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Changes in meteorological conditions affect crop output and planting

structure. Based on county-level data of agricultural statistics and weather

information in Guangdong province from 1992 to 2018, this paper uses a panel

regression model to examine the effects of high impact weather on agricultural

outputs and identify the responses in planting structure. The findings show that

the rainstorm significantly reduces the per-unit yield (PUY) of rice, and an

additional day with daily excessive precipitation (≥50mm) in the growth period

leads to an average 0.25% reduction in PUY. However, the vegetable yield is not

susceptible to high-impact weather. With a two-period panel regression model

and sub-regional climate response analysis, we find that the agricultural

planting structure is formed by the regional farming adapting to the high-

impact weather (low temperature, high temperature, rainstorms, and high

wind). The original rice farmland in the more climate-sensitive areas is

transformed into vegetable farming, while the scale of rice is increasing in

those less sensitive areas. Finally, we argue that the agricultural sector should

assess the impacts of climate change on staple crops andmake national climate

sensitivity zoning maps. It will provide a scientific justification for making the

national agriculture structural adjustment plan.
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1 Introduction

Global climate change is exerting a significant effect on the economic system, health,

and sustainable development. It has drawn extensive attention from multiple fields of

study. Nordhaus (1982) study firstly included climate change within the framework of

economic analysis, emerging as a pioneering work of climate economics. Natural

elements, such as light, temperature, and water, are necessities for the growth of

crops, while the most direct influence of climate change is to systematically change

these elements, which in turn may have important implications for agriculture. As climate
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change increases the probability of high-impact weather, what

effects do frequent high-impact weather events (which refer to

some serve weather events such as low temperature, high

temperature, heavy precipitation, strong gale and so forth)

have on agricultural production? Does the agricultural

planting structure make self-adaptive adjustments in the face

of high-impact weather? It is of great significance to stabilize

agricultural production and maintain food security in China by

assessing the effects of high-impact weather on agricultural

output and revealing the law of agricultural production

adapting to high-impact weather.

Existing documents have surveyed how changes in weather

factors such as temperature and precipitation affect agricultural

production and have made breakthroughs in research methods

(Pang et al., 2021). Most early studies were conducted based on

cross-section data, which can be divided into two categories: (a)

Estimating a relationship between climate factors and the yield of

crops based on the agricultural production functions and

forecasting climate change’s impacts on agricultural output by

numerical simulation (Hansen, 1991; Kaiser et al., 1993;

Rosenzweig and Parry, 1994; Adams et al., 1995; Lobell et al.,

2007) (b) Adopting the hedonic model to estimate the

relationship between climate factors and the price of

agricultural land (Mendelsohn et al., 1994; Schlenker et al.,

2005; Wang et al., 2009). A major defect of the cross-section

data method is that the reliability of the conclusions is fairly

sensitive to the control variables as the estimate is biased due to

the omitted variables (Dell et al., 2014). Therefore, some

improvements were made in the following studies. For

instance, Deschênes and Greenstone (2007) used the panel

data model to analyze the effects of temperature and

precipitation on the agriculture of the United States and

qualified the relationship between agricultural profits and

interannual fluctuations in temperature and precipitation,

which to some extent alleviates the endogeneity in the cross-

section model and enables the model to characterize the

influences of adaptive measures on agriculture. However,

Recent studies have found that controlling for only

temperature and precipitation in the panel data model in the

Chinese agriculture case will suffer from the bias of omitting

important variables. For example, it was found that relative

humidity is critical to accurately estimate the effect of

temperature and that ignoring relative humidity would result

in an overestimation associated with the negative effects of

climate warming. For instance, the effect of temperature on

rice was overestimated by 12.5%, and that on wheat by 29.6%

(Zhang et al., 2017). The climate factors are generally in a

nonlinear relationship with agricultural output, which has

been supported by extensive empirical evidence (Schlenker

and Roberts, 2009; Lobell et al., 2011). If the temperature

exceeds the corresponding threshold of a crop, its output will

reduce significantly. Chen et al. (2016) found that there is an

inverted U-shaped relationship between meteorological factors

and outputs of maize and soybean.

Agricultural production needs to proactively adjust to

climate change to reduce adverse effects and promote

sustainable agricultural development (Qian et al., 2014). Most

existing studies (Mendelsohn et al., 1994; Chen et al., 2016;

Sesmero et al., 2018) used the panel data models to estimate

the short-run relation between agriculture outputs and weather

factors, but in general, failed to predict the long-term effects of

climatic change. Because the effects of climatic change might be

either enhanced or weakened in the long-run conditions.

