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Extreme rainfall can be affected by various climatic factors such as the large-

scale climate patterns (LCPs). Understanding the changing LCPs can improve

the accuracy of extreme rainfall prediction. This study explores the variation

trend of extreme rainfall in the middle and lower reaches of the Yangtze River

Basin (MLRYRB) and the telecorrelation with four LCPs, namely WPSHI (Western

Pacific Subtropical High Index), EAMI (East Asia Monsoon Index), ENSO (El Niño-

Southern Oscillation) and PDO (Pacific Decadal Oscillation), through modified

Mann-Kendall (MMK) analysis, Pearson correlation coefficient, wavelet

coherence analysis (WTC) and improved partial wavelet analysis (PWC).

Previous studies have ignored the interdependence between these climate

indices when analyzing their effects on precipitation. This study introduces the

improved PWC, which can remove the correlations between them and reveal

the influence of a single LCP. The results show that: 1) extreme rainfall in the

MLRYRB has an obvious increasing trend and has a significant correlation with

the LCPs; 2) the LCPs have a significant cyclical relationship with extreme

rainfall, which can be significantly affected by the intergenerational variation of

the LCPs; and 3) the improved PWC can accurately reveal the influence of a

single LCP. EAMI is the main influencing factor in the 1-year cycle, while WPSHI

is the main influencing factor in the 5-year cycle. ENSO and PDO can always

influence extreme rainfall by coupling WPSHI or EAMI.

KEYWORDS

extreme rainfall, large-scale climate patterns, partial wavelet analysis, yangtze river,
driving factor

OPEN ACCESS

EDITED BY

Yanfang Sang,
Institute of Geographic Sciences and
Natural Resources (CAS), China

REVIEWED BY

Xuezhi Tan,
Sun Yat-Sen University, China
Pengnian Huang,
Nanjing University of Information
Science and Technology, China

*CORRESPONDENCE

Suning Liu,
u3002906@connect.hku.hk
Haiyun Shi,
shihy@sustech.edu.cn

SPECIALTY SECTION

This article was submitted to
Atmosphere and Climate,
a section of the journal
Frontiers in Environmental Science

RECEIVED 24 May 2022
ACCEPTED 28 July 2022
PUBLISHED 01 September 2022

CITATION

Wang Y, Liu S, Chen J, Zhou Z and Shi H
(2022), Investigating the spatiotemporal
variations of extreme rainfall and its
potential driving factors with improved
partial wavelet coherence.
Front. Environ. Sci. 10:951468.
doi: 10.3389/fenvs.2022.951468

COPYRIGHT

© 2022 Wang, Liu, Chen, Zhou and Shi.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 01 September 2022
DOI 10.3389/fenvs.2022.951468

https://www.frontiersin.org/articles/10.3389/fenvs.2022.951468/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.951468/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.951468/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.951468/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.951468/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.951468&domain=pdf&date_stamp=2022-09-01
mailto:u3002906@connect.hku.hk
mailto:shihy@sustech.edu.cn
https://doi.org/10.3389/fenvs.2022.951468
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.951468


1 Introduction

Due to climate change, the frequency and intensity of

extreme weather events have increased. Extreme weather

events will change the local characteristics of temperature and

rainfall, posing a threat to natural systems. Rainfall is one of the

most important climate variables, and its changes have an

important impact on the local hydrological process and water

resources management (Grimm and Tedeschi, 2008; Zhang et al.,

2018; Ashcroft et al., 2019; Liu and Shi, 2019; Rao et al., 2020).

The frequency increase in extreme rainfall often leads to more

floods, which is one of the most serious water-related natural

disasters. Since the 20th century, extreme rainfall has shown a

significant and widespread increasing trend in most parts of the

world (Chang et al., 2012; Syafrina et al., 2015; Shi et al., 2016),

and more than 60% of floods are caused by extreme rainfall

(Teegavarapu, 2012; Agilan et al., 2021). Extreme rainfall will

have a huge impact on the local ecology, industry, and social

economy, which has motivated more and more studies to

emphasize the importance of extreme rainfall. However, the

temporal and spatial distributions of extreme weather events

in different regions are quite different (Sridhar et al., 2013;

Weldegerima et al., 2018), normally, with different impact

ranges, frequencies, durations, and severities (Swain et al.,

2019; Fagnant et al., 2020; Tong et al., 2020; Ndlovu et al.,

2021). Therefore, it is of great significance to investigate the

spatiotemporal variations of extreme rainfall and its potential

driving factors for different regions.

The middle and lower reaches of the Yangtze River Basin

(MLRYRB) is located in the east of China, which is one of China’s

important industrial and economic centers and also one of the

most vulnerable areas threatened by heavy rainfall and floods.

The floods in the MLRYRB are often attributed to the frequent

occurrence of extreme rainfall (Jain and Lall, 2001; Su et al., 2005;

Su et al., 2009; Chen et al., 2021). The characteristics of

spatiotemporal distribution of extreme rainfall can be affected

by many factors, such as the changes of large-scale climate

patterns (LCPs), evaporation and underlying surface

conditions (Fernández-Montes et al., 2014; Wang et al., 2017;

Li et al., 2021; Zhou et al., 2021). Studies on its driving factors will

help to conduct better flood disaster forecasting. Among all

climatic and non-climatic factors, the LCPs are considered as

important factors affecting extreme rainfall, and a number of

studies have been focusing on the relationships between extreme

rainfall and the LCPs (Ward et al., 2016; Wi et al., 2016; Liu et al.,

2020). For example, East Asian monsoon has a significant

variability on interannual and interdecadal time scales in the

Yangtze River Basin (YRB), and has a unique impact on

precipitation (Ding & Chan, 2005). Villarini and Denniston,

2016 illustrated that ENSO (El Niño-Southern Oscillation) has a

significant control effect on extreme rainfall in Australia.

