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The digital economy has introduced far-reaching innovations in the fields of government
governance, enterprise production, and social operation. How to motivate the economic
development mode towards a low-carbon and greenway transformation through the
digital economy is a major issue concerning the Chinese government. However, there is
scarce evidence to interpret the rolemechanism of the digital economy on carbon emission
efficiency from the factor misallocation scenario. Taking a database from 30 provincial-level
administrative regions for the period from 2011 to 2019 in China as an example, the paper
examines the effect of the digital economy on carbon emission efficiency, as well as
explores its role mechanism deeply in terms of factor misallocation (capital misallocation
and labor misallocation). The results suggest that there is a significant potential for the
digital economy to contribute to carbon emission efficiency, as well as this finding, is valid
when considering both the endogeneity issue and a series of robustness checks. Also, the
digital economy can significantly contribute to carbon efficiency in both southern and
northern regions, but more strongly in the northern region. Besides, the digital economy
can inhibit the factor misallocation (labor misallocation and capital misallocation) level which
ultimately improves carbon emission efficiency. Finally, as a digital economy, it can
positively impact carbon efficiency in the long run by mitigating factor misallocation
(labor misallocation and capital misallocation).

Keywords: digital economy, factor misallocation, carbon emission efficiency, regional heterogeneity, economic
development

1 INTRODUCTION

Global warming has already emerged as an extremely serious impediment to low-carbon
development, and how effectively controlling and reducing greenhouse gas emissions (GHG),
mainly carbon dioxide, has proven to be a major issue in front of mankind. As China’s
industrialization and urbanization continuously advance, the rapid economic growth and social
productivity continue to rise, while energy consumption emits enormous amounts of carbon dioxide
(Wang et al., 2019; Wang et al., 2020a). Excessive GHG emissions which result in increasingly
frequent extreme and severe weather phenomena also have an adverse impact on production,
economic development, and physical and mental health, and consequently, the resulting ecological
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concerns are already inflicting incalculable economic losses
(Deng et al., 2019; Jia et al., 2022; Li Z. et al., 2021). As
evidenced by data published by the International Energy
Agency (IEA), China’s carbon emissions surged dramatically
since the 21st century, with its total carbon emissions surging
from 8.83 billion tons to 9.9 billion tons over the past decade,
rendering it the world’s largest carbon emitter1. In response to the
increasingly challenging climate environment, the Chinese
government has successively enacted several policies to
shoulder its share of responsibility in the developing process
(Yang et al., 2022; Ren et al., 2021). China, for example, has made
clear that it will contribute more autonomously by aiming for
“peak carbon emissions by 2030 and carbon neutrality by 2060”
(Hao et al., 2021; Fang et al., 2022; Xin et al., 2022). Nevertheless,
as China strives to fulfill its carbon emission reduction goals, the
most immediate dilemma is the need to optimize the ecosystem
by boosting carbon emission efficiency while guaranteeing stable
and healthy economic development (Meng et al., 2021). Carbon
emission efficiency is considered as one of the parameters to
evaluate low carbon economy level, which is essentially a
production technology efficiency considering carbon emission
that can reflect the resource utilization efficiency of production
activities as well as the carbon utilization capacity (Shi et al.,
2022). Therefore, an in-depth discussion on carbon emission
efficiency not only helps analyze the scope for carbon emission
reduction improvement in each area, but also contributes to the
early achievement of the double carbon goal.

Since the double carbon goal is proposed, how to strengthen
carbon emission efficiency has become a hot topic for scholars,
and scholars have conducted investigations on carbon emission
efficiency-related issues from various fields. As a newly emerging
economic phenomenon, the digital economy has been
continuously elevating the digitalization, networking, and
intelligentization of the economy and society through digital
industrialization and industrial digitization, effectively driving
economic development (Li J. et al., 2021). Meanwhile, the digital
economy reacts directly to the huge changes in the internal
endowment and external environment of the economy under
its high penetration, scale effect, and network effect. The White
Paper on the Development of China’s Digital Economy covers the
Chinese digital economy scale from RMB 9.5 trillion in 2011 to
RMB 39.2 trillion in 2020, as well as the share of GDP accounted
for by the digital economy at 38.6% in 2020, with a 9.7% growth
rate, significantly faster than the nominal GDP growth rate in the
same period2. Consequently, the digital economy has experienced
rapid growth with continuous attention from academia (Wang et
al., 2021a). Among them, the impact of the digital economy on
carbon emission efficiency is one of the key points of academic
interest. Some scholars consider that the digital economy can
directly or indirectly influence the carbon emissions generated by
energy activities and thus the carbon emission efficiency through

its wide application in the chain of energy production,
consumption, transmission, operation, management,
measurement, and trading. Other scholars believe that the
e-commerce industry, big data industry, communication and
Internet industry in the digital economy, as environmentally-
friendly industries, can crush highly energy-consuming and high-
emission industries through the crowding-out effect and optimize
the industrial structure, which in turn affects carbon emission
efficiency.

Moreover, lagging factor market reform is a critical factor in
China’s slow marketization process, which is largely reflected in
the excessive intervention of local governments in factor trading
activities (Yang et al., 2021a). Such excessive intervention can
distort factor prices and consequently trigger factor misallocation
(Wang et al., 2020c; Wang et al., 2021b; Wu et al., 2022). The
Chinese government, suggests that the proliferation and
transmission of resource allocation distortions have brought
about economic and structural problems. However, market-
based factor allocation is the fundamental way to drive high-
quality economic development. Simultaneously, the spread of
digital infrastructure and digital technology has a huge impact on
economic development. Regarding the allocation of resources, the
digital economy can alleviate information asymmetry, which is an
essential factor affecting the flow and allocation of labor and
capital. However, few existing studies seek to quantify the impact
of the digital economy on carbon emission efficiency by
considering factor misallocation. So, what is the impact of the
evolving digital economy on carbon emission efficiency, and how
does this impact differ from a regional heterogeneity perspective?
What is the role of the impact of the digital economy on carbon
efficiency in factor misallocation scenarios? Responses to the
above questions are not only informative and instructive for
realizing a green and low-carbon economic transition by raising
carbon emission efficiency, but also serve as policy guidance for
emerging economies with similar development to China.
Therefore, this paper incorporates factor misallocation into the
research framework of the impact of the digital economy on
carbon emission efficiency, systematically discusses the role
mechanism and heterogeneity of the digital economy on
carbon emission efficiency under factor misallocation, and
quantifies the dynamic effect of the digital economy and factor
misallocation on carbon emission efficiency. This study aims to
provide a scientific basis and theoretical reference for improving
the construction of the digital economy, reducing factor
misallocation, and facilitating the steady improvement of
carbon emission efficiency through rigorous empirical analysis.