However, the existing studies did not reach a consensus

associated with agriculture’s capacity to adapt to climatic

change. Some studies propose the argument based on the

historical analysis that advancements in agricultural

technology and agricultural specialization enable agriculture to

adapt to climate extremes. Farmers in the northern region of the

United States have pushed crop farming north and west by

introducing new crop varieties, and new varieties of wheat

have gradually been planted in some uncultivable areas with

low temperature and drought (Olmstead and Rhode, 2011). With

the increase of specialized investments in workforce, land, and

facilities for apple planting, farmers in Shaanxi China tend to take

more measures such as film mulching and irrigation to adapt to

climatic change. Consequently, the risk of agricultural output has

remarkably reduced and outputs have increased (Feng et al.,

2018). However, some studies made some distinct discoveries.

Some studies (Hornbeck, 2012; Burke and Emerick, 2016) paid

attention to the American Dust Bowl in the 1930s and found that

the Dust Bowl led to a sharp decline in the productivity of

farmland in some regions. After adjustment in the severely

afflicted areas, the original wheat farmland was transformed

into pasture or forage grass. However, the measures did not

help much to recover the land value in these areas. The gap

between the land value in the severely afflicted areas and that in

other regions has narrowed only by 25 percent.

Considering that the subtropical zone in the southeast

coastal region of China is sensitive to global climatic change,

we take Guangdong province as a survey area. Moreover, we

select rice as a representative of land-intensive crops and

vegetables as a representative of labor-intensive crops, since

rice is planted in double-season (early and late season), and

vegetables are universally planted in Guangdong province.

Based on county-level agricultural statistics and

meteorological data in Guangdong from 1992 to 2018, this

paper quantifies the effects of high-impact weather including

low temperature, high temperature, rainstorms, and high

wind on the outputs of rice and vegetables by the panel

data regression model. It also identifies the responses in the

planting structure. We try to provide empirical evidence for

the agricultural output effects and adaptive agricultural

structure effects from the high-impact weather.
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2 High-impact climate factors and
agricultural scale in Guangdong

Guangdong belongs to the tropical and southern

subtropical monsoon climate region (20–26°N). The

special geological location endows Guangdong with

prominent climatic resource superiority, with agricultural

production all year round. However, disasters such as low

temperature, rainstorms, and high wind take place

alternatively throughout the year. In 2018, the rice area

was 178.7 × 104 hm2 all over the province, which

accounted for 6 percent of the nationwide rice area. The

major rice planting area of Guangdong (≥1.0 × 105 hm2) is

Zhanjiang, Maoming, Zhaoqing, Jiangmen, Meizhou,

Heyuan, Qingyuan, Yangjiang, and Shaoguan (see

Figure 1A). Due to the abundant water and heat

resources, Guangdong is a major province of vegetable

production and outward transportation in China, with a

vegetable planting area of 127.2 × 104 hm2 in 2018,

including more than 1.0 × 105 hm2 in Guangzhou,

Zhanjiang, Qingyuan, Huizhou, and Maoming (see

Figure 1B).

2.1 Variation tendency of high-impact
climate factors

We characterize the variation tendency of meteorological

factors by a linear regression model by the county-level data

from 1992 to 20181. Ten times of model coefficients represent

the changing rates of the meteorological factors. The changing

rates of spatial distribution are obtained by Kriging’s

interpolation method. As shown in Figure 2A, the number

of low-temperature days decreases in most areas except for

some areas in western and eastern Guangdong, especially in

the northern and southern regions, where the decrease rate

reaches 1.8–2.5d/10a (day/decade). As shown in Figure 2B, the

number of high-temperature days shows is increasing all over

the province, with the increase rate ascending from the

southwest region to the northeast region. The increase rate

is even up to 7.0–9.1d/10a in some areas of northern

Guangdong.

