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Soil water–salt variations at different spatiotemporal scales and their influencing

factors are essential for regional vegetation restoration and management.

However, the study of soil water–salt of the alpine area has not taken into

account the effect of topography, especially in the long time series. This work

investigated the spatiotemporal characteristics of water and salt in topsoil from

2000 to 2021, using regression analysis of on-site data and MODIS products.

The heterogeneity and trends of soil water–salt in various topographic factors

(elevation, slope, and aspect) were also explored by selecting the maximum

area of each gradient factor as the constrained conditionwith the help of ArcGIS

software. The results revealed that 1) the models applied to SWC (soil water

content), EC (electrical conductivity), and pH utilizing vegetation indices were

suitable for estimating the spatiotemporal variations of soil water–salt. 2) Soil

water–salt exhibited local aggregation characteristics with an upward trend in

SWC and a downward trend in EC and pH as a whole. 3) Mean annual SWC

peaked at 3,400–3,800m with increasing elevation and trended downward

with increasing slope. The aspect of mean annual SWC was characterized by

lower values in the southwest and south and higher values in the north, while

the results for pH were reversed. The slope had a greater influence on EC than

on SWC and pH. 4) The trend change of SWC, EC, and pH fluctuated at

2000–2,400m and >4,600 m with a clear inflection point at 4°–8° and

20°–24°, respectively. In summary, the effects of topography responded to

the distribution and trends of soil water–salt. The results have significant

implications for implementing ecological improvements in regions with

complicated topography and can serve as a reference for formulating future

ecological policies.
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1 Introduction

Topography is a fundamental characteristic in the formation

of geomorphic processes and includes three primary topographic

factors: elevation, slope, and aspect (Zhu et al., 2019). A growing

scientific literature suggests that topography can control soil

biochemical processes and define the spatial distribution

patterns of soil properties (Unamunzaga et al., 2014; Kong

et al., 2019; Suleymanov et al., 2021). In addition, topography

has been shown to play an important role in the distribution and

redistribution of soil moisture (Qiu et al., 2001; Zhu and Shao,

2008; Yang et al., 2015), which indirectly affects soil salinity (An

et al., 2019).

To date, it has been demonstrated that topography-induced

variations in microclimatic, hydrological, and ecological

conditions can lead to regional variability of soil water–salt at

different spatial scales in the alpine areas (Zhang et al., 2018; Zhu

et al., 2019), but the quantitative assessment of spatial and

temporal variations in soil water–salt and its response to

different topographic factors are still insufficient. With the

gradual improvement of remote sensing technology, it has

become an important tool for studying regional soil water–salt

distribution and its spatiotemporal variations (Xu and Wang,

2015; Wang et al., 2020b; Salcedo et al., 2022), which is

particularly advantageous and feasible in the alpine areas with

complex topography due to the availability of spatially sequential

data in a short time (Tran et al., 2019).

The Tibetan Plateau is a typical alpine region known as the

“Asian Water Tower” (Li et al., 2021). The region is more

sensitive than other regions to environmental changes (Zhang

et al., 2016) and is affected by both climate warming (Du et al.,

2021) and human disturbance (Li et al., 2021), which have

directly altered soil properties (Zhang et al., 2016) and

resulted in the deterioration of alpine grasslands (Wang et al.,

2022a). The Chinese government has adopted several policies to

address the phenomenon, such as “returning grazing land to

grassland” and “compensating for fencing degraded grassland

and rewarding livestock with forage balanced on healthy

rangelands” (Li et al., 2021). The study was carried out in the

northeastern part of the Qinghai–Tibet Plateau with the Gannan

Water Conservation Area, which is part of the source area of the

Yellow River Basin and an important ecological functional area of

water supply in China.

It is well-known that the water–salt properties of soil are

closely related to those of vegetation (González-Alcaraz et al.,

2014; Wu et al., 2021b) and that vegetation growth and

distribution have a great influence on the water–salt

properties of soil (He et al., 2015; Yu et al., 2018; Li et al.,

2022). Soil moisture and its spatiotemporal variation are crucial

quantitative methods to reflect the spatial pattern of vegetation

(Legates et al., 2011), while soil salinity is related to variations in

soil moisture (Wang et al., 2020a; Shah et al., 2021). In addition,

quantitative relationships between soil properties and reflectance

have been reported in the literature (Davari et al., 2021; Mzid

et al., 2022; Taghdis et al., 2022). Wu et al., (2021), who examined

the SWC and EC of soil samples and combined remote sensing

with mathematical models to develop predictive models for

determining soil salinity. In addition, the vegetation index

from MODIS NDVI was used to estimate the spatial

distribution of EC (Gorji et al., 2020) and pH (Zhang et al.,

2018b; Webb et al., 2021). To sum up, the regression equations

were developed in this work with NDVI, NPP, and LAI as

independent variables and SWC, EC, and pH as dependent

variables, using and modifying the methods from the

literature aforementioned.