Limsakul and Singhruck (2016) showed that PDO (Pacific

Decadal Oscillation) is an important factor affecting extreme

rainfall changes in Thailand. The results of Fu et al. (2013)

indicated that ENSO activities have affected China’s extreme

rainfall trends and changes. Zhang (2020) and Liu et al. (2019)

have shown that WPSHI (Western Pacific Subtropical High

Index) is one of the important drivers of extreme rainfall in

summer in eastern China. Ayala (2019) supposed that AO

(Arctic Oscillation) is one of the important causes of rainfall

in Puerto Rico.

Most studies have used wavelet coherence and correlation

coefficient methods to understand the distant link between the

LCPs and extreme rainfall. However, it should be pointed out

that none of these studies ever considered the correlations

among the LCPs when assessing their effects on rainfall, which

might lead to misinterpretation of the teleconnection (Huang

et al., 2015; Wang et al., 2021; Zhou et al., 2020a, 2020b; Shi

et al., 2020). The independent relationships between extreme

rainfall and climate signals at the different time scales are

rarely reported. Therefore, it is very important to find out the

effect of an individual LCP on rainfall. Mihanovic et al. (2009)

proposed the concept of partial wavelet coherence (PWC),

providing a statistical method to estimate the dependence of

two variables after removing the influence of one other

potentially influencing variable. Hu and Si (2021) improved

the PWC method so that the improved PWC could reveal the

relation of two variables after removing the influence of

multiple variables. Wavelet analysis also facilitates multi-

scale signal analysis. Therefore, this study aims to

understand the teleconnection between a given LCP and

extreme rainfall with the improved PWC and cooperate

with wavelet decomposition to understand their correlation

at different scales. This will help to understand the effects of

the LCPs on extreme rainfall in the MLRYRB.

The purpose of this study is to explore the spatiotemporal

distribution of extreme rainfall in the MLRYRB from 1960 to

2020, and to study the teleconnection between extreme rainfall

and the LCPs by wavelet analysis. The improved PWCmethod is

used to explore the teleconnection relationship between extreme

rainfall and individual LCP. This study mainly focused on the

following aspects: 1) to analyze the characteristics of temporal

variations and spatial distributions of extreme rainfall in the

MLRYRB from 1960 to 2020; 2) to use wavelet coherence analysis

to explore the temporal influences of multiple LCPs on extreme

rainfall; and 3) to introduce the improved PWC method to

quantify the interactions between different LCPs and their

impacts on extreme rainfall.

2 Data and methods

2.1 Study area

The Yangtze River is the longest and largest river in China,

which originates in the Tanggula Mountains, flows through
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19 provinces from west to east, and eventually flows into the East

China Sea. The YRB (24–35° N, 90–122° E), with a drainage area

of about 1.8 million km2, is located in the subtropical and

temperate climate zones dominated by the southeast

monsoon. In this study, the MLRYRB (25–34° N, 108–122° E;

Figure 1) are selected as the study area. The MLRYRB is one of

the important water sources and economic centers in East China.

The average annual temperature is between 14 and 18°C, and the

average annual precipitation is between 1,000 and 1,400 mm.

Affected by factors such as subtropical monsoons and typhoons,

the MLRYRB is one of China’s heavy rain-prone areas and areas

with the highest flood intensity.

2.2 Research data

The meteorological data used in this study are obtained from

the China Meteorological Data Service Center (http://data.cma.

cn/), and there are 62 meteorological stations with the complete

sequence of daily rainfall from 1960 to 2020 in the MLRYRB

(Figure 1). Stations with missing data for more than 15 days were

deleted, and missing data for less than 15 days were interpolated

with relevant neighboring stations to ensure the consistency and

completeness of rainfall data. Missing rainfall data for 1–2 days

were filled in with the average values of adjacent days. In

addition, missing data for consecutive days were interpolated

with the long-term average of the same day in other years. To find

out the impacts of climate change in the MLRYRB, the

correlations between the extreme rainfall indices and the LCPs

are studied. The LCPs data can be obtained from Earth System

Research Laboratory of the Physical Sciences Division of the

National Oceanic and Atmospheric Administration in the

United States (https://www.esrl.noaa.gov/psd/data/

climateindices/list/). The WPSHI data can be obtained from

the National Climate Center of China Meteorological

Administration (https://cmdp.ncc-cma.net/Monitoring/cn_stp_

wpshp.php) (Liu et al., 2019; Zhang, 2020). The East Asia

Monsoon Index (EAMI) is based on the calculation method

of EAMI given by China Meteorological Administration of

(http://cmdp.ncc-cma.net/Monitoring/monsoon.php). Data

such as sea level pressure (SLP) and wind vector are from

NCAR (Kanamitsu et al., 2002). The specific calculation

process can refer to Zhu et al. (2005).