As shown in Figure 2C, the variation tendency in the

number of rainstorm days in different regions are remarkably

different, with the highest increase rate of 0.2–0.6d/10a in the

central region, whereas the decrease rate is up to 0.2–0.7d/10a

in northern and the west region. The high wind days show an

increasing trend, with the highest increase rate up to 3.0–4.1d/

10a in some west regions (Figure 2D). The average relative

humidity increases in most of western Guangdong, with the

highest increase rate up to 0.4–0.8%/10a, but the other regions

like the northern and central regions have a decreasing trend

with 0.5–1.2%/10a (Figure 2E). The total hours of sunshine

increase in northern regions, most of the western regions, and

eastern coastal regions, and decrease in the rest regions, with a

higher decrease rate of 30.0–60.0h/10a in central regions

(Figure 2F).

2.2 Variation tendency of agricultural
outputs

The variation tendency spatial distribution of planting

area and the per-unit yield (PUY) from 1992 to 2018 is

obtained by the same methods used in characterizing the

variation tendency of climate factors. It shows that the

planting area of rice in most counties is decreasing fast,

especially in central regions, where the decrease rate is up

FIGURE 1
The planting area of rice and vegetables in Guangdong in 2018. (A) Rice. (B) Vegetables.

1 The regression results are not reported here due to the space limit.
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to 12,000–24,000 hm2/10a (Figure 3A), and there is no rice

planting in recent years in some counties. The PUY of rice

shows a downward tendency in a wider range of the province,

including central regions, most parts of northern regions,

eastern regions, and most parts of western regions. The

decrease rate of PUY is up to 700–1,400kg/(hm2·10a) in

some northern regions (Figure 3B). The areas with

increased PUY are concentrated in east-central regions and

western coastal regions.

As shown in Figure 3C, the vegetable planting area shows an

upward trend in almost counties. In some central counties, the

increase rate of vegetable planting area is10,000–15,000 hm2/10a.

As shown in Figure 3D, The PUY of vegetables shows an upward

trend in most counties all over the province. The areas with a

greater increase rate are scattered throughout the province, with

an increased rate up to 5,000–10,000kg/(hm2·10a), A few central

counties and eastern counties have a greater decline rate with

2,000–4,000kg/(hm2·10a).

FIGURE 2
The variation tendency spatial distribution of high-impact climate factors in 1992–2018. (A) Low-temperature days. (B)High-temperature days.
(C) Rainstorm days. (D) High wind days. (E) Average relative humidity. (F) Total hours of sunshine.
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3 Methodology and data

3.1 Model specification and estimation
method

As the panel data model includes information in both

cross section and time dimensions, it significantly increases

the sample volume and overcomes the problem of omission of

variables. With the county and time fixed effect in the model

and the addition of strict exogenous variables, i.e., other

meteorological factors, the estimated relationship between

high-impact weather and agricultural output has become

more reliable. Inspired by Chen et al. (2016) and

Deschênes and Greenstone (2007), we use the two-way

fixed effect model as following:

Yit � α1H Tempit + α2L Tempit + α3H Preit + α4Galeit + γ′Zit

+ μi + ρt + εit

(1)

where Yit is PUY of county i in year t; H Tempit is the annual

high-temperature frequency days (the days with daily maximum

temperature above 35°C at crop growing seasons); L Tempit is

the annual low-temperature days (days with daily average

temperature below 12°C at crop growing seasons); H Preit is

the annual rainstorm days (days with daily precipitation above

50 mm at crop growing seasons); Galeit is the annual high wind

days (days with daily maximum wind speed above 17.2 m/s); Zit

represents the other weather factors including average relative

humidity, sunshine duration, atmospheric pressure; α and γ′ are
the model parameters to be estimated; μi is county fixed effect; ρt
is year fixed effect; εit is the stochastic error.

Moreover, Section 4.2 will conduct several robustness tests

on the results from model (1). Firstly, we add the monomial and

quadratic terms of time trend into the basic model (1), namely we

suppose the PUY of crops has a nonlinear variation with time;

Secondly, considering that crop yield might be affected by the

earlier climate factors, we further test the effect that the earlier

high-impact weather events have on the crops.

FIGURE 3
Spatial distribution of variation rate of planting area and per unit yield of crops by county in Guangdong province from 1992 to 2018. (A) Rice
planting area. (B) Per unit yield of rice. (C) Vegetable planting area. (D) Per unit yield of vegetables.

Frontiers in Environmental Science frontiersin.org05

Zhai et al. 10.3389/fenvs.2022.951607

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.951607


3.2 Variables definition and data

Dependent variable. We use the agricultural output per-unit

area to measure the dependent variable. The agricultural output

data is from the Rural Statistic Yearbook of Guangdong Province

(1993–2019), which collects county-level data about yields and

planting areas of rice (including early-season rice and late-season

rice) and vegetables in more than 120 counties of Guangdong.

