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The global atmospheric chemical transport model has become a key

technology for air quality forecast and management. However, precise and

rapid air quality simulations and forecast are frequently limited by the model’s

computational performance. The gas-phase chemistry module is the most

time-consuming module in air quality models because its traditional solution

method is dynamically stiff. To reduce the solving time of the gas phase

chemical module, we built an emulator based on a deep residual neural

network emulator (NN) for Carbon Bond Mechanism Z (CBM-Z) mechanism

implemented in Global Nested Air Quality Prediction Modeling System. A global

high resolution cross-lifemulti-species dataset was built and trained to evaluate

multi-species concentration changes at a single time step of CBM-Z. The

results showed that the emulator could accelerate to approximately

300–750 times while maintaining an accuracy similar to that of CBM-Z

module (the average correlation coefficient squared was 0.97) at the global

scale. This deep learning-based emulator could adequately represent the stiff

kinetics of CBM-Z, which involves 47 species and 132 reactions. The emulated

ozone (O3), nitrogen oxides (NOx), and hydroxyl radical (OH) were consistent

with those of the original CBM-Z module in different global regions, heights,

and time. Our results suggest that data-driven emulations have great potential

in the construction of hybrid models with process-based air quality models,

particularly at larger scales.
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1 Introduction

Air pollution has adverse effects on ecology and human

health, and potentially influences climate change (Kampa and

Castanas, 2008; Fiore et al., 2012). Global atmospheric chemical

transport model simulation (CTMs) is the main research method

for air quality forecast, which can accurately and

comprehensively elucidate the physical and chemical processes

of various atmospheric pollutants at regional and global scales

(Byun and Ching, 1999; Ye et al., 2021). Global CTMs comprise

emission, advection transport, turbulent diffusion, gas-phase and

aqueous chemistry, heterogeneous chemistry, and deposition

(Wang et al., 2001; Binkowski and Roselle, 2003; Long et al.,

2015). The gas-phase chemical process is described by the

detailed induction of the photochemical mechanism, including

the source and sink of the complex gas-phase chemical

components in the atmosphere and various photochemical

reactions (Wang et al., 2001; Lu et al., 2020). It is the key

component of the atmospheric chemical transport model.

Photochemical kinetics in the gas-phase chemistry module is

usually solved by stiff ordinary differential equations (ODE)

(Zhang et al., 2011). The traditional solution methods are

quasi-steady-state approximation (Hesstvedt et al., 1978;

Hochbruck et al., 1998), iterative backward differential

formulas method (Damian et al., 2002), implicit Runge-Kutta

method extrapolation method, and Rosenbrock method (Sandu

et al., 2003; Sandu and Miehe, 2010). These methods have been

widely used in the Global Nested Air Quality Prediction

Modeling System (GNAQPMS), Weather Research and

Forecasting model coupled with chemistry (WRF-Chem),

Community Multiscale Air Quality model (CMAQ), and

global 3-D model of atmospheric chemistry driven by

meteorological input from the Goddard Earth Observing

System (GEOS-Chem) (Turco and Whitten, 1974; Byun and

Ching, 1999; Wang et al., 2001; Grell et al., 2005; Lei et al., 2020).

However, these methods are stiff integration algorithms, which

need to be solved repeatedly by implicit time stepping algorithms

(Young and Boris, 1977). Therefore, the simulation speed of gas-

phase chemistry at global scales is slow, accounting for 50%–95%

of the total CPU time required by the entire model (Verwer et al.,

2002), which affects the simulation performance of global CTMs.

Most studies have to reduce the resolution of the model to

improve its computational speed and simulation performance

(Linford et al., 2010; Linford and Sandu, 2011; Wang et al., 2019).

The current strategy for improving the speed of the gas-phase

chemistry module is mainly to optimize the code based on

regional decomposition or vectorization of the analog grid by

achieving instruction-level parallel operation on each core,

single-core single-instruction multi-data flow and multi-core

(based on multi-thread)/multi-node (based on information

transfer interface) parallel operation. Simulation speed based

on these methods is approximately 20–40 times faster than

traditional solutions (Zhang et al., 2011; Wang et al., 2019).

However, when the horizontal resolution of the model is high

and the complex chemical mechanism is included, the

computational cost is still high. Therefore, there is an urgent

need for technology that enables the acceleration of gas-phase

chemistry modules at global scales to improve the simulation

efficiency of global CTMs and promote further development of

air quality forecast.

As a data-driven artificial intelligence technology, deep

learning models can learn and simulate complex nonlinear

relations between massive data, and predict multiple targets at

high speed by building neural networks (Li et al., 2016; Huang

and Kuo, 2018; Wang and Song, 2018; Reichstein et al., 2019;

Liao et al., 2020). Therefore, deep learning is currently being

viewed as a powerful technique to explore the potential of

improving the running speed of gas-phase chemistry modules

(Keller and Evans, 2019; Kelp et al., 2020; Liu et al., 2021). Keller

and Evans (2019) reproduced the gas-phase chemistry

simulation at global scales in GEOS-Chem, based on the

random forest algorithm. The training dataset consisted of the

hourly global concentration of 52 pollutants at 2.5° × 2°

horizontal resolution after integration. The correlation

coefficients were mostly between 0.8 and 1 (Keller and Evans,

2019). However, the prediction speed was found to be even

slower than that of the GEOS-Chem. Kelp et al. (2020)