2.3 Methods

2.3.1 Extreme rainfall indices
Various extreme rainfall indices are defined to better

understand the changing laws of extreme rainfall, according to

the World Meteorological Organization (WMO) and the fifth

assessment report of Intergovernmental Panel on Climate

Change (IPCC, 2013). Previous studies have made different

changes to the indices given by the WMO (Zhang et al., 2011;

FIGURE 1
Location and topography of the MLRYRB in China.
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Lestari et al., 2016; Costa et al., 2020), and this study selected

seven of them for analysis (Table 1). Data quality control and

homogeneity testing for extreme rainfall index calculation refer

to the RClimDex package provided by CCl/CLIVAR/JCOMM

Expert Team (ET) on Climate Change Detection and Indices

(ETCCDI) (http://etccdi.pacificclimate.org/software.shtml).

2.3.2 Modified Mann-Kendall trend test method
The original Mann-Kendall (MK) method is based on the

assumption of random independence of sequences, but does

not take into account the errors caused by sequence

correlation. Hamed and Rao (1998) added a correction

factor to the original MK method, and then, Hamed (2008)

and Khaliq et al. (2009) further considered the lag-1 sequence

relationship. The MMKmethod compensates for the influence

of sequence correlation on the MK statistics by modifying the

MK statistics. This study uses a modified Mann-Kendall

(MMK) trend test method (Mann, 1945; Kendall, 1948;

Hamed and Rao, 1998) to evaluate the trend of extreme

rainfall in the MLRYRB. For the specific calculation

process, please refer to Khaliq et al. (2009).

2.3.3 Pearson correlation analysis
Pearson correlation analysis describes the degree of closeness

by analyzing the linear relationship between two variables. When

the correlation coefficient value is greater than zero, the two

variables are positively correlated, when the correlation

coefficient is less than zero, they are negatively correlated. The

absolute value of the correlation coefficient close to 1 indicates

that the correlation between the two variables is significant, and

the correlation coefficient value close to zero indicates that the

correlation is not significant. A correlation coefficient of zero

means that there is no linear relationship between the two

variables.

2.3.4 Wavelet coherence and improved partial
wavelet coherence

Wavelet Transform can perform wavelet decomposition of

signals on multiple scales and the wavelet transform

coefficients obtained from the decomposition on each scale

represent the information of the signal at different resolutions.

Wavelet coherence (WTC) can extend the time series to the

time-frequency space, and find the local intermittent and

periodic characteristics. This can be used to evaluate the

correlation of two time series in the time-frequency

domain, and find the significant differences between the

two time series. WTC is widely used in the fields of

hydrology and meteorology (Tan et al., 2016; Nalley et al.,

2019; Zhou et al., 2021). For two time series x and y, the WTC

(Hudgins et al., 1993; Torrence and Compo, 1998) of the two

time series can be defined as follows:

R2
n(a) �

∣∣∣∣S(a−1Wxy
n (a))∣∣∣∣2

S(a−1∣∣∣∣Wx
n(a)

∣∣∣∣2)(a−1∣∣∣∣Wy
n(a)

∣∣∣∣2) (1)

whereWXY
n is the cross wavelet power spectrum,Wx

n andW
y
n are

the wavelet transform of the time series x and y. The value range

of R2
n(a) is 0–1. The value closer to 1 indicates the greater

correlation between the two sequences (Liu et al., 2018). The

smoothing operator S is defined as:

S(W) � Sscale(Stime(Wn(a))) (2)

where Sscale denotes smoothing along the wavelet scale axis and

Stime smoothing in time.

Stime(W)|a � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Wn(a) p c
−t2
2a2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠|a , Stime(W)|a

� (Wn(a) p c2 ∏ (0.6a))|n (3)

where c1 and c2 are normalization constants and Π is the

rectangle function. The factor of 0.6 is the scale decorrelation

length for the Morlet wavelet. Detailed introductions of theWTC

can refer to Torrence and Compo (1998) and Grinsted et al.

(2004). Wavelet decomposition is the inverse transformation of

cross wavelet.

Partial wavelet coherence (PWC) evaluates the correlation

between two variables in the time-frequency (time series) domain

by excluding the influence of other variables. It is more similar to

partial correlation analysis, but it adds wavelet coherence

analysis. Compared with the usual partial correlation analysis,

TABLE 1 Definition of extreme rainfall indices.

Index Descriptive name Definition Unit

RX1day Maximum 1-day precipitation Annual maximum precipitation in 1 day mm

RX3days Maximum 3-day precipitation Annual maximum precipitation of 3 consecutive days mm

CDD Consecutive dry days Maximum number of consecutive days with precipitation ＜ 0.1 mm day

CWD Consecutive wet days Maximum number of consecutive days with precipitation ≥0.1 mm day

SDII Simple daily intensity index The ratio of annual total precipitation to the number of wet days mm/day

R90D Wet days The number of rainy days with precipitation >90th percentile per year day

R95D Very wet days The number of rainy days with precipitation >95th percentile per year day
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it can reveal the time-frequency relationship between two

variables more deeply, finding the interaction in the local

time-frequency space and eliminating it. The PWC can be

defined as follows:

R2
yx,z �

∣∣∣∣∣∣γy,x − γy,zγx,z

∣∣∣∣∣∣2(1 − R2
y,z)(1 − R2

x,z) (4)

Among them, the absolute value of Ryx,z is the PWC of x and

y after removing the control variables, γ is the complex wavelet

coherence between the two variables, Ry,z and Rx,z are the

Bivariate wavelet coherency of the two variables. A more

specific calculation process can refer to Hu and Si (2021) and

Aguiar-Conraria and Soares (2014). The original PWC was

limited to excluding one variable. Hu and Si (2021) modified

the previous PWC and developed the improved PWC. The

improved PWC between y and x after excluding variables Z at

scale s and location τ can be written as:

γy,x·Z(s, τ) �
(1 − R2

y,x·z(s, τ))γy,x(s, τ)��������������������(1 − R2
y,z(s, τ))R2

x,z(s, τ)
√ (5)

where symbol • is the notation for excluding variables. For the

calculation of R2
y,x·z(s, τ), R2

y,z(s, τ), and R2
x,z(s, τ), refer to Hu and

Si, 2020. Unlike the PWC, the Z value in the improved PWC can

be more than two-dimensional. The improved PWC can achieve

higher and more accurate PWC values than the original PWC,

and it can also exclude the influence of multiple variables. Hu and

Si (2021) provided a code and toolbox of improved PWC.