The types of vegetable include eggplants, leafy vegetables, root

vegetables, pods, fungi, bean sprouts, melons and fruits. The

administrative divisions of some regions were adjusted and the

number and names of some counties changed as well from

1992 to 2018, which were verified based on historical

information. The dependent variable is taken the logarithm in

the regression.

Independent variables. Inspired by existing studies (Huang

et al., 2014; Feng et al., 2019), we take high-impact weather events

including low temperature, high temperature, rainstorms, and

high wind that might happen during the planting seasons of rice

and vegetables as the independent variables to explain the

variation of crop outputs. Table 1 reports the descriptive

statistical analysis of the variables. There are 30.9 days on

average with a daily average temperature below 12°C in each

year, 21.0 days on average with a daily maximum temperature

over 35°C, and 7.7 days on average with daily precipitation over

50 mm. The growing seasons of crops are as follows according to

their growth characteristics: there are early season rice and late

rice in Guangdong and the maximum in-field period is from late

February to mid-November each year; vegetables grow

throughout the year. The county-level meteorological

information is from the meteorological station inside a county

or the closest meteorological station outside a county.

Control variables. According to the study (Huang et al., 2014;

Feng et al., 2018; Feng et al., 2019), there are other meteorological

factors affecting the crop output, other than the four high-impact

weather factors above. Based on the data availability, the control

variables include annual average relative humidity, annual

sunshine duration, and annual average air pressure. All the

meteorological data are from the information recorded in the

Climate Center of Guangdong, belonging to the data set from a

total of 86 national meteorological stations.

Table 1 reports the descriptive statistical results of the control

variables. It shows that from 1992 to 2018 in all counties. The

average PUY of rice reaches 1454.0 kg/mu with standard

deviation 449.1 kg/mu, which implies there is remarkable

TABLE 1 The statistical description of the variables.

Variable type Variables Notations Units Mean S. D. Min. Max.

Dependent Variable PUY of rice Y_r kg/mu 1454.0 449.1 576 3031

PUY of vegetable Y_v kg/mu 384.4 56.7 255 544

High impact variables Low-temp. days (daily average temp. ≤ 12°C) L_Temp d 30.9 20.4 0 96

High-tem. days (daily average temp.≥ 35°C) H_Temp d 21.0 14.2 0 72

Rainstorm days (daily precipitation ≥ 50mm) H_Pre d 7.7 3.7 0 23

Gale days (max. velocity ≥ 17.2m/s) Gale d 0.3 1.4 0 26

Control variables Annual average temp. A_Temp °C 22.1 1.2 18.4 25.1

Annual max. wind velocity M_Win m/s 4.6 1.1 2.2 9.5

Annual average relative humidity A_Wet % 78 3.7 63 88

Annual amount of precipitation Rain mm 1822.1 446.4 760.7 3751.0

Annual sunshine duration Sun h 1744.0 258.2 914.5 2623.2

mu, the Chinese version of the acre, is equal to 666.7 square meters; d refers to day; h refers to hour. The annual meteorological variables are the mean of the daily values in each year; the

statistical description is based on the county-level data.

TABLE 2 The effects of meteorological factors on the per unit yield of
crops.

Variables (1) (2) (3) (4)

Y_r Y_r Y_v Y_v

H_Pre −0.0023*** −0.0025*** −0.0007 −0.0008

(0.0005) (0.0005) (0.0009) (0.0009)

L_Temp −0.0003 −0.0003 0.0006 0.0005

(0.0008) (0.0009) (0.0007) (0.0006)

H_Temp −0.0004 −0.0003 0.0011 0.0013

(0.0003) (0.0003) (0.0008) (0.0008)

Gale −0.0019 −0.0015 0.0084 0.0078

(0.0047) (0.0045) (0.0068) (0.0068)

Control variables NO YES NO YES

County fixed effect YES YES YES YES

Year fixed effect YES YES YES YES

Observations 2,928 2,928 3,106 3,106

R-squared 0.3834 0.3854 0.2712 0.2719

The dependent variables are in a natural logarithm. The number in the bracket is the

clustered standard errors2 which is clustered at the county level, and *** p<0.01, **
p<0.05, * p<0.1. Hereinafter is the same.
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difference across the regional and annual PUY of rice. The

average PUY of vegetable is 384.4 kg/mu but with a lower

standard deviation (56.7 kg/mu). The annually average low-

temperature (daily temperature ≤ 12°C) time is near one

month (30.9 days) with a lager standard deviation (20.4).

