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1 Introduction

Globally, exposure to air pollution is estimated to cause millions of deaths annually as

well as loss of healthy years of life (Li et al., 2021). PM2.5 pollution has become a worldwide

challenge, especially in developing countries such as China. PM2.5 exposure not only

affects the mortality rates of residents as well as outpatient and hospitalization rates for

specific diseases but also increases cancer risk and death burden (Tan et al., 2018; Li et al.,

2019). In addition, PM2.5 pollution can cause economic losses by increasing health-related

expenditures. Hence, evaluating the urban PM2.5-related health economic losses across

China is of significance for environmentally sustainable and equitable decision-making

developments.

Various scholars have studied PM2.5-related health economic losses in China for

different spatial scales. The average PM2.5-related economic loss was 0.3% (amended

human capital: AHC) to 1% (value of statistical life: VSL) of the total gross domestic

product (GDP) of 190 Chinese cities from 2014 to 2016 (Yang et al., 2018). In the

Beijing–Tianjin–Hebei (BTH) region of China, the PM2.5 economic loss was 6,081 million

USD in 2017 (Wang et al., 2020). Most of the previous studies on this topic were mainly

targeted at limited and individual areas or cities, such as 190 major cities in China (Yang

et al., 2018), the BTH region (Wang et al., 2020), and Shanghai (Wu et al., 2017). However,

owing to the spatial spillover effects of PM2.5 and regional joint management

requirements, it is important to systematically analyze the urban PM2.5-related health

economic losses from the national–regional perspectives.

Owing to regional differences in the economic, social, and environmental

perspectives, the factors driving PM2.5-related health economic losses in different

regions need to be analyzed further. The geographically weighted regression (GWR) is

often used to identify such factors because of its flexibility in identifying relationships

between different geospatial influences. Fu et al. (2014) used the GWR to analyze the

factors influencing PM2.5 health risks; the population, social, and economic factors

accounted for about 45% of the PM2.5 health risks. It is therefore helpful to identify
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the factors driving urban PM2.5-related health economic losses

for joint prevention and control at the regional level.

The major aims of this study were as follows: 1) to explore

the spatiotemporal variations of PM2.5 in 287 Chinese cities

and to identify critical study regions by spatial autocorrelation

analysis; 2) to evaluate PM2.5-related health losses in the

studied cities based on the monitored data and health

loss model; 3) to calculate the PM2.5-related health

economic losses according to the VSL; 4) to identify the

socioeconomic drivers of PM2.5-related health economic

losses based on GWR and to formulate management

strategies for key regions.

2 Materials and methods

2.1 Data sources

The daily mean PM2.5 concentration data for

2015–2018 were collected from the website of the China

National Environmental Monitoring Centre (CNEMC)

(http://www.cnemc.cn/sssj/). Based on the requirements of

the ambient air quality standards (GB3095-2012),

monitoring sites with valid PM2.5 concentration data for

less than 20 h a day, 27 days a month (25 days for

February), or 324 days a year were eliminated. The missing

data were identified from https://www.aqistudy.cn/

historydata/. Because the monitoring data for Sansha and

Taiwan were missing and because Lhasa, Urumqi, and

Karamay were geographically far away from the other

prefecture-level cities, a follow-up analysis of the

prefecture-level cities in mainland China was conducted

after excluding the abovementioned regions. Vector

boundary data of the prefecture-level administrative

divisions in China were obtained from the Center for

Resources and Environmental Sciences of the Chinese

Academy of Sciences (http://www.resdc.cn/). The

population data, mortality data, as well as social

and economic factors (population density, GDP,

urbanization rate, proportion of secondary

industry, green coverage rate of built-up areas, industrial

sulfur dioxide emissions) were all obtained from the

statistical yearbook.

2.2 Health loss model

Some scholars have defined health loss as premature deaths

or hospitalizations caused by PM2.5 exposure (Li et al., 2020).