Daubechies Wavelet is a wavelet decomposition method

based on continuous wavelet transform, which can decompose

the oscillation modes in different frequency bands. This study

decomposes the LCP signals and rainfall sequences based on the

Daubechies Wavelet and discusses their correlations in different

frequency bands to help understand the results of the improve

PWC. The 5th order Daubechies Wavelet (db5) will decompose

the object signal into 7 bands. When the decomposed frequency

band is greater than 7, the signal is very weak, and when it is less

than 7, it cannot reflect the situation of all frequency bands. So

db5 is selected to analyze the mutual interference of extreme

rainfall and the LCPs in different frequency bands (Kumar &

Foufoula-Georgiou, 1993).

3 Results

3.1 Extreme rainfall changes in the
MLRYRB

Climate change and human activities led to changes in

extreme rainfall events in the MLRYRB. Figure 2 shows the

spatial distributions of the average values of RX1day, RX3days,

SDII, R90D, R95D, CWD and CDD from 1960 to 2019. In

addition, the temporal and spatial variation trends of rainfall in

the MLRYRB were analyzed by the MMK trend test method. It

illustrates that extreme rainfall was on the rise and had obvious

regional characteristics in spatial distribution. The multi-year

average values of RX1day, RX3days, SDII, R90D, and R95D were

102.12, 146.25, 9.43 mm/day, 14.45 days, and 4.91 days,

respectively. These highest values all appeared in the Poyang

Lake basin. This might be because of the climatic characteristics

of the Poyang Lake that could be easily affected by the monsoon.

Since the Poyang Lake area is closer to the Pacific Ocean, the East

Asian monsoon will bring a large amount of water vapor to the

coastal areas. At the same time, due to the combined effect of the

Western Pacific Subtropical High in summer. The rainfall and

FIGURE 2
The trends and mean values of RX1day, RX3days, SDII, R90D, R95D, CWD and CDD across the MLRYRB.
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humidity increase in the areas near the coast in summer, which in

turn affects the annual average rainfall value. The mean values of

the MMK statistics for RX1day, RX3days, SDII, R90D, and R95D

are 1.43, 1.05, 2.88, 1.32, and 1.34, respectively, showing

significant upward trends. The increase in extreme rainfall has

led to an upward trend in the indicator of extreme rainfall in this

region. Most of the stations showing a downward trend were

concentrated in areas close to the middle reaches. It might be due

to that the construction of the Three Gorges Reservoir and

Gezhouba Reservoir has caused changes in the climate

characteristics of these areas, thereby changing the trend of

extreme rainfall. The multi-year average values of CWD and

CDD were 10.61 and 21.92 days, respectively. For CWD, the

mainstream of the Yangtze River was almost the dividing line.

The difference between the north and the south was significant.

The CWD in the north of the Yangtze River was significantly

lower than the average value, and the CWD in the south was

significantly higher than the average value. Both CWD and CDD

showed downward trends in the MLRYRB, and the average

values of their MMK statistics were −1.01 and −1.33,

respectively. In the lower reaches of the Poyang Lake, the

CWD showed an upward trend, almost overlapping with areas

where extreme rainfall was significantly higher than the average

value. In other regions, the CWD showed a downward trend. For

CDD, upward trends could only be found in the

southwestern part.

Figure 3 shows the MMK trend test results of RX1day,

RX3days, SDII, R90D, R95D, CWD and CDD from 1960 to

2019. In general, the results show a clear trend of increasing

extreme rainfall in the MLRYRB over the past 60 years with five

extreme rainfall indices (RX1day, RX3days, SDII, R90D, R95D)

showing a clear upward trend. RX1day and RX3days fluctuated

before 1990 and rose steadily after 1990, while R90D, R95D, SDII

showed an increasing trend after 1970. RX1day, RX3days, R95D

and SDII were mutated around 1990, while the mutation point of

R90D was concentrated during 1970–1980. There were clear

downward trends in CWD and CDD and no obvious mutation

point could be found.

3.2 Correlations between extreme rainfall
indices and the large-scale climate
patterns

To explore the correlations between extreme rainfall and the

LCPs, Pearson correlation analysis was used for a preliminary

analysis. Figure 4 shows the Pearson correlation coefficients

between extreme rainfall indices and the LCPs, and the

asterisk represents significant at the 95% confidence level. The

results show that WPSHI, which had significant positive and the

highest correlation with extreme rainfall. Most of the correlation

coefficients between WPSHI and extreme rainfall indices exceed

0.3. Both ENSO and PDO had significant negative correlations

with extreme rainfall and the correlation between PDO and

extreme rainfall is slightly higher than ENSO. In comparison,

EAMI and extreme rainfall also had a negative correlation, but

the correlation coefficient and significance were lower. Among

them, the correlation coefficients of WPSHI and PDO with

5 extreme rainfall indices all passed the 95% confidence level

test. WPSHI and PDO had the largest correlations with extreme

rainfall, followed by EAMI and ENSO, and AO had the smallest

correlation with extreme rainfall. The correlation coefficients of

CWD and CDD with extreme rainfall were low and failed the

significance test, indicating that CWD and CDD were less

relevant to the LCPs. In general, SDII, R90D, R95D, RX1day

and RX3days had relatively consistent responses to the LCPs, but

were significantly different from CWD and CDD.