There are on average annually 21 days, 7.7 days, and 0.3 days

with high-temperature (daily temperature ≥ 35°C), rainstorm

(daily precipitation ≥ 50 mm), and Gale (maximum velocity ≥
17.2 m/s), respectively. The annual average temperature,

maximum wind velocity, relative humidity, precipitation, and

sunshine duration are 22.1°C, 4.6 m/s, 78 percent, 1822.1 mm,

1744.0 h, respectively.

4 Results and discussions

4.1 Basic results: High-impact weather
and agricultural output

Table 2 shows the estimated effects of high-impact weather

events on the PUY of rice and vegetables. Columns 1 and 2 are

the estimation results for the rice and columns 3 and 4 for the

vegetables. Columns 1 and 3 include the independent variables,

county and year fixed effects, but exclude the control variables;

columns 2 and 4 add all the control variables based on columns

1 and 3. Both columns 1 and 2 show that the rainstorms decrease

the rice yield with the significance level of p < 0.01 and that an

extra rainstorm day will result in an average 0.25% reduction of

PUY each year. Besides, columns 1 and 2 show the coefficients of

the low-temperature days, high-temperature days high and wind

days are negative but not statistically significant.

Columns 3 and 4 in Table 2 show that high-impact weather

factors such as low temperature, high temperature, rainstorm,

and high wind have a non-significant effect on the PUY of

vegetables. Different from rice and other land-intensive crops,

vegetables are of labor intensity. The farmers will input more

labor and capital in the vegetable production process, which is

conducive to stabilizing output and responding to the impact of

unfavorable weather. According to Li and Song (2016), the

development of greenhouse vegetables will reduce the impact

of climatic disasters on vegetable yields. On the other hand, this

paper examines the impact of high-impact weather on the

vegetable yield in the long term (at least one year). Although

the high-impact weather might hurt the PUY of vegetables in the

short term (a week or a month), it can be mitigated by farmers’

later countermeasures and planting structure adjustment. The

PUY of vegetable is less susceptible to unfavorable weather since

it is of more varieties and more feasible to be protected from bad

weather than the rice. In fact, vegetable production in most

Chinese areas suffered severely chilling damages in 2008 and

2016. Although the PUY yield of some species of vegetable

dropped dramatically after the chilling disaster, like tomato,

lettuce, and cucumber, the PUY of all vegetables in either year

did not reduce remarkably. The average PUY of vegetables was

21,754.5 kg/hm2 in 2008, slightly down compared with

22,034.6 kg/hm2 in 2007; whereas in 2016 the PUY of

vegetables arrived at its peak in the latest 30 years.

TABLE 3 Robustness test 1: Nonlinear regression results.

Variables (1) (2)

Y_r Y_v

H_Pre −0.0025*** −0.0008

(0.0005) (0.0009)

L_Temp −0.0003 0.0005

(0.0009) (0.0006)

H_Temp −0.0003 0.0013

(0.0003) (0.0008)

Gale −0.0015 0.0078

(0.0045) (0.0068)

Time trend and its square YES YES

Control variables YES YES

County fixed effect YES YES

Year fixed effect YES YES

Observations 2,928 3,106

R-squared 0.3854 0.2719

TABLE 4 Robustness test 2: Lag effect.

Variables (1) (2)

Y_r Y_v

L1: H_Pre −0.0002 0.0001

(0.0006) (0.0008)

L1: L_Temp −0.0005 0.0011

(0.0008) (0.0007)

L1: H_Temp −0.0003 0.0005

(0.0002) (0.0006)

L1: Gale 0.0094** 0.0063

(0.0038) (0.0060)

Current high impact variables YES YES

Current control variables YES YES

County fixed effect YES YES

Year fixed effect YES YES

Observations 2,813 2,985

R-squared 0.4025 0.2577
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4.2 Robustness tests

We further test whether the PUY of crops has a nonlinear

function with time, then we test the effects that the earlier high-

impact weather has on the crops based on model (1).