PM2.5 health economic loss refers to monetizing the PM2.5 health

loss via the willingness to pay (WTP), cost of illness (COI), or

AHC method. Three steps were used to quantitatively assess the

health impacts of PM2.5: 1) collecting and organizing PM2.5

concentration data from the study areas; 2) identifying the

exposed population; 3) calculating the PM2.5-related health

effects using the concentration-response coefficient obtained

from epidemiological studies. The formula for calculating

the health losses from the 287 cities exceeding Grade II

standards (35 μg/m3) of the GB 3095-2012 is as follows (Xia,

2019):

ΔY � Y0(1 − e−βΔPM2.5)pPop (1)

where ΔY (person) is the resulting premature deaths; Y0 (‰) is

the baseline rate of all-cause deaths; β is the coefficient between

the PM2.5 concentration and health effects (concentration-

response coefficient); Pop (person) is the exposed population;

ΔPM2.5 (µg/m
3) is the annual mean concentration (AM) change

in PM2.5. All-cause deaths were identified as the endpoint of the

health effects. In China, very few studies have investigated the

concentration-response relationship between PM2.5 exposure

and all-cause mortality, and some of these were region-

specific (Kan et al., 2007; Huang et al., 2012; Zhou et al.,

2015; Qu et al., 2020). Since PM2.5 was not monitored in

China during the study cohort, Huang et al. (2012) converted

PM10 to PM2.5 concentrations to analyze the concentration

response between PM2.5 exposure and health impact

endpoints. Hoek et al. (2013) conducted a multiregional meta-

analysis with well-defined health impact endpoints; the excess

risk of all-cause mortality (ER) was 6% (95% CI: 4.8%) for every

10 μg/m3 increase in PM2.5 exposure. Therefore, the present

study referred to the results of Hoek’s study. The β value was

0.005827 and relative risk (RR) value was 1.06. Considering the

GB 3095-2012 of PM2.5 AM (35 µg/m3) as the control scenario,

when ΔPM2.5 is greater than 0, we consider ΔY as the PM2.5-

related health loss.

2.3 Health economic loss model

The common methods used to assess the economic

impacts of controlling air pollution include the COI, AHC,

and WTP approaches. The COI mainly evaluates the medical

expenses and other costs incurred by diseases, and it is suitable

for assessing the economic impacts caused by air quality

changes in small and highly polluted areas (Jo, 2014). The

traditional human capital approach emphasizes the damage

caused by air pollutants to workers’ capital. The value of

premature deaths of young, unemployed, and retired

persons is very low, which has ethical and moral defects to

a large extent (Qu et al., 2020). The WTP refers to the VSL of

the samples calculated using the death risk intention survey

value evaluation method. The advantage of the WTP approach

is that it can be used to evaluate the use and non-use values of

air pollution health losses (Yu et al., 2019). Compared with the

three methods noted above, the VSL was selected owing to its
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flexibility and operability. A model that monetizes the health

effects of changes in PM2.5 concentration is shown in the

formula below (Ding et al., 2016):

HBE � ΔY × VSL (2)

where ΔY (person) is the resulting premature deaths, VSL (ten

thousand RMB/person) is the unit economic value of the health

endpoint, and HBE (billion RMB) is the health economic loss.

The calculation of the VSL is shown in the Supplementary

Material.

2.4 Global autocorrelation

Global autocorrelation is a description of the spatial

characteristics of properties throughout a region (Liu et al.,

2018). Assuming that the entire study is divided into n units,

where the value on the ith unit is xi and mean observed value is �x,

the Moran’s I statistic can be expressed as follows:

I � ∑n
i�1∑

n
j�1Wij(xi − �x)(xj − �x)
S2∑n

i�1∑
n
j�1Wij

(3)

S2 � 1
n
∑n

i�1(xi − �x)2 (4)

where W is a spatial weight matrix, and Wij (xi − �x)(xj − �x)
represents the covariance.

2.5 Local autocorrelation

To study the relativity of the local regions within the entire

region, the concept of local autocorrelation is introduced. For

unit i, the corresponding local Moran’s I can be defined as

follows:

Ii � (xi − �x)
s2

∑n

j�1,j ≠ i
wij(xj − �x) (5)

where Ii represents the local Moran’s I coefficient of position i.