This paper primarily supplements the current research in the
following dimensions. First, because of its high penetration, the
digital economy is highly integrated with other industries, so the
results of directly measuring the value-added to the digital
economy or using the satellite account method may
underestimate the scale of the digital economy. Comparatively,
utilizing the input-output method of national accounting to
evaluate the value-added to the digital economy may be nearer
to the real value. Therefore, this paper adopts the input-output
method to estimate the digital economy to develop the existing
content of the research on measuring the digital economy.

1See more detail: https://www.bp.com/content/dam/bp/business-sites/en/global/
corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-
report.pdf.
2See more detail: http://m.caict.ac.cn/yjcg/202007/P020200703318256637020.pdf.
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Second, this paper examines the role mechanism of the digital
economy in influencing carbon emission efficiency according to
the current literature, and then investigates the nexus that
emerges between the digital economy and carbon emission
efficiency with the help of an econometric model, as well as
demonstrating the heterogeneity of the relationship between the
two based on geographical location, which is conducive to the
development of related theories. Thirdly, the intrinsic mechanism
of interaction between the digital economy and carbon emission
efficiency is further fully dissected from the factor misallocation
perspective, which is empirically inspected by constructing a
mediating effect on the basis of measuring the degree of
resource misallocation. Finally, in conjunction with the
findings of the study, this paper gives specific policy
implications for the better role of the digital economy in
factor allocation improvement and carbon emission efficiency
enhancement, and policy rationale for digital economy
development following specific local conditions.

2 LITERATURE REVIEW

Judging from the available studies, those highly linked to the
digital economy, factor misallocation, and carbon emission
efficiency can be largely categorized as three categories as
follows. The first category is concerned with the discussion of
the digital economy measurement and its economic and social
effects (Li Y. et al., 2021). Digital technologies, such as cloud
computing, the Internet of Things, as well as artificial intelligence,
have been continuously integrated with public administration,
logistics, transportation, and traditional manufacturing
industries in recent years, empowering traditional industries
with a digital economy to achieve high-quality economic
development has become a topical issue (Corbett, 2018). Since
its birth, the concept of the digital economy has gone through
roughly the stages of an information economy, internet economy,
and digital economy (Mesenbourg, 2001; Ma et al., 2022). As the
digital economy develops and evolves, scholars have gradually
widened the differences in their understanding of the digital
economy (Bowman, 1996; Moulton, 2000; Turcan and Juho,
2014). As a result, there are also significant differences in the
measurement methods of the digital economy. The current
calculation of the digital economy can be categorized in four
ways, which are national economic accounting methods, studying
the value-added of the digital economy, measuring satellite
account construction, and indexing (Acevedo Ruiz and Pena-
Lopez, 2017; Jolliff and Nicholson, 2019; Ojanperä et al., 2019). Li
J. et al. (2021), for example, measure the digital economy in terms
of the Internet dimension using the entropy value method. Li Y.
et al. (2021) take “Digital Inclusive Finance Index of China Peking
University” as benchmark indicators to construct the digital
economy index. Although scholars are yet to develop a unified
concept of the digital economy, they have affirmed its positive
effects on economic and social development. Labaye and Remes
(2015) demonstrate that digital technologies have significantly
contributed to China’s economic growth. Goldfarb and Tucker
(2019) argue that the digital economy is a manifestation of the

marketization of a new generation of digital technologies, which
have natural advantages in reducing data-processing costs,
transaction costs, and optimizing resource allocation.
Ghasemaghaei and Calic (2019) describe the digital economy
in terms of data that can improve the quality and efficiency of
traditional factors such as labor and capital, which in turn can
contribute to economic growth.

The second category is the research associated with carbon
emissions. In line with the increasing prominence of climate
issues, scholars have conducted increasingly profound
investigations on carbon emissions, mainly concentrating on
two dimensions of carbon emission level measurement and
influence factor exploration (Xu et al., 2014). Ran et al. (2015)
and Tang et al. (2020), for example, investigate carbon emissions
in the Yellow River basin and the Yangtze River basin,
respectively. Zheng et al. (2022) use multi-source data to
investigate carbon emissions from energy consumption in
Beijing as well as formulate a novel framework to calculate
carbon emissions from houses and urban facilities. Cheng
et al. (2018) account for the total factor carbon emission
efficiency of the industrial sector separately by provincial
administrative regions, and carbon emission efficiency has a
significant growth trend. Shi et al. (2017) examine the factors
influencing carbon emissions in the building industry, which
shows that the energy intensity are the largest positive and
negative roles on carbon emissions increase in the building
industry, respectively. Zhou et al. (2020) analyze that
regarding the association with industrial structure upgrading
and carbon emission efficiency from a coupling perspective,
discovering that a significant dynamic asymmetry is observed
between carbon emission efficiency and industrial structure
upgrading in most regions. Fang et al. (2022) utilizes the ICPP
emission inventory method to estimate carbon emissions in eight
industries in China and predicts that it is highly improbable that
agriculture, building, manufacturing and transportation
emissions will peak in 2030, while emissions from power and
mining could peak in 2030.

The third category is the research associated with resource
misallocation. It is an extremely crucial issue in economics
research and one of the most critical issues via economic
development in the world economy, thus, it has been a hot
issue in the scientific community. A typical study on resource
misallocation is Hsieh and Klenow’s (2009) computational index
of resource misallocation and productivity gap estimation model,
which measures such factors as labor and capital that are not
optimally allocated and the resulting efficiency deficit.
Additionally, Banerjee and Moll (2010) demonstrate that
reallocating factors under conditions where the marginal
output of all firms’ factors are all equivalent can still
contribute to higher output. A study by Ljungwall and
Tingvall (2015) highlights the insufficient R&D spending in
China owing to the presence of more severe factor market
distortions, causing a lag in innovation capacity. Examining
30 provincial administrative regions in China, Brandt et al.
(2013) report that total factor productivity losses in China
primarily originate from the misallocation of capital among
provinces and the public and non-public sectors. Dollar and
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Wei (2007), using a study of more than 12,000 Chinese firms,
suggest that improvement in capital distortion can increase GDP
by 5% with constant inputs. Li and Du (2021) examine the micro-
firm level to reveal that, in Chinese firms, internet development
can contribute to energy efficiency by mitigating resource
misallocation, resulting in energy savings. Yang et al.
(2022) identify a significant spatial distribution
heterogeneity of energy misallocation in China, which is
strongly linked to the degree of energy internet
development. Wu et al. (2022) assert that the distortions of
capital distortions and output distortions to total factor
productivity in the thermal power industry are more
significant in hydropower plants in hydro-rich regions.

An overview of the existing studies suggests that the study on
the role influence of the digital economy on carbon emission
efficiency is just in its initial stage, especially few reports
investigating the role mechanism of the digital economy on
carbon emission efficiency from the consideration of factor
misallocation. On the one hand, on the basis of a continuing
study of the existing literature, this paper further theorizes how
the digital economy can mitigate factor misallocation and thus
contribute to carbon emission efficiency. On the other hand,
utilizing a database from 30 provincial-level administrative
regions for the period from 2011 to 2019 in China as an
example, the capital misallocation index and labor
misallocation index are introduced as mediating variables to
deeply analyze the transmission mechanism and impact effect
of factor misallocation between the digital economy and carbon
emission efficiency.