3.3 Wavelet coherence analysis

The LCPs can directly or indirectly affect the occurrence and

change of extreme rainfall, and are closely related to extreme

rainfall. Exploring the teleconnection relationships between the

LCPs and extreme rainfall helps to find out the response of

extreme rainfall to changes in the LCPs, which is of great

significance to extreme rainfall prediction. The previous

section has shown the results of the Pearson correlation

analysis between the LCPs and extreme rainfall. WTC was

further used to find out the responses of extreme rainfall to

the LCPs and their resonant frequencies and phase shifts in the

time-frequency domain. Results with less relevance were not

listed. Therefore, Figure 5 only presents the WTC analysis results

between five selected extreme rainfall indices (i.e., SDII, R90D,

R95D, RX1day, and RX3days) and four LCPs (i.e., WPSHI,

EAMI, ENSO and PDO). The color bar represents the energy

density, and the 95% confidence level of the red noise is shown as

a thick outline. The relative phase relationship is expressed as an

arrow (i.e., the opposite phase points to the left, and the same

phase points to the right).

In general, from the perspective of wavelet spectrum, the

periodic correlations between WPSHI, EAMI and extreme

rainfall were obvious, and the periodic signals of ENSO and

extreme rainfall were significantly different for the periods before

and after 2000. Although the correlation coefficient between

PDO and extreme rainfall was high, the periodic signals were

not significant. For WPSHI, it had a periodical signal of

8–16 months with RX1day, RX3days, R90D, and R95D, and

the discontinuities were around 1975-1985 and 1995. WPSHI

also had a periodical signal of about 32–64 months with RX1day

and RX3days around 1970 and 1980-2000; however, the

periodical signal around 1980-2000 was relatively weak for

RX3days. The signal performances of WPSHI with R90D and

R95D were similar, both having a periodical signal of

32–120 months from 1965 to 2019. The only difference was

that the 32–64 months signal of WPSHI with R95D was
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interrupted around 1990. The signal performance of WPSHI

with SDII was similar to that ofWPSHI with R95D, but the signal

period was shorter in the period of 32–64 months. For EAMI, the

performance of different extreme rainfall indices was basically

the same. All had 8–16 months of continuous uninterrupted

periodic signals, 32 months periodic signals during 1970–1980,

and 32–64 months periodic signals during 1990–2000. There

were subtle differences in signal strength and duration

between different extreme rainfall indicators.

ENSO had a negative correlation with extreme rainfall

before 2000, but a positive correlation after 2000. The

change in the positive-negative phase may be caused by the

phase transition of ENSO around 2000. The periodical

relationships of ENSO with the extreme rainfall indices were

not as good as that of WPSHI. The difference was that, before

1990, there was a continuous cycle of 8–16 months between

ENSO and extreme rainfall. After 1990, there were still some

intermittent signals in the 8–16 months cycle, but the

significant area of the signal decreased significantly. ENSO

had periodical signals of about 20 months with RX1day

around 1990-1995, 16–32 months with R90D, R95D, and

SDII around 2000-2010, and 64 months with SDII around

2000-2020. Similar to ENSO, the relationships between PDO

and the extreme rainfall indices were not as good as that of

WPSHI. There was no long-term continuous signal between

PDO and the extreme rainfall indices. PDO had significantly

more periodical signals of 8–16 months with RX1day and

RX3days after 1990, and 32 months periodical signals around

2000-2005. Moreover, the performance of PDO and the other

3 extreme rainfall indices (R90D, R95D, and SDII) did not

change significantly.

Overall, it can be considered that WPSHI and EAMI had

a major impact on extreme rainfall. The periodic

relationships between the LCPs and extreme rainfall were

not significant and had no obvious regularity in the periodic

region of less than 8 months. During the 8–16 months cycle,

EAMI played a leading role. In the cycles more than

32 months, different LCPs had different signal regions

and less overlapping parts; however, the periodic

FIGURE 3
The MMK trend test results of RX1day, RX3days, SDII, R90D, R95D, CWD and CDD from 1960 to 2019.

FIGURE 4
Pearson correlation coefficients between extreme rainfall
indices and the LCPs. Note: the asterisk represents significant at
the 95% confidence level.
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relationship between WPSHI and extreme rainfall was

significant.

3.4 Partial wavelet coherence analysis

In most cases, the impacts on rainfall are the results of the

interaction among multiple LCPs; however, different LCPs may

interfere with each other (Hu et al., 2017; Nalley et al., 2019; Su et al.,

2019). Improved PWC can exclude multiple other influencing

factors, and then find the main influencing factors. In this study,

to explore the time domain of the impact of a single LCP on extreme

rainfall, four LCPs with the greatest impacts on extreme rainfall of

the MLRYRB were screened. For each LCP, PWC was used to

eliminate the interaction of the other three LCPs (Figure 6). Table 2

shows the proportional change of the significant area in the cone

region before and after the use of PWC, which is used to assist the

judgment of the PWC results.