reproduced the gas phase chemistry module in WRF-Chem

model based on residual neural network. They used encoder-

operator-decoder networks to predict the hourly global

concentrations of 101 pollutants at 2.5° × 2° resolution after

integration and improved the simulation speed by two orders of

magnitude. However, the correlation coefficients were generally

between 0.5 and 1 (Kelp et al., 2018; Kelp et al., 2020). Global gas

chemical simulations contain more complex characteristic

information and require more computing resources, which

makes it difficult to accurately capture valid and more

targeted information from the data. This may have been the

cause of the poor performance. Liu et al. (2021) simulated the

gas-phase chemical processes in CMAQmodel based on residual

neural networks. The dataset covered 123 pollutant species with a

36-km horizontal resolution in China and parts of Southeast

Asia. Deep learning increased the computational speed of gas-

phase chemical processes by 10–90 times and the correlation

coefficients were approximately 0.99 (Liu et al., 2021). This may

be attributed to the pollution characteristics within the region

being more obvious and the information contained being more

concentrated and effective, which makes the regional simulation

performance better than the global simulation. More efficient

extraction of datasets is one way to improve global gas-phase

chemistry simulation performance using deep learning.

Simulations in previous studies for accelerating global gas

phase chemistry modules all ran at 2.5° × 2° coarse horizontal

resolution (Keller and Evans, 2019; Kelp et al., 2020; Liu et al.,

2021). Coarse horizontal resolution global models underestimate

city-scale pollution and regional transport, thereby affecting
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model performance (Van Dingenen et al., 2018). Higher

horizontal resolution has an important effect on the

performance of the CTMs (Tao et al., 2020) and contains

more detailed and diverse regional features. More reactive

species change more rapidly in photochemical reactions and

thus have more pronounced characteristic changes. Neural

networks can learn more effective characteristic information

based on a higher resolution more reactive multi-species

dataset, further increasing the speed and precision of higher-

resolution global gas-phase chemistry simulation. This makes it

possible to add more comprehensive gas phase chemistry to the

Earth system model and long-term simulation of global climate

change (Lu et al., 2020; Brasseur and Kumar, 2021).

In this study, we developed an emulator based on neural

networks to simulate the gas phase chemistry of more reactive

species in Carbon BondMechanism Z (CBM-Z). Previous studies

could not well achieve the single timestep global gas-phase

chemistry simulation with high precision and high speed,

resulting in the accumulation of errors in long-term

prediction (Keller and Evans, 2019; Kelp et al., 2020; Liu

et al., 2021). Therefore, this study aims to simulate shorter

single timestep global high resolution gas phase chemical

processes and shorter numerical integration processes with

high accuracy and high speed, and to explore the ability of

neural network to capture the concentration changes of more

reactive species in gas-phase chemical reactions. To provide

effective and targeted input data for the emulator, the CBM-Z

gas phase chemistry module in GNAQPMS was used to simulate

the meteorological parameters, photolysis rates and

concentration changes of 47 gas phase species at every grid in

a single time step on 26 September 2018. Finally, we analyzed the

emulated spatiotemporal results of instantaneous concentration

changes of various pollutants at global high resolution and

explored the simulation effect of the deep neural network

emulator on the atmospheric photochemical gas phase process

of multiple species with different lifetimes. Our findings verified

the learning ability of the model for the gas phase chemical

process at global scales.

2 Data and methods

2.1 Description of carbon bond
mechanism Z

CBM-Z is a lumped-structure photochemical mechanism

that can simulate tropospheric chemical processes at larger

spatial scales (city-scale, regional-scale and global-scale) and

long timescales (Zaveri and Peters, 1999). In CBM-Z, the

inorganic chemistry consisting of inorganic reactions and their

rate constants are based on the mechanism developed by Gery

et al. (1989). The explicit inorganic chemistry of the troposphere

contains reactions of ubiquitous inorganic trace gases such as

ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO),

sulfur dioxide (SO2), and hydrogen peroxide (H2O2) (Zaveri

and Peters, 1999). Organic chemistry (Paraffin, Olefin, Isoprene,

Carbonyl and Aromatic chemistry) is treated with a lumped

structure approach where organics are categorized according to

the different types of carbon bonds present in their molecular

structures. Organic chemistry contains 31 organic species and

72 organic reactions. CBM-Z contained 52 prognostic gas phase

species and 132 gas-phase chemical reactions (Zaveri and Peters,

1999). The CBM-Z solver uses LSODE, a gear-type solver (using

a faster and more robust algorithm), to solve the system of

nonlinear ODEs describing the photochemical kinetics. The

CBM-Z mechanism developed five chemical sub-schemes of

different scenarios, which include the background conditions,

urban areas, suburban areas, biological areas, and the ocean (Li

et al., 2012; Wang et al., 2017; Wang et al., 2019). Therefore, the

CBM-Z containing more comprehensive chemical mechanisms

can be used to satisfy the simulation of diverse scenarios and

larger scales, which has been used in the GNAQPMS and WRF-

Chem (Wang et al., 2017; Kelp et al., 2018).

2.2 Global atmospheric chemical
transport model

In this study, the dataset covering the troposphere around the

globe was constructed from the gas phase chemistry module of

GNAQPMS, an offline global atmospheric chemical transport

model developed by the Institute of Atmospheric Physics,

Chinese Academy of Sciences (Wang et al., 2002; Li et al.,

2008; Chen et al., 2015). It comprises advection transport,

turbulent diffusion, gas phase chemistry based on CBM-Z

mechanism (Zaveri and Peters, 1999), aqueous chemistry

(Stockwell et al., 1990), heterogeneous chemistry (Li et al.,

2012), deposition (Byun and Dennis, 1995), and smoke flow

module (Wang et al., 2001). The horizontal resolution of the

model is variable, and a resolution of 0.5° × 0.5° and 20 vertical

layers were used in this study. Twenty photolysis rates of gas

species including the gaseous, aerosol and cloud species effects on

photolysis were calculated online using atmospheric radiative

transport model (TUV) (Madronich, 1987; Li et al., 2011; Ye

et al., 2021). Meteorological fields including convection and

boundary layer diffusion process were derived from the

Global Weather Research and Forecasting (GWRF v3.6)

model driven by the final analyses (FNL) dataset of National

Centers for Environmental Prediction (NCEP) (Zhang et al.,

2012). Top boundaries and initial conditions for each species

were obtained from the climatic mean output from MOZART

v2.4 (Ye et al., 2021). The CBM-Z gas phase chemistry module in

GNAQPMS comprised 52 chemical species and 132 chemical

reactions with a lifetime ranging from milliseconds to years.