Based on the background, and in order to better understand

the factors that influence the spatial and temporal variation of

soil water–salt in the alpine area, the northeastern Tibetan

Plateau was selected as the study area, and the topographic

factors were adopted as the driving force to investigate its

characteristics (the flowchart is shown in Figure 1). The

objectives of this study were as follows: 1) to evaluate the

applicability of constructing soil water–salt distribution

models using vegetation indices; 2) to explore the

spatiotemporal variation of soil water–salt distribution; 3) to

investigate the relationship between the spatiotemporal

distribution of soil water–salt and topographic factors; and 4)

to identify the intervals or inflection points where topographic

factors influence soil water–salt. The quantitative approach will

be useful to government agencies in land management and soil

condition assessment.

2 Materials and methods

2.1 Study area

The location of the study area in the Yellow River Basin and

the Tibetan Plateau is shown in Figure 2. The terrain of the area is

mainly inclined to the north, and most of the area is at about

3,000 m above sea level and has a cold and humid climate. The

annual mean temperature ranges from 1°C to 3°C, while the annual

mean precipitation ranges from 400 to 800 mm (Meng et al., 2018).

Grasslands, woodlands, and wetlands are the main carriers of

ecosystem service functions in the research region. Among them,

grassland resources are the most abundant, especially in Maqu,

Luqu, Xiahe, and Zhuoni counties, while subalpinemeadowsmake

up the majority of the natural grassland.
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2.2 Data acquisitions and processing

2.2.1 Soil sample data acquisition and processing
A total of 130 soil samples were collected randomly

throughout the research region from July to August 2021,

according to the land-use type, landscape features, and soil

type, with sample locations more than 1 km apart (Figure 2).

Two quadrants were taken from each sampling site more than

100 m apart, located and recorded using GPS with latitude and

longitude, and numbered sequentially according to the order of

sampling sites (Wu et al., 2021a). The weeds on the surface were

removed, and the soil was extracted using stainless cutting rings

(100 cm3) and used to determine the water content of the soil

using the oven-drying method at 105°C and the bulk density of

the surface soil (0–10 cm) (Wang et al., 2015; Ahmed et al., 2020).

Soil samples were also collected from the surface at a depth of

0–10 cm using a soil auger. Soil samples were collected in labeled,

self-sealing bags and transported to the laboratory where they

were air-dried and the debris of plants and foreign materials

removed. The air-dried soil was then ground and filtered through

a 1-mm sieve. The sieved samples were used to determine soil

pH and EC using a soil to water suspension ratio of 1:5 (Lesch

et al., 1992; Sharma et al., 2017; Tran et al., 2019).

2.2.2 Remote sensing data acquisition and
processing

The boundaries of the administrative area, the Tibetan

Plateau and the Yellow River Basin were downloaded from

the Resource and Environment Science and Data Center

(https://www.resdc.cn/), which can generate raster images of

FIGURE 1
Flowchart of this study.
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the research region using the Extract by Mask tool in ArcGIS 10.

5. The different types of raster data corresponding to the soil

sample data were also extracted. The Extract by Point tool in

ArcGIS 10.5 was used to extract the raster images corresponding

to the period of the soil survey to ensure the reliability of the

experimental data.

The vegetation index products of MODIS NDVI

(MOD13A1), MODIS LAI (MOD15A2), and MODIS NPP

(MOD17A2) were downloaded from the United States

Geological Survey (USGS) (https://lpdaacsvc.cr.usgs.gov/

appeears/explore) with a spatial resolution of 500 m. In this

study, the monthly dataset was synthesized using Maximum

Value Composites (MVC) (Holben, 1986), and the

June–August data were averaged to produce the

2000–2021 summer datasets. Finally, the datasets were re-

projected and re-sampled to verify the coordinate system of

WGS_1984_UTM_zone_48N and a resolution of 90 m

uniformity with the DEM.

A DEM was also obtained from SRTMGL3DEM provided by

USGS at 90 m resolution. Topographic factors such as elevation,

slope, and aspect were extracted in ArcGIS. According to the

actual situation of the Gannan Water Conservation Area,

elevation was divided into 14 bands of 200 m, slope into

11 bands of 4°, and aspect into north, northeast, east,

southeast, south, southwest, west, and northwest (Figure 3).

To reduce the interaction between the topographic factors, the

intersection of the other two factors should be used as a

constrained condition when studying one of the factors

(Chang et al., 2015). The percentages of the total area divided

by elevation, slope, and aspect were calculated separately, and

elevation of 3,400–3,600 m, slope of 4°–8°, and aspect of south

were selected as constrained conditions for later analysis

(Table 1).