FIGURE 5
Wavelet coherence analysis results between the five selected extreme rainfall indices and four LCPs (i.e., WPSHI, EAMI, ENSO, and PDO).
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For WPSHI, the influence of the other three LCPs is

eliminated. The continuous periodicity of WPSHI and

extreme rainfall in the WTC disappeared, and the signals

in the 16–128 months cycle were also significantly weakened,

and the proportion of significant areas decreased by 6–11%.

The continuous signal in the 8–16 months cycle disappeared

completely, and the periodic signal in the 16–64 months cycle

was also split into shorter cycles. The performance of

different extreme rainfall indices on WPSHI was relatively

consistent. For EAMI, the WTC results are similar to the

PWC results. Although there was a decrease in signal

continuity after using PWC, a continuous periodic signal

in the 8–16 months cycle could still be found. There was a

relatively small annual change in the medium and long

periods other than 8–16 months, and the area of significant

areas decreased by 2–5%. The areas with significant decrease

in the signal area from 8 to 16 months were concentrated

between 1980 and 1990 and around 2005, and the

FIGURE 6
Partial wavelet coherence analysis results between a single LCP and extreme rainfall after removing other three LCPs impact.
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performance of different extreme rainfall indicators was

basically the same. In the 16–64 months cycle, the

1970-1980 signal weakened and the 1990-2000 signal

shifted to around 2010. The signal between ENSO and

extreme rainfall indicators was significantly weakened after

using the PWC, with a significant area reduction of about 4%.

However, relationship between ENSO and RX1Day (as well as

RX3Days) increased the signal at the edges of the impact

cone, which were concentrated in 16–32 months. The long-

period continuous signal almost completely disappeared,

leaving only scattered small period signals. Most of these

16–32 months small period signals were concentrated around

1980 and 2005. The performance of PDO is abnormal. After

using PWC, the area of the significant region was basically the

same as that of WTC or slightly increased. However, the

position of the significant area had great changes. The short

8–16 months cycle basically disappeared and was replaced by

the longer 32–64 months cycle, which was distributed

around 2000.

WPSHI and EAMI both played important roles in the

periodicity impact of extreme rainfall in the MLRYRB. Since

the MLRYRB is located in the area affected by East Asian

monsoon, EAMI has maintained a relatively consistent

oscillation cycle of about 1 year. After the use of PWC, the

periodic effect of WPSHI on extreme rainfall has changed

greatly, indicating that the performance of WPSHI would be

affected by other LCPs.

3.5 Reconstruction of extreme rainfall and
the large-scale climate patterns

In previous section, correlations between extreme

rainfall and the LCPs were analyzed with WTC and

improved PWC. At different times and frequency bands,

there were different relationships and oscillation periods. To

further understand these results, we used db5 wavelet to

reconstruct extreme rainfall and the LCPs in different

frequency bands. The reconstruction included 7 frequency

bands, i.e., 0-2, 2-4, 4-8, 8-16, 16-32, 32-64, and

64–128 months. Taking SDII as an example, Figure 7

shows the reconstruction of SDII and four LCPs

(i.e., ENSO, WPSHI, PDO and AO) based on wavelet

coefficients. Table 3 shows the correlation coefficients of

extreme rainfall and the LCPs in different frequency bands.

The correlation coefficients in bold indicated that they could

pass the 95% significance test.

WPSHI was positively correlated with extreme rainfall in

all frequency bands, while other LCPs had either positive or

negative correlations with extreme rainfall in different

frequency bands. The correlation between EAMI and

extreme rainfall was mainly reflected in the 4–32 months,

of which the correlation coefficients of the 4-8 and

8–16 months frequency bands both exceeded 0.5. Although

the correlation of the 16–32 months frequency band was

significant, the correlation coefficient was lower. PDO was

positively correlated in the 0–2 months and 8–16 months

frequency bands, and significantly negatively correlated in

other frequency bands. ENSO was negatively correlated

between 0-8 months and 32–64 months, but positively

correlated in other frequency bands. The wavelet

reconstruction again proved that AO had no significant

effect on extreme rainfall in the MLRYRB.

In the frequency band of 0–4 months, the correlations

between extreme rainfall and the LCPs were basically

insignificant. In the 4–16 months band, the combined

effect of WPSHI and EAMI was considered as the main

driver. In the frequency band of 16–32 months, the main

influencing factors were WPSHI and PDO. In the frequency

band of 32–64 months, the effect of EAMI on extreme

rainfall disappeared significantly, while the effects of other

LCPs on extreme rainfall were all significant. In the

64–128 months frequency band, the signal strength began

to weaken due to the characteristics of the db5 wavelet, so the

correlation was very high. The reconstruction analysis

results after wavelet decomposition were basically

consistent with those of WTC and improved PWC. In the

low frequency region (4–16 months), EAMI and WPSHI had

the greatest correlations with extreme rainfall, and the

correlation coefficient between EAMI and extreme rainfall

was higher than that of WPSHI. For other LCPs, ENSO and

PDO had some impacts on rainfall peaks in the 8–32 months

band, but less on rainfall frequency and duration. In the

frequency band over 32 months, ENSO and PDO had high

correlations with the frequency and duration of extreme

rainfall, possibly related to their long-term periodic

oscillations.

TABLE 2 Significant area changes in the partial wavelet coherence
map before and after using improved PWC.