Photochemical kinetics in the chemical mechanism of the gas

phase was calculated using LSODE algorithm in iterative
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backward differential method (Zaveri and Peters, 1999; Li et al.,

2016). GNAQPMS can reproduce physical and chemical

processes in the atmosphere at regional and global scales.

They have therefore been widely used to predict the global

distribution and trans-national transport of gaseous species.

2.3 Dataset establishment

The gas phase chemistrymodule of GNAQPMSbased onCBM-

Z mechanism was used to simulate the global concentration change

process on 26 September 2018. The GNAQPMS resolution was set

as 0.5° × 0.5° and the simulated heights covered 0–20 km above

ground level. During GNAQPMS simulation, we output the

pollutant concentration before and after CBM-Z solver in each

time step (Supplementary Figure S1). The concentration before

calculation was used as the input field, and the difference between

the concentration, after and before calculation, was used as the

learning object. The interval time step was 20 min. We explored

47 important gas phase species that are involved in many chemical

processes based on neural networks, ignoring five less important

intermediates that are very reactive and often not observed. The

input features included the initial concentration of 47 important gas

phase species in CBM-Z module, three meteorological parameters

(temperature, relative humidity, and air pressure) and related to the

gas phase photochemical reaction of 20 basic photolysis rates. The

output variables were the concentration changes of 47 gas phase

pollutants. The concentration change is the concentration difference

in a single time step (20 min) calculated by subtracting the input

concentration data from the output concentration data of

corresponding species in the CBM-Z gas phase chemical

mechanism module. The concentration of many substances

calculated by the gas phase chemistry module changed very little

compared to the initial concentration before the reaction. Therefore,

we set the concentration change as the output variable, instead of the

final concentration after the reaction. This enabled the neural

network emulator to sensitively capture such changes and learn

the concentration micro-changes of various species in the

photochemical reaction process. Finally, the dataset generated by

running the CBM-Z gas phase chemistry module consisted of

72 time steps of 20 min, covering approximately 373 million

higher-resolution input features and output variables worldwide.

2.4 Emulator (Neural network model)

A neural network emulator was built based on a deep

learning algorithm driven by large amounts of data. The deep

structure of the neural network enables the emulator to perform

multi-target nonlinear regression (Liao et al., 2020). The

emulator can conduct multi-target regression empirical

modeling for multiple continuous input features and finally

predict multiple continuous output variables (Reyes and

Ventura, 2019; Seo et al., 2021). As the solution of

photochemical kinetics in gas phase chemical mechanism is

expressed by stiff ODEs, we chose a deep residual neural

network (ResNet) suitable for solving ODE in this study

(Paoletti et al., 2019). ResNet uses multiple stacked layers to

fit residual maps instead of the basic mapping that directly fits the

expectations of the entire connection layer (He et al., 2016).

Compared with other neural networks, ResNet shows better

network precision performance as the network layer gets

deeper. The architecture principle of this network is very

similar to the solution of ODEs. The expression of ODEs

resembles a residual connection in ResNet. The sum of the

initial conditions and the output of the neural network at a

certain time is equal to the expected output of the dataset.

Therefore, these residual connections can represent the time

step of Euler discretization (Li et al., 2020). By constantly

optimizing the depth of the neural network, the prediction of

the model can reach the optimal solution. Skip connections in

ResNet largely solve the problem of gradient disappearance,

gradient explosion and model degradation in the process of

deepening neural network training (Glorot and Bengio, 2010;

Simonyan and Zisserman, 2014; Srivastava et al., 2017), thereby

making the deep network structure more accurate (Zhu et al.,

2021). Owing to the complex nonlinear relationship between the

input and output of the original dataset and the large difference

in the magnitude of concentration change, this study optimized

the traditional ResNet. Figure 1 shows the concrete structure of

the neural network emulator. First, the input features (initial

concentration, meteorological parameters, and

photoluminescence rate) were normalized using minimum

and maximum values and introduced into the fully connected

layer. Tanh function can scale large-scale input data into an

interval of [−1, 1] and provide noise-robust and non-linear

representation (Abdelouahab et al., 2017). So we used tanh as

the activation function layer for input data to amplify the features

of smaller values and retained the original negative data

information. Then, the eight residual blocks were then

connected (each of which consists of the full connection layer,

the rectified linear unit activation layer, the residual connection

block and the tanh activation layer). The number of neurons in

the adjacent connection layer was equal to the CBM-Z input

variable (70). The last residual block was connected to the output

full connection layer, and the number of output neurons was

equal to the number of CBM-Z chemical substances (47).

