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Assessing the spatiotemporal patterns of ecosystem services (ESs) supply and

demand, as well as the drivers thereof during specific time periods, is critical for

regional policy making and sustainable management. Taking the Beijing-

Tianjin-Hebei (BTH) urban agglomeration of China as an example, we

studied four ES supply-demand budgets: carbon storage, water provision,

food provision and soil conservation from 2000 to 2015. Through the

geodetector model, canonical analysis and Multiscale Geographically

Weighted Regression (MGWR) model, the drivers of the ES supply-demand

budget were explored. The results showed that the areas supplying high

amounts of ESs in the northern region usually did not overlap those areas

consuming intensive ESs, which were mainly distributed in metropolitan areas.

The anthropological factors, including per capita gross domestic product

(Per.GDP) and population density (POP.Den), were the dominant influencing

factors for the imbalance between the supply and demand of carbon storage,

water provision and food provision, which weremainly distributed in the central

and southern regions of the study area. Geomorphological factors (ELE and

SLO) were the key driving factors of soil conservation, which was mainly

distributed in the eastern regions. In all, our findings could provide

comprehensive information for decision-making and ES management.
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Introduction

Ecosystem services (ESs) are defined as the various benefits

that people obtain from ecosystems, which helps maintain global

life support systems (Costanza et al., 1997; Daily et al., 2009;

Raoet al., 2018). They are necessary for human well-being as they

provide multiple functions including food, water, timber,

minerals, climate regulation, water purification, soil erosion

prevention, and recreation (Nelson et al., 2009; Cruz-Garcia

et al., 2017). Over the past three decades, global changes such

as climate change, population increase, rapid urbanization,

technological development and policy making have threatened

and affected large-scale natural ecosystem structures and

functions as never before, causing severe modifications in ESs

and threatening human well-being (Mooney et al., 2009; Nelson

et al., 2009). In response to this background, a growing number of

scientists have been working on mapping and analyzing ES

supply (Minin et al., 2017; Wilkerson et al., 2018). Landscapes

are geospatially heterogeneous, socioeconomically driven,

regionally coupled systems of human-environment interaction

(Sun et al., 2019). Most of these prior studies have focused mainly

on exploring ES supply changes under the effects of climate,

land-use changes and topographical factors (Peng et al., 2017;

Borrelli et al., 2020; Li et al., 2021).

Nevertheless, the status of ESs is not only influenced by the

supply capacity of ecosystems, but also driven by human

demands and desires for different kinds of ESs (Wei et al.,

2017; Yu et al., 2021). On the one hand, ES supply is generally

defined as the ecological products and services provided by

eco-systems to human society based on biophysical

characteristics, ecological functions and social characteristics

(de Groot et al., 2010). ES demand, on the other hand, can be

described as the actual use or consumption of ESs by

stakeholders in a particular area within a given time, which

is affected by socioeconomic system and has received increased

attention in the last 10 years (Burkhard et al., 2012; Schirpke

et al., 2019). However, because of the complex coupling

between social systems and natural ecosystems, focusing on

only one side of ESs will lead to an imbalance between ES

supply and demand, causing unexpected ecological concerns

and social equity issues (Baró et al., 2016; Delphin et al., 2016).

Therefore, incorporating ES demand side into ES assessments

can help decision makers identify ES supply and demand

surplus and deficit and provide a scientific basis for

achieving regional sustainable development goals (Costanza

et al., 2017; Schirpke et al., 2019).

Previous studies have assessed spatial dynamic variations in

ES supply and demand (Burkhard et al., 2012; Chen et al., 2019;

Xu et al., 2021); clarified the spatial matching of ES supply and

demand, such as the ratio of supply to demand (Boithias et al.,

2014; Bryan et al., 2018); and evaluated the mismatch between

ES supply and demand to inform regional management

(Larondelle and Lauf, 2016). These studies help us

understand the mismatch between ES supply and demand in

different contexts (Ahmad et al., 2020; Yao et al., 2021).

However, improving the matching of ES supply and demand

is still a significant challenge in the crusade to meet human

needs and demands (Mehring et al., 2018). To attain a balance,

it is necessary to comprehensively manage land use and other

social resources to avoid ES deficit–defined as the ES supply

cannot meet ES demand (the value of ES gap is lower than 0)

(Cui et al., 2019). Although it has been proven that land use,

climate, topographical and socio-economic factors significantly

influence ES supply and demand, few studies have

comprehensively explored the drivers of ES supply and

demand as a whole (Costanza et al., 2017; Chaplin-Kramer

et al., 2019). Furthermore, current studies lack discussions on

the scale dependence in the spatially non-stationary

relationships between driving factors and ES supply and

demand.

The Beijing-Tianjin-Hebei (BTH) urban agglomeration is

densely populated, and is one of the regions with the most

rapid economic and urbanization development in the world. It

suffers from serious environmental problems, such as air

pollution, water and soil loss, water scarcity and

biodiversity loss (Li et al., 2017; Yang et al., 2019), which

leads to the losses of regional ESs (Zhang et al., 2017).