2.3 Methods

2.3.1 Regression analysis
We sorted the soil attribute data in the study by sample

number and removed outliers and then evenly distributed two-

FIGURE 2
Geographical map of the study area. (A) Location of the sampling points, (B) location of the study area on the Tibetan Plateau, and (C) location
of the study area on the Yellow River Basin.

Frontiers in Environmental Science frontiersin.org04

Zhang et al. 10.3389/fenvs.2022.950547

https://lpdaacsvc.cr.usgs.gov/appeears/explore
https://lpdaacsvc.cr.usgs.gov/appeears/explore
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.950547


thirds of the data to select as the calibration set and the rest as the

validation set (Madonsela et al., 2018). The results of the

Histograms for Descriptive in IBM SPSS statistics showed

that the soil property data had a significant normal

distribution, which allowed multiple stepwise

regression analyses and curve estimation (Wu et al., 2021a).

Soil water content and soil salinity were modeled separately

using vegetation index as the independent variable and

observed soil properties as the dependent variable (Wu

et al., 2021a). The optimal model was determined based

on the higher coefficient of determination (R2) and

lower root mean square error (RMSE) of the

regression equation (Madonsela et al., 2018; Mngadi et al.,

2022).

2.3.2 Moran’s I index and hot spot analysis
Spatial autocorrelation analysis is a statistical analysis method

for identifying spatial correlations (Anselin, 1995). Currently,

Moran’s I index developed by Moran (1948) is a powerful tool

for detecting spatial clustering effects, and the global Moran’s I

index is widely used to test the spatial dependence of indicators at

spatiotemporal scales (Zhong et al., 2021). In general, Moran’s

index values close to +1.0 or -1.0 indicate clustering or dispersion,

respectively, while the p-value and z-score represent the statistical

significance of the index (Rabii et al., 2017). The formula is

described in the literature (Zhong et al., 2021).

Hot-spot analysis can detect similar high (hot) or low (cold)

values within a geographic area and group them, revealing hot

and cold areas with spatial characteristics at different levels of

FIGURE 3
Various topographical factors: (A) elevation, (B) slope, and (C) aspect.

TABLE 1 Area distribution of various topographical factors.

Elevation/m Area ratio
(%)

Slope/(°) Area ratio
(%)

Aspect Area ratio
(%)

2000–2,200 0.13 0 23.87 North 1.81

2,200–2,400 0.53 4 32.79 Northeast 12.67

2,400–2,600 1.59 8 24.03 East 15.92

2,600–2,800 3.28 12 12.39 Southeast 15.95

2,800–3,000 6.64 16 4.78 South 16.03

3,000–3,200 10.61 20 1.58 Southwest 14.84

3,200–3,400 13.47 24 0.40 West 12.47

3,400–3,600 29.56 28 0.13 Northwest 8.91

3,600–3,800 16.42 32 0.03 North 1.40

3,800–4,000 8.12 36 0.00

4,000–4,200 5.11 40 0.00

4,200–4,400 3.40

4,400–4,600 1.10

>4,600 0.04
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statistical significance. It is a generic tool implemented in the

ArcGIS software (Xu et al., 2019). The equation is presented in

the study by Xu et al. (2019).

2.3.3 Linear regression model and Hurst
exponent

The regression coefficient (θslope) of the linear regression

model was performed to determine the trend change rate for

annual soil water–salt in each pixel, which can be implemented

by using MATLAB software (Yin et al., 2020a; Yin et al., 2020b).

Positive and negative values of θslope could predict an increase

and a decrease in soil water–salt, respectively, and the F-test was

used to determine the significance of the trend.

The Hurst exponent (H) was used to analyze the

sustainability of time-series trends (Tong et al., 2018b), and

the formula could be found in the literature (Chen et al.,

2020). The H-value ranges from 0 to 1 and can be divided

into three categories with a threshold of 0.5: (A) H-value =

0.5 means that the future trend is uncertain; (B) H-value >
0.5 means that the future change is consistent with the current

trend; and (C) H-value < 0.5 means that the future change is

opposite to the current trend (Chen et al., 2020).

The θslope provides quantitative evidence of trends on time scales,

while the H-value qualitatively indicates whether future and current

trends are consistent or reverse (Wang et al., 2022b). In this study,

quantitative and qualitative approaches were combined to characterize

the spatial and temporal variability of soil water–salt, drawing on the

existing literature (Table 2) (Tran et al., 2021; Wang et al., 2022b).

3 Results

3.1 Statistical characteristics and model
construction

The indicators for the statistical analysis of the soil samples

are shown in Table 3. The results showed that the coefficients

of variation for both soil properties and vegetation indices

were >1, indicating strong spatial variability, which means

that the obtained soil samples were suitable for model

construction and were applied (Wu et al., 2022a).

Soil water–salt was modeled using vegetation indices

and measured soil properties as independent and

dependent variables, respectively. Optimal models for soil

properties are listed in Table 4, which shows R2 for SWC,

EC, and pH of 0.557, 0.302, and 0.678, respectively.