2.5 Model training and testing

To ensure full coverage of the training set in space, the total

dataset was divided into training and testing data according to time

series. The data was divided into two separated sets based on the

hold-out method (Kim, 2009). One part of the data was used as the

training set and the other separated part was used as the testing set.
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The proportion of the training set is usually 66.6%–80% of the total

dataset (Crowther and Cox, 2005; Nurhayati et al., 2014; Li et al.,

2016). In some studies, 2/3 of the data used as the training set and

1/3 of the data used as testing data are considered to be the

recommended algorithm for splitting data (Crowther and Cox,

2005; Nurhayati et al., 2014). To test more data and emulator’s

generalization capability based on the premise of sufficient

training, we chose 2/3 of the dataset as a training dataset and

the rest as testing data. The training set accounts for approximately

67% of the total dataset, and the testing set accounts for

approximately 33% of the total dataset, which is sufficient to

enable us to test the generalization ability of the emulator on

the testing set. Data of 16 h (48 single timesteps) was used to train

the emulator. More than 124 million samples of the remaining 8 h

(24 single timesteps) were used to test the emulator. We chose the

last 1 h data every 3 h as testing data (3:00, 6:00, 9:00, 12:00, 15:00,

18:00, 21:00, 24:00 UTC) to ensure that the global training set and

testing set contained more information of different lighting

conditions and continuous photochemical reaction process as

far as possible. To avoid unbalanced data and to extract global

data sets more effectively, a stratified sampling method was

adopted for targeted sampling of training data, which mainly

filtered out parts of data with minimal changes. The dropout

and regularization factors were not introduced in this emulator

because the ResNet structure was well protected against overfitting

and gradient explosion (He et al., 2016). To continuously optimize

the emulator’s hyperparameters and performance, the training

data was randomly and averagely divided into 10 equal parts,

amongwhich, nine were used as final training data of the emulator,

and one was used as validation data for the training of the

emulator. The neural network emulator was continuously

trained and optimized by minimizing the mean square error

(MSE) of the CBM-Z module in GNAQPMS enabling it to

predict all pollutant concentration changes. By using the

stochastic gradient descent method and Adam optimizer

(Kingma and Ba, 2014), the initial learning rate was 0.001 (You

et al., 2019), the batch size was 1,024 (Takase, 2021), and the

training duration was 400 epochs (Supplementary Table S1). The

residual neural network emulator in this study was built using

TensorFlow-GPU 1.8 version, and the remaining undescribed

hyperparameters were set to TensorFlow default values (Abadi

et al., 2016). After determining the hyperparameters, the final

emulator with the best effect of multi-species average correlation

coefficient and diurnal variation simulation performance was

selected. Finally, the simulation performance of the trained

emulator on the testing dataset was evaluated. Simultaneously,

we use a single CPU core [Intel(R) Xeon(R) CPU E5-2630 V4.4@

2.20 GHz] running CBM-Z module, a single CPU core [Intel(R)

Xeon(R) CPU E5-2630 V4.4@ 2.20 GHz], and a single GPU core

(NVIDIA Tesla V100) running the residual neural network

emulator to simulate gas phase chemistry processes on

518.4 million independent grid cells (a global simulation of

20 vertical layers at 0.5° × 0.5° horizontal resolution) and

compared their running times.

2.6 Statistical indicators

The following four standard statistical indicators were used

to systematically evaluate the performance of the residual neural

FIGURE 1
Structure diagram of neural network emulator in this study. Cn represents the initial concentration of 47 gas phase species, Mn represents three
meteorological parameters (temperature, relative humidity, and air pressure), and Jn represents 20 photolysis rates.
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network emulator used in this study. We compared the predicted

concentration change of the neural network emulator (NN) with

the CBM-Z module in the GNAQPMS model on the testing set.

For the predicted concentration change of the nth species, four

standard statistical indicators were used for comparison: Pearson

correlation coefficient square (R2), root mean square error

(RMSE), normalized square mean root difference (NRMSE)

and mean absolute error (MAE). The detailed statistical

indicator calculation methods were listed in Supplementary

Eqs S1–S4.

3 Results and discussion

3.1 Evaluation of prediction effect of
concentration change

The test results of the testing dataset showed that the neural

network emulator used in this study could simulate the gas phase

chemical mechanism module of the GNAQPMS in a short time

step (20 min). More accurate simulation of all species in shorter

time steps is the basis and the key for neural network emulators

to accurately predict chemical processes over a prolonged period

of time. Table 1 lists in detail the statistical indicators of the 20-

min concentration changes of 47 more reactive species in

photochemical reactions predicted by the CBM-Z module of

GNAQPMS and neural network emulator (all species names

were listed in Supplementary Table S2), as well as the mean

values of all species’ statistical indicators. There were 35 species

with R2 values greater than 0.96. RMSE and MAE of all species

were within 0.001 ppb, NRMSE of all species were below 0.5, and

the mean R2 of all species was approximately 0.97. The

performance of the atmospheric chemical module depends to

a large extent on the emulator’s ability to accurately predict the

main oxidants in atmospheric photochemical reactions (Zaveri

and Peters, 1999). As shown in Table 1, the correlation

coefficients square of ozone (O3), hydroperoxy radical (H2O2),

nitric oxide (NO), nitrogen dioxide (NO2), hydroxyl radical

(OH) and hydroperoxy radical (HO2) are all above 0.96. This

indicates that the neural network emulator can reproduce the

TABLE 1 Statistical index of the 20-min concentration changes of 47 species predicted by CBM-Z module of GNAQPMS and neural network (NN)
emulator.