2.6 Geographically weighted regression

The GWR is a local statistical method that inserts the

spatial locations of the data into the regression parameters to

explore the spatial variations between the explained and

explanatory variables; it can effectively solve spatial

nonstationarity (Duan et al., 2018). The structure of the

model is as follows:

yi � β0(ui, vi) +∑
k
βk(ui, vi)Xik + εi i � 1, 2, . . . , n (6)

where (ui, vi) is the spatial coordinate of the ith sample point;

βk(ui, vi) is the value of a continuous function βk(u, v) at point i;

β0 represents the constant term of each location; Xik is the ith

observed value of the kth dependent variable; εi is the random

residual.

3 Results and discussion

3.1 Spatiotemporal variation of PM2.5
across China

The distribution of the PM2.5 AM in 287 Chinese cities for

2015–2018 is shown in Figure 1. From 2015 to 2018, the high

concentration values were mainly observed in the BTH region

and surrounding areas (BTHSA), Fenwei Plain (FWP), and

middle reaches of the Yangtze River (MRYR). With the BTH

region as the center, the distribution of PM2.5 AM gradually

decreased toward the surrounding areas. The areas with low

concentrations were mainly observed in the southwest and

south regions of China. The PM2.5 AM in northeast China

decreased each year, which was consistent with the general

trend for the entire country. Overall, the air quality of the Pearl

River Delta (PRD) was better than that of the Yangtze River

Delta (YRD). The PM2.5 AM in the PRD met the GB 3095-

2012 standard (35 µg/m3); however, from 2015 to 2017,

Foshan and Zhaoqing exceeded the GB 3095-2012 value,

whereas the value of Dongguan decreased first, increased

next, and later decreased again. A few cities in the YRD

met the GB 3095-2012 expectation, with three, four, four,

and eight cities meeting the GB 3095-2012 from 2015 to

2018 in the YRD. Through the analysis of the

spatiotemporal variations of the PM2.5 concentrations,

we concluded that the PM2.5 pollution was gradually

alleviated from 2015 to 2018 across China and that

the number of areas with values below 35 μg/m3

continued to increase. The lowest PM2.5 AM was about

15 µg/m3. The area of high concentration decreased

gradually, and the corresponding range of the PM2.5 AM

also decreased.

3.2 Evaluating health losses

The results of the PM2.5 health loss assessment in China

are shown in Supplementary Table S1. From 2015 to 2018, the

number of premature deaths in cities with PM2.5 AM

exceeding GB 3095-2012 decreased first, increased next, and

decreased again, but the proportion of the total number of

deaths decreased annually. The city with the maximum

health loss for 2015–2018 was Beijing, the cities with the

least health losses for 2015–2016 were Jinchang and Dingxi,

and the city with the least health loss for 2017–2018 was

Zhongwei.
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3.3 Evaluating health economic losses
using VSL

Bymonetizing the health loss results based on the VSL, the health

economic loss results for China from 2015 to 2018 were 1,410.626,

1,179.159, 1,295.754, and 772.668 billion RMB (1 RMB = 0.1485 USD

as on 18 July 2022), respectively, which account for 1.98%, 1.54%,

1.56%, and 0.85% of the GDPs for the corresponding years for the

287 cities. The assessment results of the PM2.5 health economic losses

in key areas for air pollution prevention and control of the Blue Sky

Protection Campaign are shown in Table 1. With the exception of the

FIGURE 1
Spatiotemporal variation characteristics of the annual mean PM2.5 concentrations in China from 2015 to 2018.

TABLE 1 PM2.5 health economic losses in key areas from 2015 to 2018
(unit: billion RMB).

Key areas 2015 2016 2017 2018

BTHSA 443.238 421.681 411.009 281.156

YRD 290.187 208.778 217.353 172.053

FWP 54.868 77.677 83.992 59.278

CC 108.578 114.173 89.676 45.484

MRYR 128.117 103.160 182.936 58.108

PRD 8.132 1.715 4.647 0.241
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Chengdu-Chongqing (CC) region, the variation trend of the PM2.5

health economic loss was similar to the health losses in other key areas,

with inconsistencies in the variation range. The PM2.5 health loss in the

CC region decreased, but the health economic losses increasedfirst and

then decreased. Except for the PRD, the decline in PM2.5 health

economic losses in other key regions were highest from 2017 to 2018,

whichwas consistentwith the period of greatest decline in health losses.