3 THEORETICAL ANALYSIS AND
RESEARCH HYPOTHESIS

The effect of the digital economy on carbon emission reduction
efficiency is manifested in the three major aspects as follows. First,
the digital industry represented by electronic equipment
manufacturing and information technology services has all the
attributes of an environmentally friendly industry. Digital
industries are generally greener than traditional industries,
whose development is less damaging to the environment
(Ghobakhloo and Ching, 2019). Second, digital
industrialization can help traditional industries improve their
carbon emission efficiency. With the continuous promotion of
digital industrialization, digital technologies represented by big
data and artificial intelligence will continuously integrate with
traditional industries. This will not only help their industries to
gradually transform into digital, intelligent, and green, ones but
also reduce energy consumption and carbon emissions while
improving industrial added value (Qin and Cheng, 2017). Third,
the establishment of a carbon emission market encourages
enterprises to carry out environmental technology innovation.
And the development of the digital economy helps to solve a
series of key technical problems that plague the establishment of
the carbon market, such as carbon emission monitoring,
reporting, and verification (Weng and Xu, 2018). Based on
this, this paper proposes hypothesis H1.

Hypothesis H1: The digital economy can significantly improve
carbon emission efficiency.

Moreover, as the digital economy develops, the cost of
information search decreases significantly, which reduces the
information asymmetry between supply and demand, thus
improving the price mechanism and reducing the degree of
factor misallocation. Simultaneously, the digital economy has
substantially strengthened market competition (Chen, 2020). On
the one hand, because of the improved efficiency of information
access, both the entry barrier of producers and the bargaining
power of consumers have been lowered, thus significantly
enhancing competition. On the other hand, the rise of the
platform economy has blurred the concept of geography and
intensified the cross-regional competition of enterprises. It
gradually eliminates the less efficient enterprises in the
continuous fierce competition, thus realizing the reallocation
of factors. Third, the digital economy has obvious high
permeability and high synergy. The combination of
information, data, and other factors with traditional factors
has substantially improved the productivity and allocation
efficiency of factors (Zhai et al., 2022). The rise of the digital
economy has also transformed traditional organizational
structures and business processes towards networking,
flattening, and flexibility, thereby improving the degree of
factor misallocation (Kretschmer and Khashabi, 2020). Based
on this, this paper proposes hypothesis H1.

Hypothesis H2: The digital economy can significantly inhibit
factor misallocation.

The digital economy itself has such characteristics as scale
effect, network effect, and platform effect, and thus it creates new
channels and platforms for the orderly and reasonable flow of
production factors associated with the rapid development of the
digital economy, which in turn has an indirect role in promoting
carbon emission efficiency. Digital economy development assists
in lowering information and transaction costs as well as regional
industrial upgrading (Lin and Chen, 2018, which in turn
contributes to the carbon emission efficiency. On the one
hand, the spatio-temporal compression characteristics of the
digital economy effectively alleviate information asymmetry,
and significantly reduce information costs and transaction
costs, thus expanding the market scope while reducing
industry and transaction barriers, prompting production
factors and commodities to flow in a larger space in an
orderly and reasonable manner, thus alleviating the problem
of factor misallocation. On the other hand, the digital
economy boosts the digital and intelligent transformation of
industries, thus optimizing resource allocation. For example,
the digital economy eliminates backward enterprises and
industries such as low efficiency and high energy consumption
through competitive effects and promotes new industries and
new business models in the form of digital and intelligent
transformation of traditional enterprises (Mattauch et al.,
2015). This not only broadens the flow channels and
platforms of production factors and improves factor allocation
efficiency, but also promotes carbon emission efficiency.

Hypothesis H3: The digital economy improves carbon
emission efficiency by ameliorating factor misallocations.
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The theoretical mechanism of this paper is illustrated on the
basis of the above theoretical analysis (Figure 1).

4 MODEL SETTING

4.1 Economic Strategies
Referring to Wang et al. (2022), this paper develops the following
model to examine the role of the digital economy on carbon
efficiency. Specific model setting is given in Eq. 1:

CEEit � α0 + α1DIGit + α2Xit + μi + εit (1)
where i(t) denotes the region (time), Cee is the explanatory

variable, denoting the carbon efficiency, Dig is the core
explanatory variable, denoting the digital economy. X
denotes some control variables, such as energy mix (ECS),
environmental regulation (ERS), openness (OPE), human
capital (HUC), and technological innovation (TEC). μ
indicates unobservable area individual effects. ε is a
random disturbance term (obeying normal distribution). α
is the coefficient to be estimated.

Next, the following equation is developed to examine whether
the digital economy can contribute to carbon emission efficiency
by mitigating factors misallocation degree.

Step 1: The estimating equations of the digital economy and
factor misallocation (including capital misallocation
and labor misallocation) is constructed (See Eqs. 2 and 3).

τKit � α0 + β1DIG + ΣθjXit + μi + εit (2)
τLit � α0 + β2DIG + ΣθjXit + μi + εit (3)

where τK and τL denote the capital and labor misallocation
indexes, respectively. The other variables have identical meanings
to those defined in Eq. 1.

Step 2: To inspect whether the digital economy can contribute to
carbon emission efficiency by mitigating factor
misallocation (capital factor misallocation and labor
factor misallocation) (See Eqs. 4 and 5).

τKit � γ0+γ1DIG + γ2τKit + ΣθjXit + μi + εit (4)
τLit � γ0+γ3DIG + γ4τKit + ΣθjXit + μi + εit (5)

Referring to the test of Yang et al. (2021b), the significant β in
Eqs. 2 and 3 is a prerequisites for the test of mediating effects,
suggesting that there is an effect of the digital economy on capital
misallocation and labor misallocation. If the coefficients γ1 and γ2
are significant or when β2 and γ4 are statistically significant, a
mediation effect exists.

4.2 Variables Selection
4.2.1 Digital Economy
Following the research method of Wang et al. (2021b), this paper
employs the scale of the digital economy to characterize the
digital economy development degree. Under the definition of the
connotation of the digital economy, the digital economy scale is
estimated by using digital industrialization and industrial
digitization as two parts of accounting for the scale of the
digital economy (Li Y. et al., 2021; Wen et al., 2021). Among
them, digital industrialization scale is mainly denoted by the
added value of the information and communication technology
industry (ICT), and the scale of industrial digitization is denoted
by the contribution of the information and communication

FIGURE 1 | Theoretical mechanism diagram.
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technology industry (ICT) to the added value of other industries.
In summary, the scale of the digital economy can be indicated by
Eq. 6.