Regression analysis was performed between the

predicted and observed values to verify the accuracy of the

model, and the results proved that the model was reliable

(Figure 4).

3.2 Temporal variations in soil water–salt

Figure 5 shows the mean annual variations of SWC, EC, and

pH from 2000 to 2021 in summer. The results showed an upward

trend in SWCwith large variations during the study period, while EC

and pH showed a reversed trend. SWC and PH had their minimum

TABLE 2 Future trend characteristic.

Regression
coefficient (θslope)

Hurst exponent (H) Future trend

Increasing (>0) Sustainability (>0.5) Persistent increase

Non-sustainability (<0.5) From increase to decrease

Decreasing (<0) Sustainability (>0.5) Persistent decrease

Non-sustainability (<0.5) From decrease to increase

TABLE 3 Statistical characteristics of vegetation indices and soil properties.

Category Sample number Minimum Maximum Mean Standard deviation Coefficient of
variation

NDVI 130 0.33 0.85 0.69 0.12 17.39

LAI 130 0.50 6.90 2.55 1.42 55.69

NPP 130 0.02 0.05 0.04 0.01 15.98

EC 130 30.85 166.35 77.29 26.39 34.14

SWC 130 4.34 46.80 21.29 10.05 47.21

pH 130 5.66 9.01 7.49 0.85 11.35

Note: NDVI is the normalized difference vegetation index; LAI is the leaf area index, m2·m−2; NPP is the net primary productivity, kg C·m−2; EC is electric conductivity, μs·cm−1; SWC is soil

water content, %.
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and maximum values in 2000, while they had their maximum and

minimum in 2018, respectively. In addition, the trend line for

pH showed a significant downward trend compared to that of EC,

while SWC showed an upward trend from 2000 to 2021. Thus, it

could be inferred that the ecological environment of the study area is

gradually improving.

TABLE 4 Optimal model of the soil properties.

Model type Model equation R2 RMSE Sig.

Quadratic equation SWC = 5.851—7.460NDVI + 40.780NDVI2 0.557 5.166 0.000

Multiple linear regression equation EC = 144.420—27.850NDVI—1879.529NPP + 3.179LAI 0.302 16.234 0.000

Quadratic equation pH = 7.589 + 5.698NDVI—8.325NDVI2 0.678 0.450 0.000

FIGURE 4
Accuracy validation of soil water–salt models: (A) accurate validation of SWC, (B) accurate validation of EC, and (C) accurate validation of pH.

FIGURE 5
Mean annual of soil water–salt during 2000–2021: (A) mean annual of SWC, (B) mean annual of EC, and (C) mean annual of pH.
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3.3 Spatial variations in soil water–salt

3.3.1 Spatial distribution characteristics
The mean value from 2000 to 2021 was estimated per pixel

to understand the geographic distribution of SWC, EC, and

pH in the study region (Figures 6A–C). It clearly showed that

most regions had higher SWC values, while the regions with

high values of EC and pH were fewer and had a similar

distribution. In particular, the local low values of SWC and

the local high values of EC and pH were mainly located in the

northwest of Maqu, the north of Xiahe, and the west of

Lintan.

The Moran’s I index and hot-spot analysis (Getis-Ord

Gi*) were used to gain insight into the global spatial

correlation and local aggregation of soil water–salt,

respectively. Moran’s I indices for SWC, EC, and

pH were 0.892, 0.821, and 0.892, respectively, with Z

scores and p values indicating the significance of the

index. Then, the aggregation characteristics of soil

water–salt in the region were further investigated based

on the hot-spot analysis, and the spatial distribution was

mapped (Figures 6D–F). Figures 6D,F show that hot spots

(high values) and cold spots (low values) of SWC and

pH were opposite, while EC was not significant in most

regions, except for localized cold spots and hot spots in the

northeast and southwest, respectively (Figure 6E).

3.3.2 The variation trend analysis
The θslope and F-test together can effectively reflect the spatial

trends of soil water–salt and their significance from 2000 to 2021.

The trend of SWC showed an upward trend in the vast majority

of areas, while pH reversed and increased significantly only in a

few regions, particularly in Maqu County (Figures 7A,C). At the

same time, EC showed a distinct regional hierarchy; a downward

trend and an upward trend in the northeastern and southwestern

regions of the study area, respectively (Figure 7B). Figures 7D–F

show that the percentages of SWC, EC, and pH that passed the

significance test (p < 0.05) were 46.48%, 9.28%, and 46.46%,

respectively. The area with a significant increase in SWC

accounted for the largest percentage of 45.70%, while EC and

pH showed a significant decrease with areas of 9.01% and

45.67%, respectively. The aforementioned results show that

the ecological environment has improved in the whole region,

except for a few regions.

