∈ RN×n

represents the predicted value of all nodes at n times in the

future, Y � (y1, y2, . . . , yN)Τ ∈ RN×n represents the true value

of all nodes n times in the future.

Figure 7 shows the overall framework of the STGODE-M

model proposed in this paper. It consists of spatial-temporal

graph ordinary differential equation networks module,

external feature extraction module and output layer. The

details of each part are as follows.

FIGURE 6
(A) Grid-based representation of a wind-field. (B) Computing the cost between adjacent cells.

FIGURE 7
The framework of STGODE-M.
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(1) Spatial-temporal graph ordinary differential equation

networks module

This module adopts the method of Fang et al. (2021) and

their wording is reproduced in the method description

section. GNNs update embeddings of nodes through

aggregating features of their own and neighbors with a

graph convolution operation. The classic form of

convolution operation can be formulated as Eq. 6 and a

discrete version is first shown as Eq. 7.

Hk+1 � GCN(Hk) � σ(ÂHkW) (6)
Hk+1 � Hk × Â × U × W +H0 (7)

whereHk denotes the input of the k-th graph convolutional layer,

Â is the normalized adjacency matrix, and W is a learnable

parameter matrix, which models the interaction among different

features,U is the temporal transform matrix, andH0 denotes the

initial input of GNN, which can be acquired through another

neural network. However, such GNNs have been proved to suffer

from over-smoothing problem when networks go deeper (Li

et al., 2018b), which largely limits the capacity of modeling long-

range dependencies. For this reason, we used STGODE block.

The STGODE block adopts a three-layer structure, consisting of

two temporal convolutional networks and one ODESolver. This

structure can more fully capture the spatial-temporal

information flow, and the stacked three-layer structure further

enhances the ability of the model to mine the complex spatial-

temporal correlations of PM2.5.

The STGODE network is an improvement of the ordinary

graph convolutional network through the neural ordinary

differential equation, so it can build a deeper network, and

the model training has fewer parameters, so it has higher

training efficiency. The formulas of the STGODE network are

expressed as Eqs 8, 9:

H(t) � ODESolve(dH(t)
dt

,H0, t) (8)

dH(t)
dt

� H(t) × (Â − I) +H(t) × (U − I) +H(t) × (W − I)
+H0

(9)
where U is the time transformation matrix, I is the identity

matrix, H0 represents the initial input, ODESolve is used as the

Euler solver.

It is extremely important to find the approximate solution of

the differential equation in the neural network, because in most

cases it is difficult to find the function expression of the

differential equation, or the expression is too complicated, in

this case, the numerical calculation method can be used to find

the approximate solutions to differential equations. Euler’s

method is one of the simplest methods for finding

approximate solutions of ordinary differential equations, and

it is of great significance both for its numerical calculation ideas

and for the solution of practical problems.

PM2.5 concentration is time-dependent, and how to fully

capture this correlation is also very important. Most existing

works use recurrent neural networks to capture temporal

correlations, but these networks suffer from issues such as

time-consuming iterations.

Temporal Convolutional Network (TCN) is a time-series

convolutional neural network model proposed in 2018. It can

be processed in parallel on a large scale, so the speed of the

network will be faster during training and verification, and it

can change the receptive field by increasing the number of

layers, changing the expansion coefficient and the size of the

filter, making the length of historical information more

flexible, avoiding the problems of gradient dispersion and

gradient explosion in RNN, and it takes less memory when

training, especially for long sequences. To improve the

model’s ability to model long-term temporal dependencies,

we will use TCN. Its calculation process can be expressed as:

Hl
tcn � {X, l � 0

σ(WlpdlH
l−1
tcn), l � 1, 2,/, L (10)

Where X ∈ RN×T×F is the input of the TCN,Hl
tcn ∈ RN×T×F is the

output of the l-th layer TCN, Wl represents the l-th convolution

kernel, σ is the activation function. To expand the receptive field,

we set the exponential dilation rate of temporal convolution as

dl � 2l−1. In the process, zero-padding strategy is utilized to keep

time sequence length unchanged.