Digital economy scale � digital industrialization scale

+ industrial digitization scale (6)

Step 1: Digital industrialization scale (CEE), i.e. the total value
added to the information and communication technology
industry (ICT) sector, is calculated with the formula
given in Eq. 7.

GICT � ∑n

k�1ICTk (7)
where GICT denotes the scale of digital industrialization.

ICTk denotes the value-added of each sub-sector in the
information and communication technology industry.
Computer value-added, communication as well as other
electronic equipment manufacturing ICT1 and information
transmission value-added, software and information
technology services ICT2 is considered as digital
industrialization scale in the input-output table. This paper
considers the sum of the value-added of computer,
communication, and other electronic equipment
manufacturing (ICT1) and the value-added of information
transmission, software, and information technology services
(ICT2) in the input-output table to be the scale of digital
industrialization.

Step 2: Industry digitalization scale, i.e., the value of ICT the
industry’s contribution to the value-added of other
industries. The volume of information and
communication technology industry (ICT) that is
employed in the production process of primary
industry, secondary industry, and tertiary industry is
adopted as an intermediate input. This paper divides
the size of the digital economy industry into the value-
added of digital basic industries and the value-added of
digital auxiliary activities and determines the proportion
of the value of ICT intermediate inputs to total
intermediate inputs in the accounting period when
calculating the value-added of digital auxiliary
activities. Meanwhile, this paper determines the
proportion of the contribution of the information and
communication technology industry (ICT) to other
industries value-added using the above method.
Considering that price factors can affect the accounting
of the size of the digital economy, the price indices of the
information and communication technology industry
(ICT) and primary, secondary and tertiary industries
are introduced in the accounting to convert intermediate
inputs into constant prices to correct the contribution
share. Therefore, the scale of industry digitalization is
calculated as shown in Eq. 8.

GI � ∑3

i�1Gi ×
IiICT1/PICT1 + IiICT2/PICT2

Ii/Pi + IiICT1/PICT1 + IiICT2/PICT2
(8)

where the subscript i denotes each industry. GI denotes the
scale of digital industrialization; Gi denotes the value-added of
industry i. IiICT1 denotes the input of computer,
communication and other electronic equipment
manufacturing industry in industry i. PICT1 denotes the ex-
factory price index of industrial producers of communication
equipment, computers, and other electronic equipment
manufacturing industry. IiICT2 denotes the input of
information transmission, software, and information
technology service industry in industry i. PICT2 denotes the
ex-factory price of software, information technology service,
as well as information transmission. Ii denotes the total
intermediate input of industry i. Pi denotes the price index
of industry i.

4.2.2 Carbon Emission Efficiency
This paper employs the super-efficient Slack Based Measure
(SBM) analysis to measure carbon emission efficiency. Tone
(2002) first proposes the SBM model, which is a data
envelopment analysis (DEA) model based on slack
variables. It has two major advantages over the traditional
DEA in that it treats the undesired output more appropriately
and can solve the difficulty of comparing multiple efficient
units with each other. The equations are set in the following
form.

min � 1/m × ∑m
i�1�x/xik

1/(r1 + r2) × [∑r1
s�1yd/yd

sk + ∑r2
q�1yu/yu

qk]
(9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�x≥∑n

j�1,j ≠ k
xijλj i � 1, . . . , m

yd ≤∑n

j�1,j ≠ k
yd
sjλj s � 1, . . . , r1

yd ≥∑n

j�1,j ≠ k
yu
qjλj q � 1, . . . , r2

λj ≥ 0 j � 1, . . . , n; j ≠ 0
�x≥xk k � 1, . . . , m
yd ≤yd

k u � 1, . . . , r2
yu ≤yu

k q � 1, . . . , r1

(10)

This paper considers capital stock, energy consumption,
and labor as factor inputs, GDP as desired output, and total
carbon emissions as non-desired output. Where each
province’s capital stock was capitalized with 2010 as the
base period. The number of urban year-end employment is
labor input. Total energy consumption is energy input. Desired
output is the real provincial equivalent of GDP transformed
taking 2010 years into the base period. Undesired output is the
carbon emissions of each province. Drawing on the research
methodology of Zhao et al. (2022) and Su et al. (2021), the
capital stock is estimated. The specific setting is shown in
Eq. 11.

Kt � It/Pt + (1 − δt)Kt−1 (11)
where Kt denotes the fixed capital stock in the current period.

It is the total nominal fixed capital formation in the period. The
price index of Pt is fixed asset investment. δt denotes the
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depreciation rate, which is usually taken as 9.6%.Kt-1 denotes the
capital stock of the previous period.

Referring to Li Y. et al. (2021) and Wang et al. (2020b), the
IPCC approach is adopted for calculation. The specific
calculation process is shown in Eq. 12.

Cit � ΣEijt × ηj ×
44 /

12 (12)
Among them,Cit denotes the total carbon emissions of i province

in the t year. Eijt denotes the j kind of energy consumption in the t
year of i province. ηj denotes the carbon emission coefficient of the j
kind of energy. Table 1 covers each energy source’s carbon emission
factor. The carbon emission efficiency of each province from 2010 to
2019 is shown in Table 2.

4.2.3 Factor Misallocation
Referring to Hao et al. (2020), this paper introduces the capital
misallocation index and labor misallocation index to estimate
factor misallocation. The specific accounting techniques are
shown in Eqs. 13–15:

TABLE 1 | Carbon emissions coefficient.

Energy Types Coal Coke Crude Oil Gasoline Kerosene Diesel Fuel Oil Natural Gas

Carbon
emissions
coefficient

0.7476 t
Carbon/t

standard coal

0.1128 t
Carbon/t

standard coal

0.5854 t
Carbon/t

standard coal

0.5532 t
Carbon/t

standard coal

0.3416 t
Carbon/t

standard coal

0.5913 t
Carbon/t

standard coal

0.6176 t
Carbon/t

standard coal

0.4479 t
Carbon/t

standard coal

TABLE 2 | Carbon emission efficiency by province, 2010–2019.