SDII R90D R95D RX1day RX3days

WPSHI Before 16.40% 20.67% 22.51% 14.69% 14.15%

After 8.20% 9.30% 10.64% 8.69% 7.92%

Decrease 8.20% 11.37% 11.87% 6.00% 6.24%

EAMI Before 19.85% 20.27% 20.31% 20.34% 17.94%

After 17.20% 17.00% 17.19% 14.56% 13.09%

Decrease 2.65% 3.28% 3.11% 5.79% 4.85%

ENSO Before 7.98% 8.28% 8.76% 6.94% 6.48%

After 4.50% 3.88% 4.03% 5.83% 6.98%

Decrease 3.49% 4.40% 4.72% 1.11% -0.50%

PDO Before 5.43% 4.48% 5.70% 6.01% 5.08%

After 5.43% 6.18% 6.14% 5.84% 7.76%

Decrease 0.00% −1.69% −0.44% 0.17% −2.68%
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Through the analysis of different frequency bands, it is

found that there was a certain resonance period between the

extreme rainfall indices and the LCPs. However, there were

obvious differences in different time domains (Cheng et al.,

2019; Yang and Li, 2020). These observations confirmed the

complex nonlinear relationships between extreme rainfall

and the LCPs. The influence of AO on extreme rainfall in the

MLRYRB was almost negligible, while WPSHI and EAMI

had great effects on extreme rainfall. These findings were

consistent with the previous PWC results.

4 Discussion

The intergenerational variation of the LCPs had

important impacts on the climate of the MLRYRB. Cross

wavelet and partial wavelet correlations were used to

analyze the relationships between extreme rainfall and

the LCPs. The results show that even though the

correlation coefficient between EAMI and extreme

rainfall was not significant, there was a clear periodic

correlation. At the scale of 8–16 months, EAMI and

WPSHI had significant and stable cyclical effects on

extreme rainfall. For ENSO, although the correlation

coefficient could pass the significance test, the periodic

impact of ENSO on extreme rainfall around 1990 had a

completely different performance. The results of the MK

test also showed that most of the extreme rainfall indicators

produced significant variation points around 1990 and

corresponded to the results of WTC and PWC,

confirming that the LCPs are indeed important factors

affecting regional extreme rainfall.

The correlation between WPSHI and extreme rainfall

changed greatly around 1990, and it is currently believed

FIGURE 7
Wavelet reconstruction of SDII and the LCPs (i.e., ENSO, WPSHI, PDO and AO) in different frequency bands.

Frontiers in Environmental Science frontiersin.org11

Wang et al. 10.3389/fenvs.2022.951468

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.951468


that WPSHI had a 2–3-year and around 5-year periodic

oscillation before 1990. After 1990, the oscillation period

was shortened from a quasi-5-year period to a 2–3-year

oscillation (Gao et al., 2014; Huang et al., 2018, 2020).

Therefore, the periodic signal on the 32–64 months scale

around 1990 which could be seen in the WTC results was

significantly weakened. The relationship between ENSO and

extreme rainfall changed greatly around 1990. In the WTC

results, ENSO and extreme rainfall also had a relatively

stable periodic correlation of about 1 year before 1990. In

TABLE 3 Correlations between the LCPs and extreme rainfall in different frequency bands.