Species R2 RMSE
(ppb)

NRMSE MAE
(ppb)

Species R2 RMSE
(ppb)

NRMSE MAE
(ppb)

Species R2 RMSE
(ppb)

NRMSE MAE
(ppb)

HNO3 1.00 5.35E-04 0.06 2.61E-
04

ETHP 0.88 1.44E-06 0.47 1.08E-
06

OLEI 0.97 1.74E-04 0.22 1.22E-
04

NO 0.99 2.93E-03 0.09 1.27E-
03

HCHO 0.98 1.24E-03 0.16 6.94E-
04

TOL 0.98 2.63E-04 0.23 4.43E-
05

NO2 0.99 2.97E-03 0.10 1.04E-
03

CH3OH 1.00 6.86E-05 0.04 4.86E-
05

XYL 0.97 3.68E-04 0.23 1.41E-
04

NO3 0.94 1.63E-04 0.30 9.97E-
05

ANOL 1.00 9.56E-25 0.02 4.25E-
25

CRES 0.91 1.81E-05 0.30 4.06E-
06

N2O5 0.91 2.77E-04 0.30 8.96E-
05

CH3OOH 1.00 2.76E-04 0.07 1.04E-
04

CRO 0.89 3.77E-08 0.34 1.06E-
08

HONO 0.94 3.66E-05 0.26 1.05E-
05

ETHOOH 0.99 2.77E-06 0.09 1.07E-
06

OPEN 0.91 1.21E-04 0.33 5.70E-
05

HNO4 0.96 1.48E-04 0.30 1.23E-
04

ALD2 0.98 4.20E-04 0.13 1.71E-
04

ONIT 1.00 1.64E-04 0.07 8.65E-
05

O3 1.00 6.22E-03 0.07 4.18E-
03

HCOOH 0.99 1.26E-05 0.11 8.99E-
06

ROOH 1.00 1.20E-04 0.03 7.03E-
05

O3P 0.96 1.43E-06 0.19 2.02E-
07

RCOOH 1.00 5.08E-05 0.04 2.13E-
05

RO2 0.97 1.07E-05 0.21 7.50E-
06

OH 0.97 2.22E-06 0.18 8.00E-
07

C2O3 0.96 4.50E-06 0.20 2.10E-
06

XO2 0.94 3.58E-05 0.24 9.80E-
06

HO2 0.99 5.12E-05 0.08 2.68E-
05

PAN 0.97 6.87E-04 0.25 5.60E-
04

ISOP 1.00 4.61E-04 0.05 2.63E-
04

H2O2 1.00 2.90E-04 0.03 1.39E-
04

PAR 0.99 1.84E-03 0.09 4.64E-
04

ISOPRD 1.00 3.08E-04 0.06 1.56E-
04

CO 1.00 2.05E-03 0.08 1.45E-
03

AONE 1.00 1.81E-04 0.06 5.86E-
05

ISOPP 0.99 1.94E-05 0.08 4.42E-
06

SO2 1.00 6.15E-05 0.04 2.09E-
05

MGLY 0.91 2.10E-04 0.38 1.33E-
04

ISOPO2 0.98 1.22E-06 0.13 3.51E-
07

C2H6 1.00 1.00E-05 0.08 6.54E-
06

ETH 1.00 1.16E-04 0.07 4.03E-
05

Mean 0.97 4.98E-04 0.15 2.59E-
04
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atmospheric chemical mechanism in GNAQPMS well and has

great potential to replace the CBM-Z gas phase chemistry module

in GNAQPMS for the simulation of gas phase chemical

mechanism. The correlation coefficients square of the main

precursor organics of O3, such as ethane (C2H6),

formaldehyde (HCHO), paraffin carbon (PAR), ethene (ETH),

terminal olefin carbon (OLET), internal olefin carbon (OLEI)

and acetaldehyde (ALD2), are all above 0.97, which is sufficient

to indicate that the neural network emulator adopted in this

study can accurately predict the short-term concentration

changes of various gas phase pollutants simultaneously.

The trained neural network emulator developed in this study

was used to predict the concentration change of the 8 h testing

dataset on 26 September 2018. The testing set included the input

data of more than 124 million grid points over 8 h. The

prediction results of the neural network emulator were

compared with the simulated results of CBM-Z module in

GNAQPMS. The correlation diagram of predicted results for

17 typical species is shown in Figure 2 (the correlation diagram

for all species is shown in Supplementary Figure S2). Figure 2 lists

the testing performance of 17 key species in atmospheric

photochemical reactions. The R2 of oxidizing or reducing

inorganic gases such as nitric acid (HNO3), NO2, NO, O3,

sulfur dioxide (SO2) and carbon monoxide (CO) was

approximately 0.99. The R2 of active radicals such as OH,

HO2 and lumped peroxy radical (RO2) was above 0.96.

However, they seem to have slight disagreement when the

number of testing set are high. OH, HO2, and RO2 are the

three most reactive free radicals in the photochemical reactions.

They react violently during the day and stay for a short time, so

that the concentration remaining in the atmosphere is very low.

Small changes of them make the emulator difficult to capture,

leading to the slight disagreement of some data. Note that OH

tendency is not strongly related to its initial concentrations. This

is one important reason for OH larger errors than other species in

this study. Although they have slight disagreement when the

number of testing set is high, the overall prediction effect is still

good. These reactive species were produced and consumed

rapidly in specific chemical reactions, but the emulator could

still predict the simulated values of the original atmospheric

chemical transport model, indicating that this neural network

emulator was capable of generalization. The R2 values of

FIGURE 2
Density scatter diagram of 17 key photochemical species concentration changes predicted by the neural network emulator (y-axis) and the true
value simulated by theCBM-Zmodule in GNAQPMS (x-axis). The color of the scatter represents the number of the testing data. The red solid lines are
the 1:1 line.
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formaldehyde, ethylene, toluene and other organic compounds