3.3.3 Future trend analysis
The Hurst exponent (H) was introduced to further explore

the future trend of soil water–salt (Figure 8). The H-value for

SWC ranged from 0.10 to 0.82 with a mean of 0.46 < 0.5,

indicating a future trend opposite to the current situation

(Figure 8A). The statistical spatial distribution of Figures 8B,C

showed that the H-value of EC and pH was greater than 0.5 in

16.36% and 14.55% of the entire region, respectively,

FIGURE 6
Spatial patterns ofmeanmulti-annual andGetis-Ord Gi*: (A)meanmulti-annual of SWC, (B)meanmulti-annual of EC, (C)meanmulti-annual of
pH, (D) hot spot of SWC, (E) hot spot of EC, and (F) hot spot of pH.
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while 82.68% and 85.45% were less than 0.5, respectively,

indicating that the future trend of soil salinity will

be reversed in most areas of the Gannan Water

Conservation Area.

Since neither the θslope nor the H-value can indicate the

upward or downward trend of soil water–salt in the future, we

spatially superimposed the results of Figures 7A–C and

Figures 8A–C to predict the future trend (Tong et al.,

2018a), and the results are shown in Figures 8D–F.

According to Figures 8E,F, the future trends of EC and

pH accounted for most of the ratios (decrease–increase),

and the areas exhibiting a fluctuating change of EC

(increase–decrease) were mainly concentrated in Maqu

County. In contrast to EC and pH, the future trend of SWC

shows an overall decreasing trend (Figure 8D). As shown in

Figures 8D–F, SWC, EC, and pH were mostly unsustainable,

while sustainable regions were almost unobservable visually,

which validated the results of Figures 8A–C.

3.4 Effects of different topographic factors
on soil water–salt

3.4.1 Effects of elevation on soil water–salt
The mean and θslope (p < 0.05) of SWC, EC, and pH from

2000 to 2021 were calculated separately for different elevation

gradients, considering the region intersected by slopes of 4°–8°

and the southern aspect as constrained conditions (Figure 9). As

shown in Figure 9A, the mean multi-annual SWC increased to

decreased with increasing elevation, with a maximum at

3,400–3,800 m and a minimum at 2000–2,200 m. In contrast

to SWC, EC and pH (Figures 9B,C) both exhibited a reverse trend

with increasing elevation, peaking at an elevation gradient of

2000–2,200 m. For the θslope of the different elevation gradients,

SWC showed a more stable increasing trend, while EC and

pH showed the opposite trend. At the same time, the θslope of

SWC, EC, and PH fluctuated in the threshold range of

2000–2,400 m and >4,600 m, implying that the soil water–salt

changed significantly at lower and higher elevations. The

aforementioned results indicate that the distribution of soil

water-salt and its trends are more responsive to elevation and

that EC (0.52) > SWC (0.16) > pH (0.02) is based on the absolute

value of θslope.

3.4.2 Effects of slope on soil water–salt
By determining the area intersected by 3,400–3,600 m and

the south, the mean and θslope (p < 0.05) of SWC, EC, and

pH were analyzed on different slopes during 2000–2021

(Figure 10). The results showed that the mean annual SWC

decreased with increasing slope and reached a minimum at

32°–36°, while pH responded in the opposite direction to slope.

Mean annual EC decreased and then increased with slope,

reaching a minimum at 16°–24° and a maximum at > 32°. In

addition, the θslope of SWC and pH showed fluctuating

increases and decreases, while EC showed an increasing

trend at 0°–4° and a decreasing trend >4°. The θslope

FIGURE 7
Spatial pattern of the θslope and significance (p < 0.05): (A) θslope of SWC, (B) θslope of EC, (C) θslope of pH, (D) significant θslope of SWC, (E) significant
θslope of EC, and (F) significant θslope of pH.
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represented EC (0.63) > SWC (0.15) > pH (0.02) in terms of

absolute value. The mean and θslope of the change in SWC, EC,

and pH indicate that slope has a large effect on water–salt

distribution and trends in soil.

3.4.3 Effects of aspect on soil water–salt
Aspects were extracted by ArcGIS and automatically

classified into nine categories. The overlapping regions with

an elevation of 3,400–3,600 m and a slope of 4°–8° were

used as constrained conditions, and the mean and θslope
(p < 0.05) of soil water–salt were calculated for the

different aspect gradients (Figure 11). According to the

results, SWC was higher in the north, followed by the east

and southeast, and lower in the south, southwest, and west. In

contrast to SWC, the mean annual pH values were lower in the

north and higher in the southwest. In general, the differences

FIGURE 8
Spatial distribution of the H-value and future trend: (A)H-value of SWC, (B)H- value of EC, (C)H-value of pH, (D) future trend of SWC, (E) future
trend of EC, and (F) future trend of pH. Note: 0–4 represent not significant, persistence and increase, persistence and decrease, from increase to
decrease, and from decrease to increase, respectively.