Region 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Beijing 1.074 1.140 1.143 1.182 1.184 1.226 1.283 1.319 1.326 1.332
Tianjin 0.702 0.653 0.667 1.071 1.062 1.073 1.093 1.098 1.071 1.030
Hebei 0.501 0.512 0.503 0.643 0.726 0.706 0.644 1.036 0.937 0.695
Liaoning 0.354 0.365 0.365 0.421 0.421 0.399 0.398 0.407 0.421 0.443
Shanghai 0.499 0.505 0.498 1.058 1.073 1.070 1.058 1.036 1.058 1.038
Jiangsu 0.510 0.516 0.522 0.648 0.696 0.702 0.660 0.680 0.700 0.664
Zhejiang 0.467 0.490 0.510 0.614 0.611 0.675 0.681 0.702 0.718 0.670
Fujian 0.442 0.465 0.469 0.552 0.561 0.569 0.582 0.596 0.602 0.601
Shandong 0.781 0.744 0.749 1.017 1.028 1.031 1.034 1.032 1.037 1.038
Guangdong 1.093 1.125 1.146 1.006 0.894 0.916 0.926 0.942 0.983 1.040
Hainan 0.733 0.747 0.758 0.937 0.970 0.967 1.002 1.010 1.030 1.065
Shanxi 0.586 0.606 0.610 0.701 0.628 0.629 0.637 0.648 0.624 0.614
Jilin 0.679 0.669 0.684 0.840 0.724 0.738 0.764 0.766 0.742 0.755
Heilongjiang 0.583 0.585 0.583 0.629 0.588 0.577 0.586 0.600 0.611 0.617
Anhui 0.604 0.621 0.623 1.017 1.027 1.038 1.035 1.014 1.044 1.051
Jiangxi 0.507 0.509 0.521 0.572 0.547 0.550 0.561 0.586 0.651 0.663
Henan 0.553 0.555 0.567 0.700 0.634 0.648 0.655 0.695 0.715 0.694
Hubei 0.549 0.564 0.581 0.779 0.760 0.799 0.784 0.790 0.824 0.729
Hunan 1.144 1.131 1.114 1.068 1.047 1.055 1.051 1.047 1.022 1.012
Inner Mongolia 0.551 0.551 0.549 0.658 0.616 0.603 0.606 0.625 0.643 0.632
Guangxi 0.658 0.648 0.619 0.672 0.632 0.623 0.631 0.628 0.619 0.590
Chongqing 0.521 0.521 0.551 0.683 0.582 0.633 0.657 0.682 0.701 0.691
Sichuan 0.546 0.591 0.609 0.650 0.626 0.685 0.702 0.738 0.785 0.746
Guizhou 0.356 0.371 0.368 0.421 0.374 0.376 0.378 0.376 0.384 0.377
Yunnan 0.392 0.398 0.390 0.452 0.417 0.420 0.424 0.432 0.438 0.456
Shaanxi 0.486 0.497 0.499 0.543 0.495 0.490 0.493 0.500 0.519 0.495
Gansu 0.394 0.409 0.416 0.449 0.412 0.412 0.420 0.419 0.440 0.466
Qinghai 0.363 0.355 0.343 0.404 0.376 0.370 0.358 0.357 0.354 0.334
Ningxia 0.332 0.341 0.331 0.398 0.364 0.349 0.352 0.343 0.342 0.325
Xinjiang 0.360 0.357 0.348 0.387 0.348 0.335 0.329 0.314 0.321 0.303

TABLE 3 | Baseline regression results.

Variables (1) (2) (3) (4)

Ols Ols Fe Fe

DIG 0.181*** 0.085*** 0.164*** 0.062**
(0.015) (0.013) (0.020) (0.031)

ECS −0.245*** −0.339***
(0.088) (0.115)

ERS 0.004*** 0.004***
(0.001) (0.001)

TEC 0.011*** -0.001
(0.002) (0.003)

OPE 0.375*** 0.112
(0.056) (0.092)

HUC 0.071*** 0.090***
(0.020) (0.028)

Constant −1.730*** −1.847*** −1.608*** −1.693***
(0.108) (0.159) (0.140) (0.227)

N 300 300 300 300
R-squared 0.319 0.690 0.196 0.345

Note: Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1.
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γKi �
1

1 + τKit
, γLi �

1
1 + τLit

(13)

Equation 13, γki and γLi denote the absolute distortion
coefficients of capital and labor factor prices, respectively,
which are usually substituted with relative price distortion
coefficients.

γKi �
Ki/K

siβKi/βK, γLi �
Li/L

siβLi/βL (14)

where Ki/K denotes the ratio of the capital stock employed
to the total capital stock in the real state. Si denotes the output
of province i as a share of total output. βKid enotes the capital
contribution value of province i. βK denotes the output-
weighted capital contribution value. SiβKi/βK denotes the
ideal proportion of capital in the condition of efficient
resource allocation in province i. Ki/K denotes the
proportion of capital in province i in the actual situation.
Li/L denotes the ratio of labor force used to the total labor force
in province i in the actual state. βLid enotes the value of capital
contribution in province i. βL denotes the output-weighted
capital contribution value. SiβLi/βL denotes the ideal ratio of
the labor force in the condition of efficient resource allocation
in province i. γ reflects the ratio of actual to effective allocation
of production factors in each province. If γ is greater than 1
(τ < 0), it indicates that the province has an over-allocation of
production factors. γ is less than 1 (τ > 0), it indicates that the
province has under-allocation of production factors. To avoid
the interference of the regression by inconsistent sign
direction, the absolute value of τ is taken from the study of
Yang et al. (2022).

Referring to Yang et al. (2022), the Solow residual approach is
employed to account for the factor distortion index. The
production function in this paper is hypothesized to be a C-D
production function that has fixed returns to scale. The specific
form is shown in Eq. 15.

Y � AKβki
it L

1−βki
it (15)

where Y denotes output, which is specifically the real GDP of
each province in the base period of 2010.Ki denotes capital input
of each province, which is the real basic stock of each province in
the base period of 2010. Li denotes labor input, and is measured
by the number of employees in each province in urban areas.

4.2.4 Control Variables
Since carbon emission efficiency is influenced by many factors,
to be precise and reliable for the study, following Ren et al.
(2021), and Hao et al. (2021), this paper identifies energy mix
((ECS), environmental regulation (ERS), openness (OPE),
human capital (HUC) and technological innovation (TEC)
as unobservable factors for carbon emission efficiency control.
The massive burning of fossil fuels is one of the primary
contributors to the greenhouse effect and over-reliance on
fossil fuels will diminish carbon reduction effectiveness, while
a reasonable energy consumption structure can effectively
inhibit the increase of carbon emissions. Referring to Wu
et al. (2019), using the share of coal consumption in
primary energy consumption to characterize the energy
consumption structure (ECS). Environmental regulation
(ERS) will inhibit carbon emissions and economic
aggregates in the short run, however, environmental
regulation will eventually reduce carbon intensity in the
long run (Zhong et al., 2021). Environmental regulation
(ERS) is expressed using the amount of investment

TABLE 5 | Endogeneity results.

Variables (1) (2)

TSLS TSLS

DIG 0.248*** 0.295***
(0.025) (0.060)

ECS 0.020
(0.146)

ERS 0.004***
(0.001)

TEC −0.008**
(0.003)

OPE 0.064
(0.100)

HUC −0.041
(0.041)

Step 1
IV 0.0365*** 0.024***

(0.001) (0.002)
Wald F-value 192.540 89.031
FAR test p-value 668.645 129.879
N 300 300

Note: Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 4 | Descriptive statistics of variables.