were all above 0.95, and the RMSE values of all species were less

than 0.001 ppb. We found that although we used concentration

change as the prediction object for the very short species OH, the

absolute concentration obtained after adding the initial

concentration also achieved a good simulation effect

(Supplementary Figure S3). The R2 is approximately 1.00. As

shown in the scatter plot, the original simulated values of most

testing data in the CBM-Z module and predicted values in the

emulator are very close. Some species, namely xylene (XYL),

toluene (TOL), and nitrous acid (HONO), have some single-digit

fluctuations against the predicted values, whichmay be due to the

unequal sample distribution of the original dataset. However, the

existing results are sufficient to show that the trained neural

network emulator can well simulate most of the data

characteristics of the gas phase chemistry module in the

global atmospheric chemistry transport model. At the same

time, we use the scatter diagram (Figure 3) to analyze the

relationship between the concentration change of O3, NOx

and volatile organic compounds (VOCs) per minute in the

first layer of the CBM-Z module (ground-100 m above ground

level). The emulator simulated the changing relationship between

NOx, VOCs, and O3 simulated in CBM-Z module well. With the

increase of the reducted concentration of NOx and VOCs, the

formation concentration of ozone was significantly accelerated.

The neural network simulator can well reflect the relationship

between O3 and the precursor in CBM-Z module, which

confirms that the emulator has learned the rapid change in

the chemical process.

Figure 4 compares the running time of a single CPU core

running the CBM-Z module of GNAQPMS (CBM-Z-1CPU), a

single CPU core (NN-1CPU) and a single GPU core (NN-

1GPU) running the neural network emulator to simulate gas

phase chemistry on 518.4 million individual grid cells (global

simulation of 20 vertical layers at 0.5° × 0.5° horizontal

resolution). As shown in the figure, the simulation speed of

the trained neural network emulator is approximately 300 times

faster than that of the CBM-Z module using one CPU core

hardware simultaneously. The trained neural network emulator

running on a single GPU was approximately 750 times faster

than the CBM-Z module running on a single CPU. Therefore,

the trained neural network emulator can not only accurately

simulate the gas phase chemical process in GNAQPMS, but can

FIGURE 3
Scatter diagramof relationships between themean concentration change perminute at 100 m above ground level of NOx, VOCs (C2H6, CH3O2,
ETHP, HCHO, CH3OH, ANOL, CH3OOH, ETHOOH, ALD2, HCOOH, RCOOH, PAR, AONE,MGLY, ETH, OLET,OLEI, TOL, XYL (themajor VOCs) andO3

simulated by CBM-Z module and neural network (NN) emulator. The color of the scatter represents the change in the concentration of VOCs.

FIGURE 4
Comparison diagram of the running time of a single CPU core
running the CBM-Zmodule of GNAQPMS (CBM-Z-1CPU), a single
CPU core (NN-1CPU) and a single GPU core (NN-1GPU) running
the neural network emulator to simulate gas phase chemistry
on 518.4 million individual grid cells (global simulation of
20 vertical layers at 0.5 ° × 0.5 ° horizontal resolution).
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also greatly accelerate the simulation of the gas phase chemical

process.

3.2 Evaluation of spatial simulation effect
of key species

To more obviously verify the neural network emulator’s

simulation and feature capture capability of atmospheric gas

phase photochemical reaction process, this study screened

daytime testing data based on photolysis rate (lattice

photolysis rate is not 0) from the testing dataset to evaluate

the spatial simulation effect. The mean value of concentration

change per minute was calculated for each grid point. Finally, we

obtained high resolution global daily mean concentration change

(0.5° × 0.5° grid points). For species with shorter life spans, the

concentration change can reflect the strength of photochemical

reaction and the rate of formation of the species, which is in line

with the differential equation of chemical dynamics solution.

Since near-surface pollution features are more concentrated and

chemical processes are highly reactive, we mainly analyzed the

change rate of horizontal concentration at the first layer of

atmospheric chemical transport model (ground-100 m above

ground level), to more accurately explore the ability of neural

network simulator to capture the rapid change process of

chemical reactions. Figure 5 shows the daytime average value

of surface (100 m above ground level) O3, NOx (NO and NO2),

and OH concentration changes predicted by CBM-Z mechanism

gas chemistry module of GNAQPMS and neural network (NN)

emulator, and the deviation of the predicted values of the two

emulators. O3 with a longer life has a strong photochemical

oxidation in the atmosphere. Anthropogenic emissions near the

ground rapidly generate and accumulate NOx and VOCs, which

are the precursors of ozone (Sillman and He, 2002; Ding et al.,

2022; Zhang et al., 2022), and thus accelerate the generation of

O3. As evident from the spatial distribution shown in Figure 6,

the neural network emulator can well capture and fit the data

characteristics, simulate the ozone generation and change trend

of each region on land, and achieve a good simulation of each

region in the world at the same time. NOx with long life spans will

be rapidly consumed under lighting effects, and is the main

precursor of O3 (Zhang et al., 2020). The neural network

emulator can simulate the loss of NOx in each region. The

deviation of the emulator’s prediction of spatial distribution

mainly comes from the spatial distribution of concentration

change in original CBM-Z module. The high deviation area is

related to the concentration distribution of the original CBM-Z

module. The NOx concentration changes greatly and the reaction

is severe mainly in Eastern Asia, Southern Asia, central North

America, Southern Africa, the Eastern coast of South America

and central Europe. The neural network emulator

underestimates the concentration change of NOx in some

ocean areas and overestimates NOx in some coastal areas.