FIGURE 9
Effect of elevation on soil water–salt: (A) effect of elevation on SWC, (B) effect of elevation on EC, and (C) effect of elevation on pH. Note:
1–14 represent 2000–2,100, 2,100–2,200, 2,200–2,300, 4,500–4,600, 4,600–4,700, and >4,700, respectively; constrained conditions: the slope of
4°–8° and aspect of southern.
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in the distribution of mean annual SWC, EC, and pH of aspect

were significant, with θslope absolute values of 0.14, 0.64, and

0.02, respectively, indicating that the effect of aspect on the

spatiotemporal distribution of soil water–salt was significant.

4 Discussion

4.1 Modeling of soil water–salt and its
spatiotemporal change

In contrast to Gorji et al., 2020 and Webb et al., 2021,

where EC and pH were estimated using the vegetation index

NDVI, in this work, NDVI, NPP, and LAI were introduced to

ensure adequacy of vegetation information. As shown in

Table 4, the R2 for SWC, EC, and pH was 0.557, 0.302, and

0.678, respectively, indicating the correlation between

vegetation indices and soil moisture and salinity. The

results showed that vegetation index could characterize

the spatiotemporal distribution of soil water–salt.

Regression analysis of the predicted and observed values

indicated that the model could be used in subsequent

studies (Figure 4).

The spatial and temporal distribution of SWC, EC, and

pH were estimated and plotted for the period from 2000 to

2021 using the aforementioned model (Figures 5, 6). Soil

water–salt was locally aggregated throughout the study area

for 22 years (Figure 6), with an upward trend in SWC and a

corresponding downward trend in EC and pH (Figure 7). The

results were similar to those of Shu et al. (2017) in which

FIGURE 10
Effect of slope on soil water–salt: (A) effect of slope on SWC, (B) effect of slope on EC, and (C) effect of slope on pH. Note: 1–21 respectively
represent 0°–4°, 4°–8°, 8°–12°, ... 32°–36°, 36°–40°, >40°; constrained conditions: elevation of 3,400–3,600 m and aspect of southern.

FIGURE 11
Effect of aspect on soil water–salt: (A) effect of aspect on SWC, (B) effect of aspect on EC, and (C) effect of aspect on pH. Note: 1–9 represent
north, northeast, east, southeast, south, southwest, west, northwest, and north, respectively; constrained conditions: elevation of 3,400–3,600 m
and slope of 4°–8°.
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vegetation restoration improved soil infiltration rate and

soil water retention, while soil moisture was negatively

correlated with soil salinity (An et al., 2019). The

aforementioned study speculated that the overall ecological

environment of the Gannan Water Conservation Area was

gradually becoming more favorable, which may be influenced

by human activities such as the promotion of the

Gannan grazing restoration project after 2000 (Shao et al.,

2016).

In addition, the ecological situation in Maqu County in

the study area was the opposite of that in other regions,

namely, a decrease in SWC with a simultaneous increase

in EC and pH. These results are mainly due to the fact that

Maqu County is located in the degraded alpine highlands

in northwest China (Zhao et al., 2019), and the causes of

its degradation are well-documented and discussed (Hu

et al., 2011; Niu et al., 2019; Yang et al., 2021). Moreover,

the results of the Hurst exponent calculations in the

research predict that the future distribution of soil

water–salt will be opposite to the current trend, i.e., SWC

will decrease rather than increase, while EC and pH show the

opposite trend (Figure 8). The mechanisms underlying the

prediction of the results need to be further investigated by

including climatic, socioeconomic, and other factors. In

summary, these approaches and findings will allow land

managers to quickly identify salinized areas and remediate

the soil.

4.2 Influence of topography on soil
water–salt

To more accurately assess the spatiotemporal distribution

of soil water–salt in the alpine area in response to topography,

the map of topographic factors was overlaid with the map of

soil water–salt distribution, and the mean and θslope of soil

water–salt at different levels of elevation, slope, and aspect

were calculated.

The study showed that the mean multi–annual SWC

increases to decreases with elevation, reaching a maximum

at 3,400–3,800 m and appearing as a single peak, while EC and

pH show the opposite trend (Figure 9). These results differ

from those of Praeg et al. (2020), who studied the elevation

gradient of pastures less than 2000 m and found that soil

pH decreased with increasing elevation. The reason for this

difference may be that atmospheric circulation influences

precipitation so that it gradually increases with elevation at

lower elevations (Yao et al., 2016; Li et al., 2017; Preece et al.,

2021) and then shows a decreasing trend, probably due to the

peculiarity of the study region which has a difference of about

2,700 m between high and low elevations. However, the

regions above 3,800 m are mainly located in the northwest

of Maqu County, where some literatures indicate that the

region is vulnerable to climatic effects (Wu et al., 2019; Yang

et al., 2021). In addition, soil water–salt is more sensitive at

lower elevations than at higher elevations, probably because

lower elevations are more susceptible to human activities (Liu

et al., 2021). Therefore, the specific intrinsic mechanism need

to be further explored.