Variables Variables Name N Mean Sd Min Max

Dependent variable CEE 300 −0.474 0.367 −1.194 0.286
Core explanatory variables DIG 300 6.921 1.143 4.357 9.670
Mediating variables τK 300 −1.748 1.021 −5.375 -0.282

τL 300 −1.611 0.996 −5.510 0.112
Control variables ECS 300 0.400 0.149 0.012 0.687

ERS 300 22.473 21.232 0.435 141.646
OPE 300 0.275 0.313 0.013 1.548
HUC 300 9.083 0.930 6.764 12.782
TEC 300 4.919 7.362 0.012 52.739
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completed in industrial pollution control. Openness is
conducive that enterprises with sophisticated equipment
and technology are ushered in to engage in economic
activities, thus facilitating the reduction of pollutant
emissions. However, for some relatively backward regions,
they may become “pollution refuges” in the process of
foreign investment introduction. Referring to Wang et al.
(2022), openness to the outside world (OPE) is measured
by dividing the total regional imports and exports by the ratio
to GDP. Human capital can overcome the law of diminishing
marginal returns, which in turn affects the carbon emissions
efficiency. Referring to Yang et al. (2022), human capital
(HUC) is denoted by the number of years of education per
capita in each region. Technological innovation will both
promote environmental protection and increase enterprise
productivity, which in turn supports carbon efficiency
(Tang et al., 2019; Cao et al., 2021). Technological
innovation (TEC) is presented using patent grant numbers.

4.3 Data
This paper selects balanced panel data of 30 Chinese provincial
administrative region during the period from 2010 to 2019 as
the study sample. The fundamental data are derived from the
China EPS database, China Population, and Employment
Statistical Yearbook, the Statistical Yearbooks of each
province, and relevant data published by the National Bureau
of Statistics in each years. Descriptive statistics are presented in
Table 3.

5 RESULTS AND DISCUSSION

5.1 Baseline Regression Results and
Discussion
Table 3 reports the statistical results of the digital economy on
carbon emission efficiency. Columns (1) and (3) of Table 4

demonstrate the estimation results without the inclusion of
control variables, columns (2) and (4) demonstrate the
estimation results with the inclusion of control variables,
columns (1) and (2) use OLS models to estimate the baseline
regression model, and columns (3) and (4) use fixed effects
models to estimate the baseline regression model. Table 5
reports that there is a significant positive regression coefficient
for the digital economy. (p-value < 0.05), implying that the digital
economy significantly drivers carbon emission efficiency. Our
results have supported the view of Han et al. (2022), Zhang et al.
(2022) and Ma et al. (2022) that digital economy will significantly
inhibit carbon emissions and thus influence carbon emission
efficiency. Hypothesis 1 is verified. It is easy to interpret that
compared with traditional industries, digital industries are
emphasized by high added value and environmental

TABLE 6 | Robustness test results.

Variables (1) (2) (3) (4)

Replacing Core Explanatory
Variables

Removing Municipalities Eliminating Extreme Values Estimating
Sample Subintervals

DIG 0.112*** 0.101*** 0.119*** 0.111***
(0.035) (0.037) (0.021) (0.023)

ECS −0.110 −0.017 −0.653*** 0.373
(0.130) (0.138) (0.181) (0.407)

ERS −0.001** 0.002** 0.000 −0.004**
(0.001) (0.001) (0.001) (0.001)

TEC 0.007** −0.000 −0.001 −0.011**
(0.003) (0.003) (0.004) (0.005)

OPE −0.239** −0.159 0.152 0.039
(0.103) (0.205) (0.278) (0.285)

HUC 0.071** 0.115*** 0.020 0.020
(0.032) (0.036) (0.036) (0.083)

Constant −2.142*** −2.139*** −1.172*** −1.310
(0.255) (0.249) (0.416) (0.859)

N 300 260 259 180

Standard errors in parentheses ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 7 | Heterogeneity results.

Variables (1) (2)

South Region North Region

DIG 0.150** 0.182***
(−0.062) (−0.066)

ECS −0.834*** −0.158
(−0.23) (−0.18)

ERS 0.005*** 0.004***
(−0.001) (−0.001)

TEC 0.002 0.002
(−0.003) (−0.01)

OPE −0.152 0.052
(−0.179) (−0.149)

HUC 0.013 0.106*
(−0.048) (−0.054)

Constant −1.257*** −2.657***
(−0.416) (−0.425)

N 150 150
R-squared 0.478 0.432

Note:Standard errors in parentheses ***p < 0.01, **p < 0.05, *p < 0.1.
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friendliness, thus the rise of digital industries has contributed to
carbon emission efficiency (Han et al., 2022). Moreover, the
development of the digital industry is the basis for the
digitization of traditional industries. Along with the leapfrog
growth of the digital industry, the digital industry has fuelled
the transformation of traditional industry to digitalization,
intelligence, and greening (Ma et al., 2022). Meanwhile, the
digital economy has solved some technical problems faced by
market-based environmental regulation, such as monitoring and
verification, which has effectively facilitated the establishment of
a carbonmarket and advanced carbon emission efficiency (Zhang
et al., 2022).

5.2 Endogeneity Results and Discussion
The above results demonstrate that the digital economy
significantly positive impact on carbon emissions efficiency.
However, the above estimation methods may also have some
endogeneity problems that cause the results to be biased. Also, the
endogeneity problem arising from omitted variables is addressed
by adding relevant variables to the control variables as far as
possible in this paper. Moreover, considering that carbon
emission efficiency represents the production and technology
ability of the region while higher production and technology
ability may contribute to the digital economy development in the
region. Thus, there may be an inverse causality of carbon
emission efficiency on digital economy. A properly selected
instrumental variable is the most common strategy to tackle
the endogeneity problem due to bi-directional causality.
Referring to Maydeu-Olivares et al. (2019), this paper re-
estimates the baseline regression results using two-stage least
squares (TSLS) on the basis of internet penetration employed to
generate the instrumental variable for the digital economy (see
Table 5). Judging from the first-stage results, the coefficients of

the key variables are significant (p-value < 0.01), so that the
instrumental variable correlation requirement is achieved.
Judging from the second-stage results, the coefficients of the
digital economy are still significant (p-value < 0.01),l, and the
F-statistics of the weak instrumental variable test are 192.54 and
89.03 (all of them are greater than 10), indicating that there is no
weak instrumental variable issue. Consequently, Table 5 suggests
that the digital economy can enhance carbon emissions efficiency
when endogenous issues are addressed.