This may be because the more concentrated pollution

characteristics in the land area made the emulator strengthen

the learning of the more active NOx chemical reaction process in

the land area during the training process, which lead to the

overestimation phenomenon in some coastal areas. However,

FIGURE 5
Comparison diagram of spatial distribution of daytime mean ground concentration changes (100 m above ground level) of O3 (A), NOx (B) and
OH (C) simulated by CBM-Z module and neural network (NN) emulator and the deviation of the predicted values of the two emulators.
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due to the inobvious pollution characteristics and weak chemical

change process in the ocean region, the emulator covered up the

learning of the relatively active chemical reaction process in some

ocean regions in the training process, resulting in the

underestimation of the concentration change in some ocean

regions. With an extremely short life of only a millisecond

and the most important oxidizing species, OH is mainly

produced during the photolysis of ozone, HONO, and

formaldehyde and participates in a variety of photochemical

reactions (Alicke et al., 2003; Elshorbany et al., 2010; Waring and

Wells, 2015). Although learning the tendency for OH is

somewhat meaningless, OH tendency performance was still

evaluated because of its key role in aqueous and aerosol

chemistry (Elshorbany et al., 2010; Song et al., 2019). The

neural network emulator can well predict its generation and

loss, and achieves almost the same simulation effect as the CBM-

Z module. In addition, we further analyzed the simulation effect

of neural network emulator on horizontal distribution at

different heights above ground level (380 m, 1060 m, 2220 m)

(Supplementary Figure S4). The neural network simulated the

concentration changes of three key oxidizing species at different

heights well. As the height increases, the emulator’s simulation

deviation is consistent with the near-surface. For OH, the

emulator sensitively predicted slight increase and decrease in

concentration at different heights, further demonstrating that the

emulator can well capture the concentration change process of

key oxidizing species at different heights. These results are

sufficient to demonstrate that the neural network can extract

input features differently and accurately simulate the pollution

situation in each region.

In addition, we analyzed the daily mean concentration

changes of O3, NOx and OH at different vertical altitudes, and

calculated the mean concentration changes per minute at

different latitudes by averaging each longitude. Finally, we

obtained the vertical profiles of global distribution of

concentration changes of three major photooxidant species.

Figure 6 shows the concentration changes of O3, NOx, and

OH at different heights predicted by CBM-Z mechanism gas

phase chemistry module in GNAQPMS and neural network

(NN) emulator at 5:00–5:20 UTC in the testing dataset. As

shown in Figure 6, the neural network emulator can well

simulate the transmission of stratospheric O3 to troposphere

(Zhao et al., 2021). It can also simulate the generation and loss of

near-ground O3 and NOx as well as the minuscule and rapid

FIGURE 6
Vertical section of concentration changes of O3 (A), NOx (B) and OH (C) at 5:00-5:20 UTC simulated by CBM-Z module and neural network
(NN) emulator and the deviation of the predicted values of the two emulators.
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change trend of active OH radicals at different altitudes. The

simulation effect of neural network emulator can well reproduce

the simulation effect of CBM-Z module in GNAQPMS. These

results show that the neural network emulator can accurately

simulate the gas phase photochemical process at different

altitudes by effectively learning the characteristic information

provided by the CBM-Z module dataset.

3.3 Evaluation of emulated temporal
variation of different cities

The neural network emulator’s prediction effect for

different urban regions around the globe directly reflects the

possibility of replacing the gas phase chemistry module of

atmospheric chemistry transport model and the simulation

effect of multiple regions. Stronger and more obvious

pollution characteristics are helpful for us to see the learning

effect of the neural network emulator on chemical reaction

processes from the results. To explore the neural network’s

potential to simulate the gas phase chemical reaction in the

process of daily variation, we compared the predicted

concentration changes of grid points of four large cities with

large population density and obvious pollution characteristics

in the first layer of vertical height (100 m above ground level),

and analyzed the prediction performance of the neural network

emulator for the same grid point at different test times, and

different grid points at the same time. Figure 7 shows the daily

concentration change trend of the main photooxidants (O3,

NOx, and OH) in four cities (Beijing, Shanghai, Chengdu, and

New York) simulated by the neural network emulator and

CBM-Z module. In the figure, the red shaded part is the

prediction result of the testing dataset, and the other white

shaded part is the prediction result of the training dataset. The

red broken line represents the simulated diurnal concentration

change trend of the CBM-Z module, and the blue broken line

represents the simulated diurnal concentration change trend of

the neural network emulator. As shown in Figure 7, the neural

network can well simulate the diurnal variation characteristics

of all cities. For O3 and NOx, the diurnal concentration change

trend of CBM-Z modules in four cities and that of the neural

network emulator are almost identical, thereby indicating that

the neural network can accurately predict the change trend of

gas phase pollutant concentration. The concentration change of

the very short-lived species OH is approximately 10–5 and the

relative change is very small. The neural network emulator has

certain underestimated or overestimated results, which may

have been caused by the unbalanced dataset and the rapid

FIGURE 7
Diurnal variation diagram of CBM-Z and neural network (NN) emulator simulation effect in four cities (Bei Jing, BJ; Shang Hai, SH; Cheng Du,
CD; New York, NY) at 100 m above ground level. The red shaded part is the prediction effect of testing dataset, and the other white shaded part is the
prediction effect of training dataset. The red broken line represents the simulated diurnal concentration change trend of CBM-Z module, and the
blue broken line represents the simulated diurnal concentration change trend of the neural network emulator.
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change of OH. In New York, when the change of OH is very

small (near 0), the neural network has a large fluctuation. When

the predicted concentration of CBM-Z increases, the neural

network predicts a decreasing trend of the concentration. It

may be due to the large concentration change of NOx at the

same time and the small data distribution of data containing the

large change of NOx generation concentration in the original

training dataset. Strong learning of other more obvious input

features causes more obvious interference to the learning

process of sensitive OH, leading to the opposite prediction

effect of OH. Overall, the emulator can still well predict the

diurnal variation trend and decline inflection point, which

indicates that it can well learn the relationship between

photolytic rate, meteorological parameters, initial

concentration, and concentration change, and characterize

the change characteristics of different species, to predict the

concentration changes in shorter time step and achieve accurate

simulation and prediction of multiple grid points at the

same time.