Therefore, this study chose the BTH urban agglomeration

as a case to evaluate the supply, demand, and gap of ESs and

their drivers the spatial scale, which can enrich researches in

this field. This study has three specific objectives: 1) to quantify

the spatial and temporal variations of four critical ES supply

and demand from 2000 to 2015, including carbon storage

(CS), water provision (WP), food provision (FP), and soil

conservation (SC); 2) to examine the spatiotemporal patterns

of the mismatches between ES supply and demand at the

county or district scale; and 3) to explore the key drivers of the

mismatches between ES supply and demand and analyze the

spatial heterogeneity of these effects. This study aims to

propose several land-use strategies and socioeconomic and

ecological management measures that can alleviate ES

mismatches, supporting regional ecological security and

sustainable development.

Materials and methods

This study proposed a framework to assess the effects of

anthropological, climate factors, and geomorphological factors

on ESDRs and support regional ES management in the Beijing-

Tianjin-Hebei urban agglomeration (Figure 1). Firstly, relevant

data were collected and three comprehensive factors was

measured. Secondly, the spatio-temporal variations of

comprehensive factors and four ES supply-demand ratio

(ESDRs) were evaluated from 2000 to 2015. Thirdly,

relationships between ESDRs and anthropological, climate

Frontiers in Environmental Science frontiersin.org02

Li et al. 10.3389/fenvs.2022.955876

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.955876


factors, and geomorphological factors was analyzed by using

geodetector model, RDA, and GWR model. Finally, some

relevant policy recommendations and measures were put

forward.

Study area

The BTH urban agglomeration, located in Northern China

(35°03′–42°40′N, 113°27′–119°50′E, Figure 2), borders the

FIGURE 1
The framework and procedures of this study.

FIGURE 2
Study area. (A) LULC distribution of cover-types. (B) Map of major rivers and urban and peri-urban infrastructure, including roads, railway, and
municipal boundaries.
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Taihang Mountain, Yanshan Mountain and Bohai Bay. It

covers an area of 212,962 km2, including two municipalities

(Beijing and Tianjin city), as well as Hebei province with

11 prefectural-level cities, amounting to 173 counties. The

northwestern part of this region has a higher elevation and

is mostly hilly, while the southeast is relatively flat with an

elevation of less than 100 m. The BTH urban agglomeration has

a temperate continental climate, with an annual mean

precipitation of 420–550 mm and an annual mean

temperature of −3.5° to 24.5°C (Shen, J et al., 2020). The

southeastern plain is an important grain production area in

China, growing corn, wheat, and peanuts.

The BTH urban agglomeration is a political, cultural, and

economic center in China. In 2019, BTH created a GDP of

8.46 trillion yuan, accounting for 8.5% of the country’s GDP.

From 2000 to 2019, the urbanization of this region developed

rapidly. The urbanization rate increased from 38.50% in 2000 to

66.70% in 2019. The urban population of the BTH urban

agglomeration increased from 70.91 million to

113.07 million. With its high-density population and high

rate of urbanization, the region has experienced long-term

water resource shortages and unbalanced development

between the sown area and grain yield (Li et al., 2017).

Moreover, the imbalance between resource supply and

demand has triggered a series of regional problems,

including surface runoff decrease, land desertification,

groundwater over-extraction, air quality deterioration,

biodiversity reduction, and eco-system degradation (Zhang

et al., 2017; Yang et al., 2019). Therefore, a comprehensive

diagnosis of ESs from the sup-ply-demand perspective is highly

significant for BTH’s sustainable ES management.

Data sources

Five types of data were used in this study: land-use, statistical,

meteorological, geomorphological, and soil (Supplementary

Table S1). Land use data were obtained from the Resource

and Environ-mental Science Data Center of the Chinese

Academy of Sciences (http://www.resdc.cn/). We adopted the

classification system proposed in the “Current Land Use

Classification” formulated by the Ministry of Natural

Resources of China (Ministry of Natural and Re-sources of

R.P.C) as the basic classification system (Ministry of Natural

and Resources of R.P.C, 2017). Land use was classified into seven

types: grassland, water body, cultivated land, artificial surface,

unused land, forest land, and shrub land. All vector and raster

data were converted to the same projection coordinate system

(Bei-jing_1954_3_Degree_GK_CM_ 114E), and the spatial

accuracy of all raster data was modified to 30 m by

resampling in ArcGIS 10.3.

Quantification of ecosystem services
supply and demand

In this work, four key ESs were selected according to the

latest version of the Common International Classification of ES

(CICES). The selected ESs are very important for the sustainable

development of the BTH urban agglomeration and are sensitive

to global climate changes, land use changes and significantly

increased human activities (CICES, https://cices.eu/resources/).

Table 1 provides an overview of the ESs evaluated in the study

area and the reasons for their selections by literature reviews.

Carbon storage
(1) Supply

Carbon storage (CS) refers to the capacity of vegetation to

store carbon, which is essential for climate change mitigation

(Onaindia et al., 2013). Here, the “InVEST carbon storage model”

was used to quantify carbon storage based on land use maps and

four carbon pools: 1) above-ground biomass (CSa); 2) below-

ground biomass (CSb); 3) soil organic matter (CSs); and 4) dead

organic matter (CSd) (Sharp et al., 2020). The carbon stocks per

unit area for each land use type were derived from literature

based on local studies (Tallis and Polasky, 2009). The total

carbon stored SCS for each pixel (Mg) was calculated as:

SCS � PA(CSA + CSb + CSc + CSd) (1)

where PA is the pixel area (30 × 30 m = 900 m2 or 0.09 ha), CSa is

the above-ground carbon density (Mg C·ha−1); CSb is the below-
ground carbon density (Mg C·ha−1); CSs is the soil organic carbon
density (Mg C·ha−1); and CSd is the dead organic matter carbon

density (Mg C·ha−1).