(1) Robustness test of a nonlinear time trend. The results in

Table 3 obtained from the nonlinear model report that both

PUY of rice and vegetables have a monomial time trend with

the significance of p < 0.01 and a quadratic time trend with

the significance of p < 0.01 (the coefficients are not shown in

this Table). Moreover, the estimated result by the nonlinear

model is completely consistent with the basic model:

rainstorm events hurt the PUY of rice and the other high-

impact weather events have no significant impact on it; all

the high-impact weather events still have no significant

impact on PUY of vegetables.

(2) Robustness test in the lag effects. Table 4 shows the

results estimated by the lag effect model in which the

high-impact weather factors in the one year lag were

added into the model (1) (For the sake of simplicity, the

coefficients of high-impact weather factors are reported

in the lag while its coefficients in current are not). The

results in Column 1 of Table 4 indicate that the high-

impact weather factors in the lag have no significant

effects on the PUY of rice except for the high wind,

and all the high-impact weather factors in the lag have

no significant effects on the PUY of vegetables. Moreover,

the coefficients of high-impact weather factors in the

current are consistent with those in Table 2 in terms

of sign and significance.

5 Analysis of the response of the
agricultural structure to climate
change

The agricultural production’s response to high-impact

weather factors is not invariable, and we will further analyze

the change of rice planting area to demonstrate this. In this paper,

we divide the sample into two subsamples, i.e., 1992–2005 and

2006–2018, respectively. The estimated results in Table 5 are

obtained by the model (1), then the corresponding coefficients of

high-impact weather factors in the two periods are compared to

examine whether the PUY of rice is adaptive to the high-impact

weather factors (Note that we do not analyze the response of

vegetable planting due to the insignificant coefficients of high-

impact weather factors as shown in Table 2). Columns 2 and 3 in

Table 5 respectively show the estimated results from the two

subsamples, and column 1 is the result from the total sample in

Table 2. According to the results in Table 5, the coefficient of the

rainstorm is -0.0029 with p < 0.01 in the earlier period

(1992–2005), while the corresponding coefficient is

-0.0009 with p < 0.1 in the later period (2006–2018). It

indicates that, compared with the first period, the second

period is exposed to fewer negative effects on the PUY of rice

by high-impact weather.

By GIS spatial analysis tools, the distribution of the change

rate regarding cereal planting area (Figure 1A) and that of

accumulated rainstorm days (Figure 2C) are used to match

the rainstorm days change rate in the regions with the rice

planting area change rate in the corresponding regions. Then

we can get the average change rate of either rainstorm days or rice

planting areas in any region, with the results listed in Table 6. It

shows the decreasing rate of the rainstorm days declines in the

regions where the rice planting area rises, slightly reduces, and

declines, but rainstorm events are increasing in those regions

where the rice planting area reduces dramatically. This says that

farmers have taken some effective adaptive measures against the

unfavorable effect of the heavy precipitation; and that the local

rice production in Guangdong has made adaptive changes to the

impact of the rainstorms.

As various crops’ sensitivity to high-impact weather

events is remarkably heterogeneous, did farmers adjust the

planting area of crops to respond to the events? Data show that

the rice planting area in Guangdong presented a quick

reduction tendency from 1978 to 2006 and a stabilization

tendency after 2006. On the contrary, the planting area of

vegetables grew remarkably from 1978 to 2006. The

mechanism based on the “climate sensitivity hypothesis”

proposed in this paper can make some explanations for this

phenomenon. As rice is a land-intensive agricultural product

that is highly sensitive to high-impact weather events, farmers

gradually reduced the rice area significantly under climate

change and meanwhile increased the vegetable area, which is

less affected by climate. Over a long period of adjustment, the

TABLE 5 The PUY of rice changes corresponding with the high-impact
weather (1992–2005 vs. 2006–2018).