In addition, we further analyzed the simulation effect of these

four cities at different heights. Figure 8 shows the vertical profile

of the 20-min daytime mean concentration changes of O3, NOx,

and OH in the 8-h testing dataset predicted by the CBM-Z

module and neural network emulator. The neural network

emulator can well reproduce the vertical distribution of ozone

and nitrogen oxide in the four different regions of CBM-Z

FIGURE 8
Vertical profile of the 20-min daytime average concentration changes of O3, NOx, OH in the 8-h testing dataset predicted by CBM-Z module
and neural network emulator in four cities (Bei Jing, BJ; Shang Hai, SH; Cheng Du, CD; New York, NY). The red broken line represents the simulated
diurnal concentration change of CBM-Z module, and the blue broken line represents the simulated diurnal concentration change of the neural
network emulator.
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module. There is a slight difference between the prediction of OH

concentration changes predicted by the CBM-Z above 5000 m in

different cities. The life of OH is very short compared to that of

other species, so the magnitude of concentration change is very

different from other species. Firstly, OH in the stratosphere and

the top of the troposphere mainly comes from the photolysis of

stratospheric ozone and its downward transport, which is closely

related to humidity, photolysis and temperature, and the reaction

is relatively rapid and lively. Secondly, the chemical reaction

change process of most other species near the ground is obviously

stronger than that of the upper troposphere and the stratosphere.

However, OH at different altitudes is strongly reactive. The weak

change process of other species at high altitudes may make the

emulator poor in learning the fast change of OH. Therefore, the

emulator is difficult for the neural network to capture the rapid

change of OH in the upper troposphere and lower stratosphere.

But the deviation is very small, about 0.0001–0.005 ppt. Overall,

the neural network emulator can also well simulate the vertical

distribution characteristics of OH in different urban regions.

Therefore, the neural network emulator can reproduce not only

the CBM-Z module’s global simulation of the concentration

changes of key gas phase chemical reactions, but also the

simulation process under different vertical heights and

complex atmospheric conditions.

4 Conclusion

We constructed a neural network based on the gas phase chemical

mechanism (CBM-Z) in a three-dimensional air quality model to

predict more cross-life reactive species concentration changes in

shorter time steps at a higher global resolution. The structure of the

emulator used in this study has been proved by previous studies to

avoid gradient disappearance, gradient explosion, model degradation,

and other problems in the process of neural network deep training (He

et al., 2016). It can simulate the nonlinear relationship betweenmultiple

inputs and multiple outputs of original dataset in deeper neural

network structure. The skipping connection in this emulator is very

similar to the solving process of ODEs. This neural network emulator

running on one CPU core is approximately 300 times faster than the

CBM-Zmodule, and the neural network emulator running on a single

GPU is approximately 750 times faster than the CBM-Z module

running on a single CPU. The neural network emulator can simulate

the global gas phase chemical process at a higher speed.

We evaluated the performance of the emulator using a dataset

consisting of 47 species and covering the entire troposphere

(0–20 km above ground level) generated by a global chemical

transport model (GNAQPMS). The emulator was able to predict

the evolution of concentration changes of 47 chemical species all

124 million grid cells of the global model domain over time. The

average correlation coefficient square between the emulator and

CBM-Z module of GNAQPMS for the predicted 20-min

concentration changes of 47 species exceeded 0.97. The RMSE

were all within 0.001 ppb. The correlation coefficients square of

O3, H2O2, NO, NO2, OH, and HO2 were all above 0.96, indicating

that the neural network emulator can well reproduce the simulation

ability of CBM-Z gas phase chemistry module in GNAQPMS.

We conducted simulation analysis on the concentration changes

of O3, NOx, and OH of key oxidizing species in photochemical

reactions of different heights, different regions, different time and

different cities. The results of spatial distribution, temporal variation

and vertical profile show that the simulation performance of the

neural network emulator is consistent with that of the CBM-Z

module. It was confirmed that the neural network emulator can

effectively learn the characteristic information provided by the CBM

module dataset, and accurately simulate the gas phase photochemical

process of different heights, different times and different cities. Based

on deep learning, we reproduce the concentration changes of shorter

single timestep for more active multi-species in global gas chemistry

modules with high speed and precision. We reproduced short-term

concentration trends of more reactive multi-species in global gas

chemistry modules with high speed and precision. The neural

network emulator in this study can well capture the rapid

concentration change and numerical integration processes of

more active species in the process of gas phase chemical reaction.

The neural network emulator established in this study to replace

the gas phase chemistry module in GNAQPMS is a useful tool

model, which has preliminarily realized a short single time-step gas

chemistry simulation. However, its simulation performance in entire

air pollution real-simulation applications still needs to be explored

(both in terms of speedup and skill). The main limitation of this

study is that the time coverage scale of the dataset is insufficient,

which may lead to deviations in the future long-term simulation

process. In the future, we will train global high-resolution datasets

covering longer time and evaluate the long-term simulation effects.

At the same time, we will explore the more proper cause of

deviations through appropriate perturbation of input parameters

in the future study and try to couple the gas phase chemistry

emulator into the 3-dimensional global CTMs to simulate the whole

process of long-term air pollution. Deploying the NN emulator into

CTMs could decrease the emulator performance over time because

of the compounding errors. Overall, our work provides an additional

path to a more efficient atmospheric chemical simulation and

prediction at a high resolution.
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