Mean annual SWC showed a downward trend with

increasing slope, while EC and pH showed an upward trend

(Figure 10). Previous studies have shown that regions with

steeper slopes are more susceptible to erosion, and thus soil

and water loss (Li et al., 2018; Leuthold et al., 2021) and that

increasing slopes lead to less soil infiltration (Mu et al., 2015),

which can be used to explain the results. Another finding was that

the multi-annual trend was prominent on various slopes, which

may be because regions on gentle slopes are more susceptible to

external disturbances that affect the soil water–salt distribution

(Keesstra et al., 2016; He et al., 2021), and further investigation is

needed.

The differences in soil water–salt response to different

aspects were also significant, showing lower SWC in the south

and lower pH in the north (Figure 11). The results are consistent

with some previous works, indicating that the south is more

affected by solar radiation than the north (Griffiths et al., 2009)

and that high temperature promotes evapotranspiration (Hanna

et al., 1982). Moreover, there was an obvious regularity in the

trend of soil water–salt over the years under different aspects, and

in terms of absolute value, the aspects had an influence on soil

water–salt as well as elevation and slope. The causes of this

phenomenon should be further investigated.

4.3 Limitations and prospects

A convenient and efficient method was to invert the

spatiotemporal distribution of soil water–salt by vegetation

indices, which were easy to calculate and not limited by

geographic location. Most importantly, this represented a

departure from traditional field measurements and allowed

the exploration of variations in long-term time series.

However, since the spatial resolution of the MODIS data in

this study was 500 m, there may be problems such as projection

errors and multiple geographic phenomena covered by a single

pixel, which makes the results of the study uncertain to some

extent. Therefore, the study should be deepened considering the

current situation, and remote sensing data with medium to high

resolution should be used in the future.

In exploring the influence of topography on water–salt

distribution in soil, the control factors selected in the study

were based only on the proportion of the area affected by

various topographic factors. This approach had its limitations

and could ignore the results of gradations other than the

control factors. Therefore, a more comprehensive study of the

topographic control factors for each gradation is needed. In
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addition, the results of the variation of soil water–salt

distribution with topography showed only the approximate

interval of the inflexion point of the topographic factor. In

future studies, the soil water–salt distribution of

microtopography should be further explored by remote

sensing to obtain a more accurate turning point. This study

is limited to the topography as a driving factor for the

variations of soil water–salt concentration. The broader

effects of climate and human activities need to be further

explored.

5 Conclusion

This work investigated the spatiotemporal variation of soil

water–salt in the alpine area from 2000 to 2021 and explored

the influence of elevation, slope, and aspect. The methodology

and findings of this study could provide a reference for soil

and water conservation in alpine grassland ecosystems and for

achieving sustainable development. The following results were

obtained:

The vegetation indices were used to build models for SWC,

EC, and pH, and the estimated values were regressed with field

measurements to verify the accuracy of the models. The results

showed that the inversion models were suitable for estimating the

spatiotemporal variation of soil water–salt.

The mean SWC value showed a fluctuating upward trend

during 2000–2021, while EC and pH showed the opposite

trend. In terms of spatial distribution, the hot spots (high

values) and cold spots (low values) of SWC and pH showed

opposite conditions, with areas of high SWC predominating.

In terms of trend variations, the θslope of SWC showed an

overall upward trend, while EC and pH showed a significant

upward trend in Maqu County and a downward trend in other

regions. Furthermore, the Hurst exponent indicated that the

future trend of SWC is generally increasing to decreasing,

while that of EC and pH is decreasing to increasing, a

conclusion that needs to be verified by more intensive studies.

The mean multi–annual SWC showed an upward trend

and then a downward trend with increasing elevation and a

downward trend with increasing slope. Elevation for EC and

pH, showing similar trends, were both opposite to that of

SWC. The slope had a more significant effect on EC than on

SWC and pH, and the opposite effect of aspect on SWC and

pH was observed. In summary, the effects of elevation,

slope, and aspect are responsive to soil water–salt to

some extent.

The θslope of SWC, EC, and pH was more stable at

2,400–4,600 m and had an inflexion point at 4°–8° and

20°–24°. The absolute value of θslope shows that the influence

of elevation, slope, and aspect on the spatiotemporal trend of

SWC, EC, and pH was significant.

Data availability statement

The datasets presented in this article are not readily available

because they need to be used in future work. Requests to access

the datasets should be directed to Xiaoning Zhang,

zxn893707607@163.com.