We represent this module abstractly as:

Oh � f1(χ;A) (11)

where f1 represents the STGODE module function, χ represents

the PM2.5 concentration data,A represents the adjacency matrix,

and Oh represents the PM2.5 preliminary features extracted by

the module.

(2) External feature extraction module

Fully connected neural network is one of the most

common neural network models, which can map the data

dimension to any dimension, and is often used as a simple

feature extraction model. At the same time, the humidity of

each monitoring station is the same, so the humidity data is

one-dimensional data, and the feature extraction of one-

dimensional data is more suitable for using a fully

connected neural network. Fully connected neural

networks are also used as feature extraction models in

many deep learning papers. In this module, we introduce a

fully connected neural network for embedding learning on air

humidity data. The preliminary features of air humidity are

expressed as Oother, and the processing is as follows:

Oother � σ(w2
otherσ(w1

othermt + b1other) + b2other) (12)
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where w represents the weight matrix of the fully connected

neural network, b represents the bias matrix of the fully

connected neural network, σ is the activation function, and mt

represents the air humidity at time t.

(3) Output layer

The above two preliminary features outputs are spliced

according to the specified dimensions to perform feature

fusion. The fusion of features here selects the splicing

operation instead of simply adding different features,

because the addition operation will mix different

expressions into one variable, which is not conducive to

the learning of feature differences. In this module, a max-

pooling operation is first performed to selectively aggregate

information from different blocks, and then a two-layer MLP

is designed for feature mapping. We denote this module

function as f2, the above two preliminary feature outputs

are spliced according to the specified dimensions, and the

spliced feature vector O is obtained as shown in Eq. 13.

O � Oh ⊕ Oother (13)

The final predicted value can be expressed as Eq. 14.

Ŷ � f2(O) (14)

4 Experiments

4.1 Experimental settings

We split the data set into training set, validation set and test

set according to the ratio of 8:1:1, and use the historical data of

the past day to predict the PM2.5 concentration in the next

10 min. The hidden dimensions of TCN blocks are set to 64, 32,

64, and 3 STGODE blocks are contained in each module, we set

up two STGODE modules in total (Fang et al., 2021). We train

our model using Adam optimizer with a learning rate of 0.001,

the batch size is 128 and the training epoch is 100. We

implemented the STGODE-M in the PyTorch framework

(Paszke et al., 2019). Parameters of training model are also

shown in Table 2.

In order to measure the effectiveness of our proposed

method, we use mean absolute errors (MAE), root mean

squared errors (RMSE), mean absolute percentage errors

(MAPE) and coefficient of determination (R2) as evaluation

metrics. Their calculation process is explained by Eqs 15–18.

MAE � 1
n
∑n
i�0

∣∣∣∣ŷi − yi

∣∣∣∣ (15)

RMSE �
������������
1
n
∑n
i�0
(ŷi − yi)2√

(16)

MAPE � 100%
n

∑n
i�0

∣∣∣∣∣∣∣∣(ŷi − yi)
yi

∣∣∣∣∣∣∣∣ (17)

R2 � 1 −
∑n
i�0
(ŷi − yi)2

∑n
i�0
(�y − yi)2 (18)

where yi represents the true value, ŷi represents the predicted

value, �y represents the variance, and n represents the number of

samples.

RMSE is used to measure the deviation between the predicted

value of the model and the true value, it is one of the most

common evaluation indicators, the smaller the value, the better

the model effect. MAE can better reflect the actual situation of the

predicted value error, the smaller the MAE, the better the model

effect. MAPE is 0 for a perfect model, greater than 100 for an

inferior model. The range of R2 is [0, 1], and the larger the value,

the stronger the fitting ability of the model.

4.2 Baselines

We selected 4 models from current work as our baseline

models, the introduction of these models is as follows.

(1) LSTM (Krishan et al., 2019; Seng et al., 2021): LSTMmodel is

a type of RNN designed to capture long term dependencies

in sequential data. It is widely used in many time series

forecasting problems and has achieved good results, but it

cannot model spatial relationships.