SDII R90D R95D RX1day RX3days CWD CDD

PDO 0–2 0.04 0.05 0.02 0.06 0.05 0.04 0.01

AO 0.01 0.02 0.00 −0.03 −0.08 0.03 −0.04

ENSO −0.01 −0.08 −0.06 −0.04 −0.04 0.09 0.02

WPSHI 0.13 0.15 0.18 0.01 0.03 0.06 0.05

EAMI −0.01 0.01 −0.04 0.04 0.07 0.08 −0.13

PDO 2–4 −0.06 −0.03 −0.08 −0.16 −0.15 0.14 0.07

AO 0.07 −0.02 0.12 0.17 0.16 0.03 0.04

ENSO −0.03 −0.02 −0.06 0.09 0.03 −0.09 −0.16

WPSHI 0.18 0.04 0.12 0.19 0.23 0.06 −0.07

EAMI 0.30 0.14 −0.04 0.39 0.33 0.13 −0.36

PDO 4–8 −0.09 −0.11 −0.10 −0.11 −0.11 0.16 0.10

AO 0.08 0.08 0.07 0.12 0.11 0.20 −0.09

ENSO −0.06 −0.10 −0.10 −0.08 −0.09 0.19 0.06

WPSHI 0.49 0.40 0.45 0.50 0.51 0.19 −0.42

EAMI 0.77 0.68 0.73 0.82 0.83 0.21 −0.68

PDO 8–16 0.07 0.02 0.03 0.14 0.17 0.02 0.16

AO 0.01 0.04 0.03 0.00 -0.03 0.15 −0.09

ENSO 0.10 0.06 0.05 0.17 0.12 -0.07 0.19

WPSHI 0.47 0.52 0.50 0.41 0.43 0.23 −0.08

EAMI 0.63 0.55 0.60 0.71 0.61 0.21 −0.16

PDO 16–32 −0.28 −0.17 −0.12 −0.18 −0.23 −0.01 0.01

AO −0.02 0.04 0.12 0.03 0.00 0.13 0.32

ENSO 0.08 0.02 0.10 −0.02 0.06 0.05 0.01

WPSHI 0.49 0.50 0.48 0.33 0.33 −0.34 −0.06

EAMI 0.18 0.12 0.07 0.46 0.35 −0.17 0.33

PDO 32–64 −0.24 −0.24 −0.27 −0.13 −0.29 0.14 −0.02

AO −0.22 −0.32 −0.33 0.05 0.07 0.15 −0.44

ENSO −0.39 −0.43 −0.49 −0.27 −0.40 0.22 −0.33

WPSHI 0.34 0.61 0.59 −0.03 0.03 0.25 0.37

EAMI −0.01 0.15 0.07 −0.08 −0.10 0.57 −0.23

PDO 64–128 −0.01 −0.12 −0.17 −0.23 −0.18 −0.29 0.25

AO −0.15 -0.18 −0.17 −0.22 −0.25 −0.64 −0.36

ENSO 0.95 0.94 0.93 0.83 0.59 0.61 0.20

WPSHI 0.41 0.34 0.30 0.37 0.19 0.37 0.11

EAMI 0.48 0.47 0.48 0.41 0.32 0.62 0.51

Frontiers in Environmental Science frontiersin.org12

Wang et al. 10.3389/fenvs.2022.951468

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.951468


contrast, after 1990, the correlations for the 1-year period or

so weakened sharply, while the significance on the 32 months

scale increased. The weakened signal of ENSO and extreme

rainfall may be due to the change in the pattern of WPSHI,

leading to the change in the correlation between ENSO and

extreme rainfall around 1990. Around 1990, WPSHI

significantly weakened and shifted. The change of WPSHI

affected the interannual oscillation of ENSO, and ENSO had

a phase change around 1990. So, after 1990 the periodic

signal of ENSO and extreme rainfall changed into a higher

frequency band but decreased the intensity. Combined with

the PWC results, the effects of ENSO on extreme rainfall

were coupled with WPSHI.

The advance and retreat of East Asian monsoon had

significant correlations with the passage of the rainband

and would have significant impacts on the rainfall of the

MLRYRB together with WPSHI (Liu et al., 2013; Xu et al.,

2021). In the WTC and PWC results, EAMI maintained a

period of about 1 year on extreme rainfall, which

corresponded to the inter-annual variation of East Asian

monsoon. It significantly affected the rainy season of the

MLRYRB from May to August and each annual cycle had a

10–20 weeks oscillation so EAMI and extreme rainfall in both

WTC and PWC had a stable 8–16 months cycle correlation.

The anomaly of East Asian monsoon would affect the drought

and flood conditions in the MLRYRB so there would be

scattered periodic signals in the 32–64 months

frequency band.

The effects of WPSHI and EAMI on extreme rainfall were

reflected at different signal scales. In the PWC results, the

relationship between WPSHI and extreme rainfall completely

disappeared at 8–16 months after excluding other LCPs, and

other significant signals were found on the 32–64 months scale.

This is consistent with the WPSHI’s own oscillation cycle of

about 5 years, which confirmed the correctness of the PWC. In a

cycle of about 1 year, the annual change and intensity of EAMI

were the main factors affecting the rainfall of the MLRYRB (Li

et al., 1991; Ding, 1992). WPSHI and EAMI could influence

each other in summer, leading to the 8–16 months period of

WPSHI in the WTC and the small-scale signal discontinuity of

8–16 months of EAMI in the PWC. So, it is considered that

EAMI had the greatest impact on extreme rainfall in the

8–16 months cycle, while WPSHI played a major role in the

32–64 months cycle. ENSO and PDO had significant

correlations with extreme rainfall; however, the PWC results

suggested that the interannual oscillations of ENSO and PDO

had no longer-term periodic effects on extreme rainfall. PDO

and ENSO had certain coupling effects with WPSHI and EAMI

in summer, when extreme rainfall was most likely to occur

(Chan and Zhou, 2005; Matsumura and Horinouchi, 2016).

Considering the results of wavelet reconstruction, the

correlations between ENSO, PDO and extreme rainfall may

come from the abnormal performances of ENSO and PDO.

5 Conclusion

A detailed understanding of the changing laws and driving

factors of extreme rainfall is of great significance for future

rainfall prediction and its corresponding response. This study

used 7 extreme rainfall indices to examine the 60-year rainfall

time series of the MLRYRB. Improved PWC was introduced to

explore the correlations between extreme rainfall and the

LCPs for the first time, which provided new ideas for

subsequent extreme rainfall studies. The main findings of

this study are summarized as follows:

1) The extreme rainfall in most areas of the MLRYRB was

increasing, and the extreme values were mostly

concentrated in the Poyang Lake area. A simple

correlation analysis indicated that extreme rainfall had

significant correlations with WPSHI, EAMI, ENSO,

and PDO.

2) Analyzing the cyclical correlations between the LCPs and

extreme rainfall using the WTC, the intergenerational

variation of the LCPs had a significant impact on

extreme rainfall in the MLRYRB. Even though the

correlation coefficient between EAMI and extreme

rainfall was not significant, EAMI had strong periodic

impacts on extreme rainfall. On the 8–16 months scale,

EAMI and WPSHI both had significant and stable periodic

effects on extreme rainfall.

3) After the WTC analysis, the improved PWC was used to

explore the influence of a single LCP on extreme rainfall

after excluding other LCPs, and theWTC and PWC results

were confirmed by wavelet decomposition. Using the

improved PWC, it is found that the impact of WPSHI

on extreme rainfall was mainly concentrated on the

32–64 months scale, and the impact of EAMI was

mainly concentrated on the 8–16 months scale. There

was a coupling between EAMI and WPSHI in the 1-

year cycle. ENSO and PDO had no significant periodic

effects on extreme rainfall, and the abnormal effects of

ENSO or PDO would have greater impacts on extreme

rainfall.
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