The PM2.5 health economic losses in the PRD decreased sharply in

2015–2016 and 2017–2018 but increased by 1.7 times in

2017 compared with that in 2016. By comparing the evaluation

results of the PM2.5 health and health economic losses, the changes

in the PM2.5 health economic losses were influenced by not only the

local PM2.5 AM and exposed population but also other factors and

mechanisms that remain to be explored.

3.4 Spatial agglomeration effects

The PM2.5 AM, PM2.5-related health losses, and health economic

losses in cities exceeding the standard of 35 µg/m3 showed spatial

agglomeration effects in China from 2015 to 2018. The Moran’s I

index values for the PM2.5 AM, health losses, and health economic

losses all showed the increasing–decreasing–increasing trend. ArcGIS

was used to test the local autocorrelation. The hotspots of PM2.5 AM

from2015 to 2018were concentratedmainly in the BTHSAandFWP.

In addition, Wuhan, Xiangyang, Jingmen, Xiaogan, and Suizhou of

Hubei province showed high–high agglomerations in 2015. The cold

spots of PM2.5 AM were concentrated mainly in southwest and south

China, with low–low agglomerations in Zhaoqing, Liuzhou, Guilin,

Wuzhou, Guigang, and Baiyin for 2015–2018. These cities had

relatively lower PM2.5 AM and light pollution.

Areas with high PM2.5 health losses for 2015–2018 were

concentrated mainly in the north of the Yangtze River. Although

the number of cities with PM2.5 AM exceeding 35 μg/m3

decreased annually, the number of cities with high

concentrations did not decrease significantly. The difference

between the spatiotemporal variation of the PM2.5 health loss

and PM2.5 AM may be related to the difference in the exposed

population and baseline mortality rate. Areas with high PM2.5

health economic losses for 2015–2018 were concentrated mainly

in the north of the Yangtze River, i.e., most cities in Hebei,

Henan, and Shandong provinces. The differences among the

spatiotemporal variations of the health economic losses, PM2.5

AM, and health losses may be relevant to the differences in the

levels of economic development in these research units.

3.5 Analysis of factors driving health
economic losses

As the number of cities with PM2.5 AM values exceeding 35 µg/

m3 decreased gradually, the number of cities included from 2015 to

2018 decreased as 235, 214, 204, and 178, respectively. The missing

values were mainly replaced with the mean values of the

corresponding provinces under which the city is included. The

stepwise regressionmethod was used to eliminate linear correlations

between variables (Yang et al., 2016). The independent variables

included in this study were population density (Den_Pop), GDP,

urbanization rate (Urban), proportion of secondary industry (Sec),

and industrial sulfur dioxide emissions (SO2). Their VIF values were

less than 10. Statistical descriptions of the variables used in this study

are shown in Supplementary Tables S2–S5. The results of the GWR

model are shown in Supplementary Table S6. Supplementary

Figures S2–S4 show the distributions of the influences of various

driving factors on health economic losses. The spatial distribution of

the regression residuals is shown in Supplementary Figure S1; these

residuals are randomly distributed in space, which indicates that the

residuals follow a normal distribution. There are spatial differences

in the impact degrees of each of the variables on PM2.5-related health

economic losses. Because the regression coefficients of the GDP and

SO2 were too small, empirical results only show the influences of

Den_Pop, Urban, and Sec.

3.5.1 Proportion of secondary industry
Supplementary Figure S2 shows the spatial pattern of the

influence of Sec on PM2.5-related health economic loss. The Sec

values for BTHSA, YRD, and FWPwere inversely proportional to

the PM2.5-related health economic losses. The Sec value for PRD

is directly proportional to the PM2.5-related health economic

loss. For the remaining regions (CC and YRMR), the coefficient

directions vary for each year. Thus, the empirical results of the

dynamic changes in the different regions serve as a reminder to

researchers and decision-makers to further explore the

mechanisms of the impact of industrial structure on air

pollution, population health, and economy.