(2) GRU (Becerra-Rico et al., 2020): GRU is a kind of recurrent

neural network, and it is also proposed to solve the problems

of long-term memory and gradient in backpropagation.

However, GRU has fewer parameters, so training is faster

or requires less data to generalize, but still cannot model

spatial relationships.

(3) STGCN (Yu et al., 2018): The spatial-temporal graph

convolutional network, which utilizes graph convolution

and 1D convolution to capture spatial and temporal

TABLE 2 Parameters of training model.

Parameters Value

M 144

N 1

Epoch 100

Batch size 128

Learning rate 0.001

Optimization technology Adam

Training set: validation set: test set 8:1:1
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dependencies, respectively. It has achieved good results on

traffic flow prediction, but it cannot simultaneously model

spatial-temporal correlations and does not take into account

the complex interactions between spatial and temporal

dependencies. It has also been shown to have the problem

of over-smoothing, unable to expand the spatial receptive

field by increasing the depth, and the representations of all nodes

will tend to be similar when the GCN stacks multiple layers.

(4) STAM-STGCN (Zeng et al., 2021): STAM-STGCN is a

variant of STGCN. It can dynamically obtain the spatial-

temporal correlation of data, but it has the same

disadvantages as STGCN.

4.3 Results and analysis

In order to verify the effectiveness of the proposed

adjacency matrix construction method, we compare the

STGODE-M model using the proposed adjacency matrix

construction method with the STGODE-M-OUT model

using only distance-based adjacency matrix construction.

The experimental results are shown in Table 3. It can be

seen from the experimental results that the adjacency matrix

construction method proposed in this paper is effective.

To verify the advantages of the proposed model, we choose

four models in PM2.5 prediction as baselines, namely LSTM

model, GRU model, STGCN model, and STAM-STGCN model.

At the same time, in order to prove the auxiliary role of external

features, we conducted ablation experiments to compare

STGODE-M with external feature extraction module and

STGODE model without external feature extraction module.

Each model uses the same data set as the proposed method,

and the experimental results are shown in Table 4. In order to

more intuitively show the advantages of the proposed model, the

results of each model evaluation index are displayed in the form

of a bar chart, as shown in Figure 8.

As can be seen from the experimental data in Table 4, our

model outperforms all baselines. Specifically, the

PM2.5 concentration prediction effect of GRU is better than

LSTM. Although both are variants of RNN, GRU has fewer

parameters and is easier to converge. Further analysis, both GRU

and LSTM are inferior to STGCN since they do not consider the

spatial dependencies between monitoring stations. It can be seen

that the STGCN model that can model the spatial-temporal

dependence is better than the model that can only model the time

dependence. STAM-STGCN is a variant of STGCN, which

dynamically obtains the spatial-temporal correlation of data

through the spatial-temporal attention mechanism, and has

stronger predictive ability, but neither can model the spatial-

temporal correlation at the same time, they do not take into

account the complex interactions between spatial-temporal

dependencies, and they all suffer from over-smoothing

problems, which cannot expand the spatial receptive field by

increasing depth. In addition, although STAM-STGCN has

better prediction performance than STGCN, it has longer

training time.

The number of monitoring stations in our experiment is

limited, and thus the collected dataset is relatively small. During

our experiments for the relatively small collected dataset, the

performance tends to be stable when the number of STGODE

block is set larger, resulting in a ‘basin effect’ of performance,

which is that the performance can’t further improve with the

increasing the number of STGODE block, but the complexity of

the model will become much higher. We have tradeoff the

performance and complexity simultaneously, and finally have

choosen the number of STGODE block is 3, which is the most

appropriate.

We compare the proposed model with existing deep learning

methods for PM2.5 prediction, and the experimental results are

shown in Table 5. It can be seen from the experimental results

that our proposed model still has advantages.

In addition, we compare STGODE-M with external

feature extraction module and STGODE model without

external feature extraction module. From the experimental

results in Table 6, it can be seen that the STGODE model

without external feature extraction module is slightly

different. It is better than the baseline model, but inferior

to the STGODE-M model with the addition of an external

feature extraction module. Although the overall performance

is not much different, it can also fully demonstrate that the

external feature of air humidity does have an impact on

PM2.5 concentration.