(2) Demand

The total amount of carbon emissions was used as the

demand for carbon storage in this study, as the changes of

per capita emissions will lead to an increase or decrease of the

demand for carbon sequestration (Bateman et al., 2013). The

total amount of carbon emission is calculated by multiplying the

total energy consumption by the standard carbon emission

coefficient according to the data provided by CO2 emission

inventory of BTH (e.g. residential, industry, and agriculture)

(BMBS, 2015; HMBS, 2015; TMBS, 2015). The amount of carbon

contained in CO2 was estimated to be about 27% of total carbon.

We multipled the average value of emissions per capita by the

population density to obtain the total carbon emitted per pixel

(González-García et al., 2020). The calculation of total amount of

carbon emissions is as follow:

DCP � Dpcfc × Dpop (2)

where DCP is the demand for carbon sequestration (t), Dpcfc is

the per capita carbon emissions (t); and Ppop is the population
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density (person·km2). For details, please refer to Supplementary

Table S2.

Water provision
(1) Supply

Water provision (WP) refers to the annual quantity of

water yield available to humans within a given region

(Boithias et al., 2014). The “Hydropower Water Yield

module” of InVEST was used to quantify water provision

based on the Budyko curve, with the data including average

annual precipitation, root restricting layer depth (mm),

plant available water content, annual reference

evapotranspiration (mm), and land use maps (Sharp et al.,

2020). The calculation of annual water provision Y for each

pixel is as follows:

Y � (1 − AET/P).P (3)

AET/P � (1 + PET/P) − [1 + (PET/P)ω]1/ω (4)

PET � K.ET0/P (5)
ω � Z.AWC/P + 1.25 (6)

AWC � Min (Rest. layer. Soil Depth, Root.Depth).PAWC

(7)
where AET is the annual actual evapotranspiration (mm); P is

the annual precipitation (mm); AET/P is based on an

expression of the Budyko curve proposed by (Fu, 1981;

Zhang et al., 2004); PET is the potential evapotranspiration,

ω is an empirical parameter that characterizes the natural

climatic-soil properties; ET0 is the reference

evapotranspiration; K is the vegetation evapotranspiration

coefficient associated with the land use (Sharp et al., 2020);

AWC is the volumetric plant available water content; Z is the

empirical constant, and sometimes referred to as “seasonality

factor” (1–30); and PAWC is the Plant Available Water Content

fraction (0–1) (Sharp et al., 2020).

(2) Demand

Water demand (DWY) refers to the total amount of water

consumption for agricultural and industrial production,

inhabitants, and ecological purposes (Burkhard et al., 2013;

Chen et al., 2019). For this estimate, we collected the

population density map and the water resource bulletins from

each county which provides the water consumption per

inhabitant per studied year (BMBS, 2015; HMBS, 2015;

TMBS, 2015). The calculations of water demand DWY is as

follows:

DWY � Dpcwc × Ppop (8)

where Dpcwc is the per capita water consumption; and Ppop is the

population density (person·km2). For details, please refer to

Supplementary Table S3.

Food provision
Both the supply and demand for food provision (FP) were

estimated through statistical data. Here, for FP supply, we first

added up each county’s production of grain, vegetables, and fruit

products, which were the three main types of foods produced in

cropland (https://data.cnki.net/Yearbook/Navi?type=

type&code=A). Then, we estimated the demand for FP by

multiplying the per capita food consumption by the

population density. According to (Tang and Li, 2012), the per

capita food demand was 322.07 kg·a-1, which can basically meet

China’s per capita food security. For counties without per capita

food consumption data, city or provincial-scale per capita food

consumption was used as an alternative. Food provision supply

and demand can be calculated using the following equations:

SFPi � ∑n

j
P(i,j)(j � 1, 2, 3 . . . , n) (9)

DFP
i � Dpcfp × Ppop (10)

where SFPi is the FP supply for county I; P (i, j) is the annual

provision of j type food for each county, including grains,

vegetables and fruits; DFP
i is the FP demand for county I;

Dpcfp is the per capita food demand; and Ppop is the

population density (person·km2).

Soil conservation
(1) Supply

The “Sediment Delivery Ratio module” of InVEST was used

to map and calculate the total amount of soil conservation per

pixel based on the universal soil loss equation (RUSLE) (Sharp

et al., 2020). Soil conservation equals the difference between the

actual amount of soil erosion (USLE) and the maximum potential

amount of soil erosion (RKLS), assuming the original land cover

without the C or P factors (Kareiva et al., 2011; Ouyang et al.,

2016), and is calculated as:

SC � RKLS − usle (11)

TABLE 1 Ecosystem services evaluated in the Beijing-Tianjin-Hebei
urban agglomeration.