5.3 Robustness Results and Discussion
To investigate that the regression results are stable, this paper
employs the robustness tests via replacing core explanatory
variables, estimating sample subintervals, eliminating extreme
values by shrinking tails, and removing municipalities (See
Table 6). First, the explanatory variables are replaced. To
avoid biased estimation results due to the selection of
measurement methods, the carbon emissions efficiency of each
province is re-measured by using the ratio of GDP to carbon
emissions (see column (1) of Table 6). Second, municipalities
directly under the central government are eliminated from the
sample. Since municipalities directly under the central
government and other provincial regions still have significant
differences in various aspects, this paper excludes four samples of
municipalities directly under the central government, namely
Beijing, Shanghai, Tianjin, and Chongqing, to test again above
effect (see column (2) of Table 6). Third, the data are subjected to
a tailoring process. This paper recalculates above effect based on a
2% tailoring of each variable to remove extreme values (see
column (3) of Table 6). Fourth, the sample subinterval is
estimated. As China enters a new stage of digital economy
development in 2015, this paper excludes the data from
2010 to 2014 to observe above effect in the sub-sample
interval (see column (4) of Table 6). Table 6 demonstrates
that the regression coefficients for the digital economy are not
significantly different from the baseline regression results in the
case of significance and direction, proving that the previous
results are robust.

5.4 Heterogeneity Results and Discussion
Given the enormous geographical boundaries in China and the
significant diversity among regions in terms of natural
endowments and industrial distribution. To elucidate the
effects of the digital economy on the heterogeneity of carbon
emission efficiency in different regions, referring to Liu et al.
(2022), the results are re-estimated by dividing the study region
into the south and the north following the Qinling-Huai River

TABLE 8 | Influence mechanism results.

Variables (1) (2) (3) (4) (5)

CEE lnτK CEE lnτL CEE

DIG 0.085*** −0.388*** 0.072*** −0.387*** 0.061***
(0.013) (0.061) (0.014) (0.056) (0.014)

τK −0.033***
(0.012)

τL −0.061***
(0.013)

ECS −0.245*** 0.599 −0.226** 0.036 −0.243***
(0.088) (0.407) (0.087) (0.373) (0.085)

ERS 0.004*** 0.000 0.004*** 0.001 0.004***
(0.001) (0.003) (0.001) (0.003) (0.001)

TEC 0.011*** 0.006 0.011*** 0.028*** 0.012***
(0.002) (0.010) (0.002) (0.009) (0.002)

OPE 0.375*** 0.001 0.375*** 0.154 0.385***
(0.056) (0.261) (0.056) (0.239) (0.054)

HUC 0.071*** 0.355*** 0.082*** 0.469*** 0.099***
(0.020) (0.093) (0.020) (0.085) (0.020)

Constant −1.847*** −2.558*** −1.930*** −3.421*** −2.054***
(0.159) (0.736) (0.160) (0.675) (0.160)

N 300 300 300 300 300
R-squared 0.690 0.137 0.698 0.237 0.711

Note: Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 9 | Unit root test result.

Variables LLC IPS ADF-Fisher

CEE −7.8652*** −4.3354*** 132.4058***
DIG −17.0122*** −3.2761*** 119.5995***
τK −2.651* −1.4513*** 121.7724***
τL −4.3801*** −4.5603*** 104.0781***

Note: Standard errors in parentheses; ***p < 0.01, **p < 0.05, *p < 0.1.
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boundary. Table 7 reports that the coefficients of the digital
economy are all significantly positive, but the digital economy has
a higher effect on carbon emission efficiency in such a region in
the north where energy-producing regions and heavy industries
are relatively concentrated. The traditional manufacturing
industry in the northern region is relatively concentrated, and
its innovation and technology level is comparatively lagging in
development. The major advantage of the digital economy is the
compressibility of temporal and spatial, which greatly reduces the
innovation barriers and R&D costs in the region. This not only
provides an effective boost to the green upgrading in the case of
the traditional manufacturing industry in the northern region,
but also contributes to the economic development and ecological
construction. In addition, the economic and social development
level of the southern region is generally better than that of the
northern region. The innovation-driven and ecological
protection strategies are also implemented earlier, resulting in
much higher carbon emission efficiency in the southern region
than in the northern region.

5.5 Influence Mechanism Results and
Discussion
In order to investigate the role mechanism of the digital economy
on carbon emission efficiency, this paper examines them in the
light of factor misallocations (labor factor misallocation and
resource factor misallocation) (See Table 8). Column (1) of
Table 8 reveals that the digital economy significantly enhances

carbon emissions efficiency, ie., for every unit of growth in the
digital economy, there will be a significant 8.5% increase in
carbon emission efficiency. Columns (2) and (4) of Table 8
suggest that the digital economy significantly inhibits capital
misallocation and labor misallocation, respectively. Columns
(3) and (5) in Table 9 show that capital misallocation and
labor misallocation significantly inhibit carbon emission
efficiency. Therefore, the above results confirm that the digital
economy can significantly contribute to carbon emissions
efficiency via inhibiting factor misallocation (capital
misallocation and labor misallocation). Hypotheses 2 and 3 are
tested. We can explain the above results from the following
aspects. Labor misallocation and capital misallocation reduce
the production cost of backward enterprises, so that inefficient
enterprises can continue to survive or even expand their scale,
resulting in a decrease in carbon emission efficiency. Also, factor
misallocation causes low labor and capital prices, which hinders
enterprises’ technological innovation, and generates an inefficient
and low-technology “lock-in effect” (Wang et., 2018). Moreover,
the digital economy diminishes the cost of information search,
eliminates information asymmetry in the market, and enhances
the matching between the supply and demand of labor and
capital. Meanwhile, the e-commerce model formed based on
digital technology blurs the concept of geography, which
strengthens the bargaining ability of consumers. This not
only intensifies market competition and accelerates the
elimination of less efficient enterprises, but also enables the
reallocation of capital and labor, reducing the degree of the

TABLE 10 | Lag order test result.

Lag Order AIC BIC HQIC

Digital economy and carbon emission efficiency 1 −4.06881 −3.04874 −3.65643
2 −1.95802 −0.751,789 −1.46894
3 −5.23886 −3.79376 −4.65176
4 −5.57042* −3.80501* −4.85348*
5 −4.70407 −2.48201 −3.808

Digital economy and capital misallocation 1 −1.85374* −0.833,668* −1.44136*
2 1.20283 2.40906 1.6919
3 −0.95046 0.494,642 −0.36336
4 −1.19091 0.574,501 −0.47397
5 0.537,636 2.75969 1.4337

Digital economy and labor misallocation 1 1.33566 −0.315,591* -0.92329
2 2.96128 4.16751 3.45035
3 −1.59206* −0.146,954 −1.00496*
4 −1.41478 0.35063 −0.69784
5 −0.20263 2.01943 0.693,435

capital misallocation and carbon emission efficiency 1 −0.43835 0.581,722* −0.025972*
2 0.170,844 1.37707 0.659,917
3 −0.48015 0.964,956 0.106,951
4 −0.596,416* 1.169 0.120,526
5 1.62095 3.843 2.51701

labor misallocation and carbon emission efficiency 1 −0.17054 0.849,529 0.241,835
2 0.145,563 1.35179 0.634,637
3 −1.04537* 0.399,734* −0.45827*
4 −0.65993 1.10548 0.057014
5 0.587,825 2.80988 1.48389

Note: * represents the optimal lag order.
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misallocation. Finally, the digital economy has significantly
improved the productivity of labor and capital by empowering
traditional factors with data, thereby improving their
misallocation levels.