Variables Y_r Y_r Y_r

1992–2018 1992–2005 2006–2018

H_Pre −0.0025*** −0.0029*** −0.0009*

(0.0005) (0.0008) (0.0005)

L_Temp −0.0003 0.0006 −0.0010

(0.0009) (0.0013) (0.0006)

L_Temp −0.0003 −0.0006 −0.0000

(0.0003) (0.0004) (0.0003)

Gale −0.0015 −0.0097* −0.0040

(0.0045) (0.0057) (0.0034)

control variables YES YES YES

County fixed effect YES YES YES

Year fixed effect YES YES YES

Observations 2,928 1,484 1,444

R-squared 0.3854 0.4160 0.4210
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PUY of rice is less sensitive to the impact of high-impact

weather events and the rice area is stable. The empirical results

of both Tables 5, 6 prove the hypothesis. Due to the increased

input in labor and capital and indigenous knowledge of the

sensitivity of plants, vegetables have a higher capacity for

resisting natural disasters and are insusceptible to high-

impact weather. It implies that farmers could choose to

increase the vegetable area on those land where rice had

grown, and this adaptive adjustment led to a stable rising

tendency for the planting area of vegetables.

6 Conclusion and policy implications

This paper examines the effects that high-impact weather

including low temperature, high temperature, rainstorms, and

high wind exert on the agricultural outputs in the climate-

sensitive regions based on county-level agricultural and

meteorological data of Guangdong province from 1992 to

2008, and shows how the regional planting structure responds

to climate change. The findings are as follows: (1) the rice

planting area declines rapidly in most counties all over the

province, with the fastest reduction in the central region of

Guangdong; the per-unit yield of rice is declining in most

regions except for the east-central areas and western coastal

areas in Guangdong; the vegetable area is increasing in almost all

regions as well as its per-unit yield; (2) The rainstorm events

decrease the per-unit yield of rice, and we find that an extra

rainstorm day (daily precipitation above 50 mm) leads to a

reduction in the per-unit yield of rice by 0.25% in average.

However, high-impact weather events have no effects on the

per-unit yield of vegetables; (3) The rice production has become

adaptive to the local rainstorm events after the planting structure

adjustments. The adaptive adjustment is manifested in the

decrease in the rice area in high climate-sensitive regions

where vegetables are planted instead, and the increase in the

rice area in less climate-sensitive areas.

The following policy suggestions are proposed based on

the findings. Firstly, making a division of climate-sensitive

regions nationwide and optimizing and adjusting the inter-

regional crop planting structure. The existing crop planting

structure is mostly adjusted in terms of the crop diversity, land

constraints, consumer demand, and industrial chain, but less

taking climate change factors into account. The “climate

sensitivity hypothesis” proposed in this paper provides a

new perspective for the planting of the crops’ structure

adjustment and food security assurance plan. Constrained

by the realistic factors of economic development, land area,

and climatic conditions, there are often limited measures for

the intra-regional adjustment of planting structure, with a far

less effect of adjustment than cross-regional adjustment.

Thus, it is suggested that a nationwide assessment of the

influence of climate change on multiple crops should be

carried out and a nationwide climate sensitivity zoning

map should be drawn according to future climate change

prospects. This will provide a scientific reference for the

nationwide crop planting structure adjustments. Once the

general objective of the nationwide crop planting area is

determined, the provincial regions for planting area

adjustment should be identified according to the

nationwide climate sensitivity zoning map. The less

climate-sensitive regions have priority to increase crop

planting area, whereas the area of high climate-sensitive

crops can be reduced, and the vacant land can be used for

other less climate-sensitive crops planting instead.

Secondly, the agriculture department should consider the

impacts the climate and non-climate factors have on agricultural

production to make the policy more feasible. Adjustment in

regional crop planting structure depends on the interactions

between internal and external natural factors. In fact, the

agricultural planting structure adaptivity to climate change

does not merely rely on the causal relationship between

agricultural yield and climate change; more importantly,

market demand, labor price, technological progress,

agricultural policy, and climate change can affect the farmers’

planting plan, such as crop types and area. Therefore, the non-

climate factors’ effect on crop outputs shall be assessed by the

macro and micro data. Next, a relevant prediction model shall be

constructed and a database of non-climate factor change

scenarios shall be set to predict the crop planting area. Finally,

a variety of crops with planting structure to be adjusted shall be

included in the analysis so that the policy with scientific

justification can be provided for the adjustment of multiple

crops’ planting structure.

TABLE 6 The change rate of rice planting area corresponding with the rainstorm events.

Variables Area with an
increasing
rate

Area with a
weakly increasing
rate

Area with a
decreasing
rate

Area with a
sharply increasing
rate

The change rate of rice planting area
(hm2/10a)

0.0–6400.0 −6000.0–0.0 −12000.0–−6000.0 −24000.0–−12000.0

The change rate of rainstorm days (d/10a) −0.138 −0.115 −0.108 0.205
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