Ecosystem
services

Selection reasons

Carbon storage (CS) Absorption of CO2 by vegetation is of great significance to
regional climate change, and directly affects human health

Water
provision (WP)

Water resources re recharged by terrestrial and aquatic
ecosystems, affecting the growth of vegetation

Food provision (FP) Food production is mainly provided by cultivated land,
and is the basic material for human survival

Soil
conservation (SC)

Reduction of soil erosion caused by storm runoff and
topography is important in the BTH urban agglomeration
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usle � R.K.LS.C.P (12)
RKLS � R.K.LS (13)

where SC is the amount of soil conservation (tons · ha−1 · yr−1); usle
is the amount of actual soil loss (tons · ha−1 · yr−1); RKLS is the

amount of potential soil loss (tons · ha−1 · yr−1); R is rainfall

erosivity (MJ · mm (ℎa · ℎr)−1); K is the soil erodibility factor for

each pixel (MJ · mm (ℎa · ℎr)−1); LS is the slope length-gradient

factor (dimensionless); and C and P are the crop management and

support practice factors for each pixel (dimensionless), respectively.

(2) Demand

The amount of actual soil loss was used to define demand for

soil conservation, which is based on the quantity of actual soil

erosion that human beings are expected to deal with (Liu et al.,

2019). The calculation of the amount of actual soil loss is below:

usle � R.K.LS.C.P (14)
where usle is the amount of actual soil loss (tons · ha−1 · yr−1).
For details, please refer to Supplementary Table S4.

Relationship between ES supply and
demand

Ecosystem service supply-demand ratio (ESDR)
The ecosystem service supply-demand ratio (ESDR) index

was used to quantify the relationship between the actual ES

supply and human demand, identifying ES supply-demand

shortages and mismatches (Chen et al., 2019). The ESDR

index is calculated as follows:

ESDRi � Si −Di

(S max +Dmax) /2 (15)

where Si and Di refer to the actual ES supply and demand for

pixel i, respectively; and Smax and Dmax indicate the

maximum value of actual ES supply and human demand

in the county, respectively. A value greater than 0 indicates

an ES surplus, meaning that supply can meet demand, a

value of 0 indicates ES supply-demand balance, and a value

lower than 0 indicates a deficit—supply cannot meet

demand.

FIGURE 3
Distribution of carbon storage supply, demand and their changes from 2000 to 2015. B: Beijing city; T: Tianjin city; H: Hebei province.
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Global spatial autocorrelation
Global spatial autocorrelation can describe the overall

distribution of ESDER spatial correlation (aggregation

characteristics) in the BTH urban agglomeration by

calculating Moran’s I in the GeoDA software, which ranges

from −1 to 1 (Anselin, 1996). Moran’s I > 0 indicates that a

variable appeared in a spatial aggregation pattern. Moran’s I <
0 indicates that a variable presented a discrete pattern. Moran’s

I = 0 indicates no autocorrelation; the spatial units are randomly

distributed. The closer theMoran’s I is to +1, the more significant

the spatial autocorrelation occurs. It is calculated as follows:

Moran′s I � n∑n
i�1∑n

j ≠ 1wij(xi − �x)(xj − �x)
(∑n

i�1∑n
j�1wij)∑n

i�1(xi − �x)2
(16)

where n is the total number of spatial units; xi and xj are ESDR

values of the spatial units i and j, respectively; Wij is the spatial

matrix of units i and j obtained through the rook adjacency

matrix; and �x is the mean value of ESDR.

Local spatial autocorrelation
The Moran scatterplot and local indicators of spatial

association (LISA) were used to measure the correlation

between individual observation and neighboring objects (local

spatial autocorrelation) (Anselin, L, 1995). The local Moran’s I,

includes positive and negative values, which can reflect the local

patterns of spatial clustering and the spatial outliers in the maps.

It can be classified into clusters of high values (HH), which are

high values in a high value neighborhood, and clusters of low

values (LL), which are low values in a low value neighborhood.

Spatial outliers include high–low outliers (HL) and low–high

outliers (LH), which are a high value in a low value neighborhood

and a low value in a high value neighborhood, respectively. It is

calculated as follows:

Moran′s I � n(xi − �x)∑jwij(xj − �x)
∑i(xi − �x)2 (17)

where the meanings of all parameters are consistent with those in

formula (16).

FIGURE 4
Distribution of water provision supply, demand and their changes from 2000 to 2015. B: Beijing city; T: Tianjin city; H: Hebei province.
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Drivers analysis

Indicator selection
The ESDR is influenced by anthropological and climate

factors as well as geomorphology (Peng et al., 2020; Deng

et al., 2021; Zhang et al., 2021), and eleven potentially

relevant factors were selected based on the following criteria:

1) these factors should be measurable and independent; 2) these

factors should include the three aspects of anthropology, climate

and geomorphology; and 3) these data should be readily available

(Sannigrahi et al., 2020). Therefore, the drivers used in this study

included anthropological influence (changes of per capita gross

domestic product (Per.GDP), changes of percentage of built-up

land (BLP), changes of percentage of forest land (FOR), changes

of population density (POP.Den)); climate influence (changes of

average annual precipitation (PRE), changes of annual average

temperature (TEM), changes of actual evapotranspiration

(EVA), changes of annual average solar radiation (SRD)); and

geomorphological influence (mean elevation (ELE), mean slope

(SLO), mean relief amplitude (REL)).