3.5.2 Population density
Supplementary Figure S3 shows the spatial pattern of the

impact of Den_pop on PM2.5-related health economic loss. From

2015 to 2018, the coefficients of Den_Pop for BTHSA, FWP, and

CC were all positive, indicating that the increase in Den_Pop

contributed to increase in PM2.5-related health economic losses.

In the YRD, only Wenzhou, Quzhou, Chizhou, Jinhua, Anqing,

and Hangzhou had negative coefficients for Den_Pop in 2017.

3.5.3 Urbanization rate
Supplementary Figure S4 shows the spatial pattern of the

influence of Urban on PM2.5-related health economic loss. From

2015 to 2018, the coefficients of Urban for BTHSA andMRYRwere

negative. In the YRD, except for Shaoxing, Hangzhou, and Jiaxing,

the coefficients for Urban were positive in 2018 and negative for the

other years. In the FWP, the coefficient of Urban was negative for all

years except in Xi’an, which was positive in 2017 and 2018. In

2015 and 2016, the coefficients of Urban for cities exceeding the

35 µg/m3 standard in CC were negative. The coefficient changes of

Urban for the PRD were strongly similar to those of Den_Pop.
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The following two anomalies were observed in this study

and should be discussed further. First, the increase in the

proportion of the secondary industry will reduce PM2.5-

related health economic losses. Some studies have shown

that the proportion of the secondary industry had a

significant positive impact on the PM2.5-related health

losses (Fu et al., 2014); this means that the increase in the

proportion of the secondary industry will increase the PM2.5-

related health economic losses, which is contrary to the results

of this study. Therefore, the mechanisms of the impact of the

industrial structure on air pollution and health economic loss

need to be discussed further. Second, the strategy of

“increasing the green coverage rates of built-up areas” has

no direct impact on improving the PM2.5 health economic

losses. Tong et al. (2015) showed that increasing the green

coverage will reduce PM2.5 concentration and improve health

benefits. However, in this study, the green coverage rates of the

built-up areas did not directly affect the PM2.5-related health

economic losses. Hence, it is necessary to conduct in-depth

analysis of the influence of the green coverage rates of built-up

areas on the health economic levels of the residents in the

future.

4 Policies

According to the results of this study, the status quo of PM2.5

control and air pollution control policies in China were

combined to propose PM2.5 control suggestions for different

regions. In addition to improving the PM2.5 health economic loss

assessment system, the following key control areas were screened

out according to the geographical environment, economic

development level, and other factors. Some of the specific

governance suggestions are as follows: For the BTHSA and

Fenwei Plain, the urbanization rate can be improved to reduce

the health economic losses. The YRD region requires attention

on the construction of a regional joint prevention and control

system. The CC region needs a balanced relationship between

population density and urbanization rate, with additional

attention in terms of the impacts of economic development,

industrial structure, and human resources on local air quality.

Subsequent developments to theMRYR region should be focused

on finding a balance between economic development and

environmental quality. The PRD region requires attention in

terms of maintaining air quality.

5 Conclusion

The PM2.5 AM has gradually decreased from 2015 to 2018,

and areas with concentrations below 35 µg/m3 continue to

increase; however, the pollution levels still vary in different

regions. The Beijing–Tianjin–Hebei and surrounding areas,

Yangtze River Delta, Chengdu-Chongqing region, Middle

Reaches of the Yangtze River, and Pearl River Delta are some

of the key areas for air pollution prevention and control. The

number of PM2.5-related premature deaths in 287 cities where

exceeded Grade II standards (35 μg/m3) were 872035, 702948,

731110 and 414141, respectively, based on the VSL measure. The

population distribution, industrial structure, and economic and

social development levels accounted for 83%, 83%, 66%, and 74%

of the PM2.5-related health economic losses over 2015 to 2018,

respectively, based on the GWR. Therefore, policy makers should

consider the impacts of population distribution, industrial

structure, and economic and social development levels on

health economic losses when formulating air pollution control

policies in the future.
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