STGODE-M solves the problems of over-smoothing in

STGCN model, and can expand the spatial receptive field by

increasing the depth. However, our dataset has only 9 monitoring

stations and the spatial relationship is relatively simple, so the

TABLE 3 Comparison of different adjacency matrices.

Model RMSE MAE MAPE (%) R2

STGODE-M-OUT 13.022 8.112 15.125 0.922

STGODE-M 12.905 8.017 14.850 0.938

TABLE 4 Performance comparison of each model.

Model RMSE MAE MAPE (%) R2

LSTM 22.437 16.794 28.796 0.823

GRU 20.583 14.530 24.211 0.856

STGCN 17.274 12.994 23.710 0.881

STAM-STGCN 13.085 8.334 15.506 0.916

STGODE-M 12.905 8.017 14.850 0.938
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effect of performance improvement is not very significant. In

scenarios with more monitoring stations, the performance

improvement effect will be more obvious. In future work, we

will also collect relevant datasets for verification.

To compare the complexity of the models, we plot the

training time comparison between the proposed model and

the model with the best predictive ability among the baseline

models, as shown in Figure 9. As can be seen from the figure,

the proposed model has a faster training time, with an average

training time of 63 s, while the average training time of the

comparison model is 76 s, and the proposed model shortens

the training time by 17.1%. NODE does not need to store all

parameters while backpropagating, so it is more memory

efficient and trains the model faster. NODE balances speed

and accuracy through a discretization scheme, and makes it

different during training and inference, so it has the

advantage of adaptive computing. The training efficiency

of the STGODE-M model has obvious advantages, which

are attributed to the characteristics of low memory

consumption, high adaptive computing power and short

training time of neural ordinary differential equation

(Chen et al., 2018b; Poli et al., 2019).

To further compare the predictive power of each model,

we plotted each model’s predicted versus true value on the

test set, as shown in Figure 10. As can be seen from the figure,

our model exhibits the best fit between the predicted and true

FIGURE 8
Performance metrics of each model.

TABLE 5 Comparisons with the existing works about PM2.5 prediction with deep learning methods.

Model RMSE MAE MAPE (%) R2

GC-LSTM (Chang-Hoi et al., 2021) 15.878 10.102 18.534 0.899

GLSTM (Wang et al., 2020c) 14.145 9.564 16.987 0.901

STGODE-M 12.905 8.017 14.850 0.938

TABLE 6 Ablation experiment.

Model RMSE MAE MAPE (%) R2

STGODE 13.003 8.129 14.900 0.927

STGODE-M 12.905 8.017 14.850 0.938

FIGURE 9
Model training time comparison.
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values, followed by STAM-STGCN, while the STGCN model

has the worst fit.

5 Conclusion

PM2.5 has a serious impact on people’s brain and respiratory

system. However, because of high blood pressure, poor

resistance, and weak awareness of prevention, the elderly have

become the primary danger targets. Therefore, accurate

prediction of PM2.5 is of great significance to the health of

the elderly.

At this stage, there has been a lot of work to solve complex

spatial-temporal prediction problems, but few people have uniformly

modeled spatial-temporal dependencies, and little attention has been

paid to how to extract long-termdependencies without being affected

by over-smoothing problems, the factor of air humidity is also easily

overlooked. Based on this, this paper uses a new tensor-based spatial-

temporal predictionmodel STGODE-M, and uses air humidity as an

auxiliary feature to fuse air humidity features through an external

feature fusion strategy to further improve PM2.5 prediction

precision. Experiments are conducted on a real home-based care

parks atmospheric dataset, and the experimental results show that

STGODE-M improves the RMSE performance by about 1.3%, the

MAE performance by 3.8%, the MAPE performance by 4.2%, and

the model training efficiency by 17.1% compared with the optimal

baseline. Therefore, the proposedmodel can provide better guarantee

for the healthy travel of the elderly.
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