Geodetector model
Geodetector model is a statistical tool used to measure spatial

heterogeneity and to explore the determinants of spatial

heterogeneity (Wang et al., 2010). The basic principle of this

model is that if an independent variable has an important

influence on a dependent variable, the spatial distribution of

the independent variable and the dependent variable should be

consistent. The functions of Geodetector model include: 1)

measure the spatial heterogeneity among data; 2) test the

coupling relationship between two variables Y and X,

according to their spatial heterogeneity, without assuming the

linearity of the association; and 3) investigate interactions

between two explanatory variables X1 and X2 to a response

variable Y, without any specific form of interaction as the

assumed product in econometrics (Wang et al., 2016). Each of

the functions can be accomplished by the factor detector

q-statistic. Therefore, the Geodetector model is used to

identify the invalid and dominant factors among the

11 independent variables affecting the ESDRs. The q-statistic

is calculated as follows:

FIGURE 5
Distribution of food provision supply, demand and their changes from 2000 to 2015. B: Beijing city; T: Tianjin city; H: Hebei province.
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q � 1 − 1
Nσ2

∑L

h�1 Nhσ
2
h (18)

where q the determinant power of an explanatory variable X of

response variable Y; N and σ2 represent the number of units and

the variance of response variable Y in a study area, respectively; h

is the partition of variable Y or factorX; σ2h is the discrete variance

of the sub-level region; andNh is the number of secondary units.

The value of q ranges from 0 to 1. If Y is stratified by an

explanatory variable X, then q = 0 indicates that there is no

coupling between Y and X; q = 1 indicates that Y is completely

determined by X; X explains 100q% of Y.

Canonical analysis
Canonical analysis was applied to analyze the strength and

direction of correlations between dependent variables (i.e., ES

supply, demand, and mismatch) and independent variables

(i.e., natural and socio-economic factors) at the county scale

(Schmidt et al., 2019). We first standardized all variables. Then, to

reduce the dimension of independent variables, the forward stepwise

regression was conducted to select the model with the highest R2 and

smallest p value in SPSS 23.0 (Legendre et al., 2011). Multicollinearity

among independent variables was tested using the VIF (Variation

Inflation Factors), and variables with VIF values larger than 5,

indicating collinearity problems were removed from this model

(Zuur et al., 2009). Finally, redundancy analysis (RDA) was selected

because the gradient length values of DCA were less than 3, and RDA

can identify the most relevant driving factors (Legendre et al., 2011;

Mouchet et al., 2014). TheRDAwas performed in theCanoco software

(Version 5.0) (Mouchet et al., 2014; Šmilauer and Leps, 2014).

Spatial heterogeneity analysis model
The multi-scale geographically weighted regression

(MGWR) model was performed to explore the spatial

characteristics and relative contribution of each main factor

(MGWR 2.2: https://mgwr.readthedocs.io/en/v2.0.2/index.

html) (Fotheringham et al., 2017). The model is an

application software for calibrating multi-scale geographically

weighted regression (GWR) models based on Microsoft

Windows & MacOS platform. GWR can be used to analyze

the spatial heterogeneity of the process and the geographical

change relationship between the response variables and

independent variables at multiple scales, allowing us to

generate local R2, local parameters and model residuals

FIGURE 6
Distribution of soil conservation supply, demand and their changes from 2000 to 2015. B: Beijing city; T: Tianjin city; H: Hebei province.
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(Fotheringham et al., 2017). The dependent variable refers to the

change of the ESDR value at a specific location from 2000 to

2015. The change of each driving factor during the corresponding

time period is selected as the potential explanatory variable. The

MGWR model equation is as follows:

Yi � β0(Ui, Vi) +∑ jβbwj(Ui, Vi)Xij + εij (19)

Results

Spatiotemporal dynamics of ES supply and
demand

Carbon storage
Carbon storage supply increased from 6.13 billion tons in

2000 to 6.26 billion tons in 2015, with a slight 2.14% increase

(Supplementary Table S5). In the same period, the demand

increased by 35.2%, from 233.35 billion tons in 2000 to

774.71 billion tons in 2015—an increase of 232%

(Supplementary Table S6). There are significant differences in

the spatial distribution between the supply and demand

(Figure 3). Among them, high carbon storage supply is mostly

distributed in the western and northern parts of the study area,

while areas with high demand are more concentrated in the

urban centers. From 2000 to 2015, supply increases occurred

mainly in the northern area, while decreases happened mainly in

the east and west of the study area. In addition, the demand for

carbon storage increased throughout the whole area, especially in

Beijing and Tianjin cities.

Water provision
The water provision supply grew from 62.02 billion m3 in

2000 to 66.05 billion m3 in 2015—an increase of 6.49%

FIGURE 7
The Moran scatterplot and LISA cluster graphs of the ESDRs of four ESs in the BTH from 2000 to 2015.

TABLE 2 The q statistics for the explanatory variables derived from Geographic Detector Model.

GDP BLP FOR POP PRE TEM EVA ELE SLO REL SRD

CS 0.206* 0.161* 0.063 0.186* 0.112* 0.076* 0.055 0.021 0.023 0.019 0.091

WY 0.234* 0.150* 0.066 0.159* 0.108* 0.059 0.086* 0.060 0.022 0.058 0.075*

FP 0.235* 0.150* 0.067 0.159* 0.109* 0.059 0.086* 0.060 0.022 0.058 0.075*

SC 0.051 0.081* 0.019 0.048 0.017 0.008 0.051 0.149* 0.214* 0.141* 0.032

*** means p < 0.001; ** means 0.001 < p < 0.01; * means 0.01 < p < 0.05. Per.GDP, changes of per capita gross domestic product; BLP, changes of percentage of built-up land; FOR, changes of

percentage of forest land; POP.Den, changes of population density; PRE, changes of average annual precipitation; TEM, changes of annual average temperature; EVA, changes of actual

evapotranspiration; SRD, changes of annual average solar radiation; SLO, mean slope; ELE, mean elevation; REL, mean relief amplitude.
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(Supplementary Table S5). In the meantime, the demand for

water decreased by 5.31%, from 2.98 × 104 billion m3 in 2000 to

2.83 × 104 billion m3 in 2015 (Supplementary Table S6). The

area with the largest supply mainly occurs in the northern parts

of the study area, followed by the western area. Areas with high

demand are more concentrated in the urban built-up areas

(Figure 4). From 2000 to 2015, the increases in supply mainly

occurred in the northern part of the study area, while the

decrease mainly occurred in the southern part. The increase

in water provision service demand was mainly located in Beijing

and Tianjin cities.