5.6 Dynamic Effects Results and Discussion
This paper further analyzes the dynamic effect of the digital
economy on carbon emission efficiency in the light of factor
misallocations (labor factor misallocation and resource factor
misallocation) using impulse response functions based on a static
study of the effects. The impulse function examines the impact of

a random error term of an endogenous variable subjected to a
shock of one standard deviation size on the current and future
values of all endogenous variables. It describes the trajectory of
mutual shocks and responses among the variables in the system,
reflecting the dynamic influence relationship among the
variables. Referring to Wu et al. (2021), unit root tests are
conducted for the target variables using the LLC test, IPS test,
and ADF-Fisher test (see Table 9). Table 9 indicates that the first-
order difference terms of the digital economy, factor
misallocation, and carbon emission efficiency pass the
significance test, i.e., the digital economy, factor misallocation,

FIGURE 2 | Impulse response function diagram.
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and carbon emission efficiency are smooth. To assure the
estimated parameters validity, the number of lags of the
impulse response model needs to be determined. Further,
three methods, AIC, BIC, and HQIC, are used for the lag
order test (see Table 10). If the lag order is too high, it will
diminish model degrees of freedom and cause unnecessary loss of
model data. Conversely, if the lag order is too low, it will reduce
the accuracy of the model test results. The final lag order is
dominated by the Bayesian criterion, so the lag term orders are
chosen as 4th order, 1st order, 1st order, 1st order, and 3rd order,
respectively.

Figure 2 illustrates that the horizontal axis reveals the lag
order, the vertical axis indicates the response degree, the red
solid line in the middle is the impulse response function, and
the width between the green solid line and the blue solid line
indicates the positive and negative double standard deviation
bands. Figure 2A shows that the impulse response function
curve of the digital economy on carbon emission efficiency is
a “U" shape. When the digital economy is subjected to an
external positive shock, the change in carbon emission
efficiency covers a trend of increasing and then decreasing,
and the impact gradually converges to zero from the fourth
period. It suggests that the digital economy has a longer-term
influence on carbon emission efficiency after an external
shock, with a relatively stable impact. Figures 2B,C
illustrate that the digital economy produces a negative
shock to capital (labor)misallocation, and such variation is
only present in the first two periods, which exhibits a
decreasing trend. A positive shock to the digital economy
is transmitted to the capital (labor) misallocation and brings a
negative shock to the capital (labor)misallocation, indicating
that a positive shock to the digital economy can mitigate the
degree of capital (labor) misallocation and that the impact is
short term persistent. Figure 2D illustrates that after a
positive shock to the capital misallocation, the carbon
emission efficiency shows a negative change in the current
period, but the change in carbon emission efficiency
fluctuates up and down around the horizontal axis from
the first lag and gradually converges to zero in the third
period, indicating that a positive shock to the degree of capital
misallocation in the short term may inhibit the improvement
of carbon emission efficiency. Figure 2E illustrates that after
a positive shock is given to labor misallocation, the amount of
carbon emission efficiency change fluctuates up and down
around the horizontal axis from the lagged period and
gradually converges to zero from the eighth period,
indicating that a positive shock to the degree of capital
misallocation will influence carbon emission efficiency in
the long run. In general, the digital economy can
contribute to carbon emission efficiency in a certain period
and inhibit factor misallocation. As capital misallocation can
affect carbon emission efficiency in the short term, while
labor misallocation can affect carbon emission efficiency in
the longer term. The dynamic analysis results are consistent
with the previous analysis, implying that the digital economy
can contribute to carbon efficiency by inhibiting capital
misallocation and labor misallocation.

6 CONCLUSION AND POLICY
IMPLICATIONS

The Chinese economy is in a critical transition period, facing
economic pains caused by growth rate shift, structural adjustment,
and the absorption of previous stimulus policies, in addition to coping
with climate warming due to huge carbon emissions. Therefore, as a
new economic form, how to promote economic growth and reduce
carbon emissions through the digital economy has become an urgent
issue to be investigated. Taking a database from 30 provincial-level
administrative regions for the period 2011 to 2019 from 2011 to
2019 in China as an example, the paper examines the effect of the
digital economy on carbon emission efficiency, as well as explores its
role mechanism deeply in terms of factor misallocation. The results
demonstrate that the digital economy can significantly contribute to
the improvement of carbon emission efficiency, and this finding is
valid when considering both the endogeneity issue and a series of
robustness checks. The heterogeneous results show that the digital
economy can significantly contribute to carbon efficiency in both
southern and northern regions, but more strongly in the northern
region. The role mechanism suggests that the digital economy can
inhibit the factor misallocation (labor misallocation and capital
misallocation) level by reducing the cost of information collection,
strengthening enterprise competition, and promoting the integration
of information, data, and other high-end data with traditional data,
which ultimately enhances carbon emission efficiency. Finally, the
dynamic effect results reveal that the digital economy can positively
affect carbon efficiency in the long run by mitigating factor
misallocation (labor misallocation and capital misallocation). As
far as the above findings, this paper provides some policy
implications for promoting carbon emission efficiency through the
digital economy in the following three aspects.

First, policymakers should further enhance the digital
economy scale. While continuously refining the fundamental
digital technology, policymakers should strive to expand digital
infrastructure construction, accelerate the expansion of the
application scenarios of the new generation of digital
technology, deepen the integration of the digital economy with
the real economy, thereby providing an effective path to fulfil
double carbon goal.

Secondly, policymakers should advance the coordinated
development of the digital economy among regions by taking
into account local conditions and zoning policies.
Policymakers, for example, should not only fully balance
the heterogeneity between different regions in terms of
natural endowment and industrial distribution, but also
promote digital industrialization or industrial digitization
with a focus on different regions, so as to continuously
improve carbon efficiency on the whole.

Finally, policymakers should maximize the factor allocation
effect of the digital economy. While utilizing the spatial and
temporal compression effect of the digital economy,
policymakers should further accelerate the flow of information.
By improving the price mechanism, the digital economy is
adopted to promote the effective allocation of labor and
capital among industries and regions, reduce the degree of
factor mismatch, and improve allocation efficiency.
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This paper confirms that the digital economy can positive
impact on carbon emission efficiency by inhibiting factor
misalignment. However, the role paths of the digital economy
on carbon emission efficiency are complex and diverse, and some
other factors may exist, such as technological innovation,
industrial structure, and market segmentation. Scholars in the
future can explore more potential paths for the digital economy to
influence carbon emission efficiency from the above perspectives.
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