Food provision
Food provision supply increased by 23.7%, from 4.02 million

tons in 2000 to 4.97 million tons in 2015 (Supplementary Table

S5). In the same period, food demand showed an increase of

25.44%, from 32.33 billion tons consumed in 2000 to

40.55 billion tons consumed in 2015 (Supplementary Table

S6). The area with higher supply was Hebei Province,

especially in the northwestern and southeastern parts. Beijing

and Tianjin had a lower supply in 2000 and 2015 (Figure 5).

From 2000 to 2015, the increases in supply mainly occurred in

more counties of Hebei Province, while the food provision supply

decreased sharply in Beijing and Tianjin. In terms of demand,

most county scale units in Beijing and Tianjin had a markedly

higher consumption than that of the counties in Hebei Province.

The distribution of the increase in food provision demand was

mainly located in Beijing and Tianjin cities.

Soil conservation
Soil conservation supply increased by 0.54% from

17.20 billion tons in 2000 to 17.29 billion tons in 2015

(Supplementary Table S5). In the same period, the demand

for soil conservation showed a decrease of 22.01%, from

42.82 million tons to 33.40 million tons (Supplementary Table

S6). Higher supply was mainly located in the northeastern parts

of the study area, while areas with high demand were more

concentrated in the southeast regions (Figure 6). From 2000 to

2015, the increases in supply mainly occurred in the northwest

and northeast of Hebei Province and north and west of Beijing,

while the southeast of the study area experienced a slight

FIGURE 8
RDA results for the explanatory variables of ES ESDRs. The
solid blue lines represent the ESDRs changes of ESs. The solid red
lines represent the main drivers. Per.GDP, changes of per capita
gross domestic product; POP.Den, changes of population
density; SLO, mean slope; ELE, mean elevation; REL, mean relief
amplitude.

FIGURE 9
The spatial interaction between the driving factors and ESDR of (A) carbon storage, (B) water provision (C) food provision and (D) soil
conservation. B: Beijing city; T: Tianjin city; H: Hebei province.
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decrease. The distribution of the higher demand is more

concentrated in the northern part of Hebei Province in

2000 and 2015. The distribution of the increase in soil

conservation demand was mainly located in the southeast

regions.

Spatiotemporal changes of the ES ESDRs

Sub-area statistical analysis showed that supply-demand ESs

of carbon storage, water provision and food provision services in

all administrative counties and districts showed negative

balances. All sub-areas were at a serious deficit over time in

the BTH urban agglomeration (ESDRs <0, detailed mismatch

results can be seen in Supplementary Table S7). Soil conservation

was the exception; the ESDR was over 0, and showed an upward

trend from 2000 to 2015. This indicates that the supply and

demand of soil conservation are nearly balanced (Supplementary

Table S7).

The spatial correlation of the ESDRs of ESs can be expressed

by the global Moran’s I at the county or district scale using

GeoDA software (Zhang et al., 2017) (Figure 7). The results

showed that the global Moran’s I values increased from 2000 to

2015 for all the ES ESDRs, with their values all exceeded 0.24.

High-value areas tend to be concentrated and low-value areas

tend to be adjacent, indicating that the ESDRs generally present

significant positive spatial correlation (Moran’s I value >0;
p-value < 0.01). According to the Moran’s I scatterplot, the

values for the ESDRs of carbon storage, water provision and

food provision services were mainly distributed in the third

quadrant, while the values for soil conservation were mainly

distributed in the first quadrant (Figure 7). According to the LISA

map of the ESDRs, the northern part (mainly in Hebei province)

and central part (mainly in Beijing and Tianjin Municipalities) of

the BTH showed a diametrically opposite spatial distribution,

with the ESDRs in the northern parts showing “High-High”

clustering, and the central and southeastern parts showing “Low-

Low” clustering.

Associating ESDR with driving factors

Effects the driving factors on ESDRs of ESs
The joint and individual effects of driving factors on ESDRs

were analyzed using the Geodetector model (Supplementary

Table S8). The results showed that the interaction effect (q) of

annual average temperature (TEM) and actual

evapotranspiration (EVA) changes on carbon storage, water

provision and food provision was the greatest from 2000 to

2015. The next most relevant factors were average annual

precipitation (PRE) and population density (POP.Den). Per

capita gross domestic product (Per.GDP) interacted strongly

with changes in PRE, percentage of forest land (FOR), and

POP.Den. In addition, the interaction between mean slope

(SLO) and TEM exhibited the largest effect on soil

conservation. Soil conservation was also impacted, though not

as strongly, by changes in the percentage of built-up land (BLP),

changes in average annual precipitation (PRE), and changes in

per capita gross domestic product (Per.GDP). The q statistics

between the 11 independent variables and the ESDRs of four ESs

were estimated (Table 2). Per capita gross domestic product

(Per.GDP) had the largest effects on ESDR changes in carbon

storage, water provision and food provision. Population density

(POP.Den), percentage of built-up land (BLP), and average

annual precipitation (PRE), respectively, had the next most

significant effect on these ESs. The mean slope (SLO) was the

most able to explain the ESDR of soil conservation, followed by

mean relief amplitude (REL) andmean elevation (ELE) (Table 2).

To examine the directional associations between the driving

variables and the ESDRs, redundancy analysis (RDA) was

performed (Figure 8). The results showed that the first two

axes explained 42.44% of the total variation. The ESDR

changes of the carbon storage, water provision and food

provision services were negatively influenced by socio-

economic factors, including the changes in per capita gross

domestic product (Per.GDP) and population density

(POP.Den). Soil conservation was positively affected by

geomorphological factors, of which mean slope (SLO) was the

TABLE 3 MGWR statistics based on six explanatory factors, VIF based filtered factors, and all explanatory factors for different ecosystem services.

Driving factors R2 Adj. R2 Classic AIC AICc BIC/MDL Intercept

ESDR of CS

Anthropological factors 0.508 0.486 442.002 442.978 472.011 −1.500

ESDR of WY

Anthropological factors 0.563 0.536 425.074 426.883 466.122 0.672

ESDR of FP

Anthropological factors 0.563 0.537 424.712 426.521 465.760 0.692

ESDR of SC

Geomorphological factors 0.320 0.268 518.085 520.722 567.611 −0.911
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most relevant, followed by mean relief amplitude (REL) and

mean elevation (ELE).

Spatial regression between driving factors and
ESDR

The spatial regression between the driving factors and ESDRs

of carbon storage, water provision, food provision and soil

conservation were analyzed using the MGWR model and

presented in Figure 9. Anthropological factors were correlated

with the ESDR changes of carbon storage, water provision and

food provision, with local R2 values of 0.61–0.75, 0.53–0.82, and

0.52–0.81, respectively. The low local R2 value of the correlation

between anthropological factors and ESDR of carbon storage was

mainly distributed in the north, ranging from 0.37 to 0.46.

Additionally, there is overlap in low-value areas related to

water provision and food provision. These are mainly

distributed in the south and east of the study area, and range

from 0.11 to 0.33. While examining the spatial association

between the geomorphological factors and ESDR change of

soil conservation, high local R2 values (R2 = 0.42–0.46) were

found in the eastern areas, while very low regression values (R2 =

0.23–0.26) were estimated in the southern areas (Table 3). The

MGWR estimates revealed that among the 11 driving factors, the

anthropological factors produced were the most closely

associated with the ESDR change of food provision,

characterized by a maximum local R2 value (RAdj.
2 = 0.537).

Discussion

Influencing factors of the imbalance
between ES supply and demand

The BTH urban agglomeration is composed of two

municipalities under the central government and

11 prefecture-level cities. The patterns of the supply and

demand of ESs and ESDRs present different spatial

distribution characteristics; ES supply and demand has

obvious negative spatial correlations, and the spatial

imbalance is prominent. This finding is inconsistent with the

results discerned by (Wu et al., 2018). (Wu et al., 2018) adopted

the scoring matrix method proposed by (Zhang et al., 2004) to

quantify the relationship between ES supply and demand,

making the scale more detailed. Areas with the lower ESDR

values indicate that the ES supply and demand are extremely

mismatched, and are mainly distributed in the central urban

areas of Beijing and Tianjin. This is because these areas have high

levels of urban economic development, high population density,

and increasing demand for natural resources (Ou et al., 2018). In

addition, the northern region is a key ecological area, and it is also

the core of ES supply for carbon storage, water provision and soil

conservation in the whole urban agglomeration. Demand in the

north is, however, very low.

The shortages and mismatches of ES supply and demand are a

result of the complex interaction and comprehensive influence of

multiple factors including socioeconomic development and natural

occurrences (Sun et al., 2019; Peng et al., 2020; Zhang et al., 2021).

Geodetector model results showed that the interaction between the

changes of annual average temperature (TEM) and changes of actual

evapotranspiration (EVA) has the greatest influence on the ESDR

changes of carbon storage, water provision and food provision,

although their individual influence is very weak. Studies have shown

that several climatic factors (e.g. temperature, precipitation,

evapotranspiration) can have significant impacts on multiple ESs,

which is illustrated also in our study (Bryan et al., 2018; Chiabai et al.,

2018; Chaplin-Kramer et al., 2019; Sannigrahi et al., 2020). (Nelson

et al., 2013) suggested that climate change will modify the capability

of different key ecosystem functions, including food production,

wildfire regulation, hazard reduction, coastal flood protection, water

supply, nature-based tourism, and other recreational services. When

it comes to the individual influence of factors, strong associations

between anthropological factors and carbon storage, water provision

and food provision were observed, which is consistent with several

previous studies (Yahdjian et al., 2015; Zhang et al., 2021). This

indicates that anthropological factors are important in influencing

the mismatch between ES supply and demand, even though natural

factors determine themismatch from the supply side to some extent.

The mismatch of soil conservation was mainly affected by the

mean slope (SLO), indicating that geomorphological factors played

the dominant role; that is, supply determines the mismatch of soil

conservation. This is mainly due to the calculation of ESDR of soil

conservation service, which does not consider social and economic

factors such as population density. Furthermore, the MGWRmodel

was performed to evaluate the spatial interaction between the driving

factors and ESDRs of carbon storage, water provision, food provision

and soil conservation in the BTH region. The result showed that the

anthropological influences on the ESDRof carbon storage varies with

geographical space. The corresponding anthropological factors

produced very high local R2 values in the south-central region

while they displayed lower regression estimates in the northern

region. This suggests that the area near the northern forest is less

vulnerable to human activities than the southern plain area.

Suggestions to balance the supply and
demand for ESs

Four suggestions were put forward for the BTH urban

agglomeration based on our results, which would alleviate the

continuous imbalance between ES supply and demand and

contribute to the sustainable development of the human-

environment system. First, we recommend coordinating the

spatial mismatches from both the supply and the demand

sides of ESs. More attentions should be paid to alleviating the

population pressure, as our study indicated that ESDRs of carbon

storage, water provision and food provision are most strongly
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correlated with anthropological factors (Per.GDP and POP.Den)

(Zhang et al., 2021). Second, from the perspective of increasing

the supply of carbon storage and water provision, ecological

protection and restoration should be carried out on the natural

land (Yang et al., 2019). Policies aimed at reducing ES demand

are unavoidable, because it is unrealistic to increase vegetated

areas to meet the human demand for carbon storage. For

instance, energy efficiency should be improved, and energy-

saving measures should be implemented, so as to mitigate the

imbalance between the supply and demand of carbon storage.

Third, the spatial imbalance between ES supply and demand may

trigger a series of unintended environmental concerns and social

equity issues. Maintaining and improving the original ecosystem

supply capacity could alleviate the contradiction between ES

supply and demand (Verhagen et al., 2017; Sun et al., 2019), but it

may not be the best solution, as the ecosystem has a limited

capacity. On the other hand, the shortage of ESs can also be

solved through trade, transportation and other measures

(Cumming Cramon, 2018). For instance, food and water

resources may be transferred from places further away to the

urban agglomeration city center, as the area of nearby cultivated

land declines and the population within the cities increases (Yu

et al., 2021). In addition, implementing the consumption

reduction mechanism is a more promising way to meet

human demand (Kehoe and Rhodes, 2013).

Limitations and future research directions

Within the background of this study, it is difficult to

comprehensively analyze all types and processes of ecosystem

supply and demand, as the coupled system integrating human

and natural factors is very complicated. Therefore, there are some

limitations in our evaluation of ES supply and demand that need

to be further explored in future studies. First, the evaluation

method of ES supply is based on the land use classifications and

the biophysical table, which contains the model information

corresponding to each land use type and is revised according

to the actual situation in BTH urban agglomeration. However,

the classification standards of land use types may be different;

some minor lands are considered homogeneous (Li et al., 2020;

Sharp et al., 2020). Thus, the calculation of ES supply was

considered inaccurate, and the regional difference

characteristics of the ES supply pattern cannot be precisely

described. Second, this study mainly used the socioeconomic

data at the county scale to quantify the demand for ESs, which

reflects spatial differences on a coarse scale. This study did not

consider the conditions of different ES characteristics and local

stakeholders, who may have short-term or long-term interests in

ESs (Zhang et al., 2021). Therefore, in the future, we could

comprehensively explore the quantification of ESs supply and

demand frommultiple scales andmultiple stakeholders. Third, in

addition to accounting for the ES supply and demand, it is

important to identify who provides these ESs, which areas

have the right to consume, and whether the scope of supply

and consumption is available only within an area or extends to

other regions (Xu et al., 2021). Even with a study that analyzes

those factors, the reality of ES circulation within the regional

socioeconomic system is likely more complicated than we can

capture. Thus, future research is suggested to incorporate ES flow

identifications into ES assessment, which will reveal more details

about the interactions between the natural and social systems and

provide more information on ES management (Syrbe and Walz,

2012; Schirpke et al., 2019).

Conclusion

This study explored spatiotemporal changes of ES supply and

demand, as well as their mismatches in the BTH urban

agglomeration of China from 2000 to 2015. Then, we focused

on exploring the spatial effects of anthropological, climatic, and

geomorphological factors. We further proposed several strategies

to offset ES deficits. The results showed that ES supply decreased

from 2000 to 2015, while ES demand increased, leading to

mismatches spatially, especially in highly urbanized

metropolises. To offset the ES deficits, alleviating the population

pressure, protecting natural land, and implementing the energy-

saving measures would be useful strategies. The anthropological

factors, including Per.GDP and POP.Den, are the key drivers in the

imbalance of carbon storage, water provision and food provision.

Geomorphological factors, including mean elevation (ELE) and

mean slope (SLO), are the key drivers for soil conservation. In

addition, the drivers of ESs exhibited spatial heterogeneity. The

high local R2 values for ESDR changes of carbon storage, water

provision and food provision are mainly distributed in the central

and southern region, while a strong association for soil

conservation is mainly obtained in the eastern regions. In order

to alleviate ES deficits and support ES sustainability, corresponding

land-use strategies and socioeconomic and ecological management

measures should be adopted. Overall, more localized and efficient

land-use decisions and ES management strategies should be

implemented to achieve regional sustainability.
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