Author contributions

XZ: conceptualization, methodology, and

writing—original draft. LN: data curation and formal

analysis. SA: writing—review and editing. QW: software

and formal analysis. XDL: data curation. XL: supervision

and validation. XYL: software and formal analysis. YY:

resources and validation. CH: investigation and

visualization. MZ: investigation and visualization. ZM:

investigation and visualization. QL: investigation and

visualization. LL: investigation and visualization. BM:

investigation and visualization.

Funding

This work was supported by the Self-initiated Project of

Gansu Agricultural University, grant number GSAU-ZL-

2015046; the research on ecological land consolidation and

barrier function in the context of multi-regulation of Gansu

Provincial Land and Resources Department, grant number XZ-

20160812; unified confirmation of right registration of natural

resources of Gansu Provincial Land and Resources Department,

grant number XZ-20180914; the Youth Science and Technology

Fund of Gansu Province, grant number 20JR5RA014; and the

National Natural Science Foundation of China grant number

31601984.

Acknowledgments

The authors would like to thank the editors and anonymous

reviewers for their thoughtful suggestions, and thank the teachers

and students of the Land Use Research Institute of Gansu

Agricultural University for their efforts in data collection,

processing, and verification.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial

relationships that could be construed as a potential

conflict of interest.

Frontiers in Environmental Science frontiersin.org13

Zhang et al. 10.3389/fenvs.2022.950547

mailto:zxn893707607@163.com
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.950547


Publisher’s note

All claims expressed in this article are solely those of

the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors, and the reviewers. Any product that may

be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

References

Ahmed, F., Arthur, E., Liu, H., and Andersen, M. N. (2020). New rootsnap
sensor reveals the ameliorating effect of biochar on in situ root growth
dynamics of maize in sandy soil. Front. Plant Sci. 11, 949. doi:10.3389/fpls.
2020.00949

An, Y., Gao, Y., Zhang, Y., Tong, S., and Liu, X. (2019). Early establishment of
Suaeda salsa population as affected by soil moisture and salinity: Implications for
pioneer species introduction in saline-sodic wetlands in Songnen Plain, China. Ecol.
Indic. 107, 105654. doi:10.1016/j.ecolind.2019.105654

Anselin, L. (1995). Local indicators of spatial association—Lisa. Geogr. Anal. 27
(2), 93–115. doi:10.1111/j.1538-4632.1995.tb00338.x

Chang, X., Lü, S., Feng, Z., and Ye, S. (2015). Impact of topography on the spatial
distribution pattern of net primary productivity in a meadow. Acta eco. Sin. 35 (10),
3339–3348. doi:10.5846/stxb201306201748

Chen, J., Yan, F., and Lu, Q. (2020). Spatiotemporal variation of vegetation on the
Qinghai–Tibet Plateau and the influence of climatic factors and human activities on
vegetation trend (2000–2019). Remote Sens. (Basel). 12 (19), 3150. doi:10.3390/
rs12193150

Davari, M., Karimi, S. A., Bahrami, H. A., Hossaini, S. M. T., and Fahmideh, S.
(2021). Simultaneous prediction of several soil properties related to engineering
uses based on laboratory Vis-NIR reflectance spectroscopy. Catena 197, 104987.
doi:10.1016/j.catena.2020.104987

Du, R., Peng, X., Wang, K., Frauenfeld, O. W., Chen, C., Sun, W., et al.
(2021). Response of peat-rich permafrost to a warming climate on the
northeast Tibetan Plateau. Agric. For. Meteorol. 311, 108681. doi:10.1016/j.
agrformet.2021.108681

González-Alcaraz, M., Jiménez-Cárceles, F., Álvarez, Y., and Álvarez-Rogel, J.
(2014). Gradients of soil salinity and moisture, and plant distribution, in a
mediterranean semiarid saline watershed: A model of soil–plant relationships
for contributing to the management. Catena 115, 150–158. doi:10.1016/j.catena.
2013.11.011

Gorji, T., Yildirim, A., Hamzehpour, N., Tanik, A., and Sertel, E. (2020). Soil
salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based
spectral indices and electrical conductivity measurements. Ecol. Indic. 112, 106173.
doi:10.1016/j.ecolind.2020.106173

Griffiths, R., Madritch, M., and Swanson, A. (2009). The effects of topography on
forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for
the effects of climate change on soil properties. For. Ecol. Manage. 257 (1), 1–7.
doi:10.1016/j.foreco.2008.08.010

Hanna, A., Harlan, P., and Lewis, D. (1982). Soil available water as influenced by
landscape position and aspect 1. Agron. J. 74 (6), 999–1004. doi:10.2134/
agronj1982.00021962007400060016x

He, B., Cai, Y., Ran, W., Zhao, X., and Jiang, H. (2015). Spatial and seasonal
variations of soil salinity following vegetation restoration in coastal saline
land in eastern China. Catena 127, 147–153. doi:10.1016/j.catena.2014.
02.007

He, J., Shi, X., and Fu, Y. (2021). Identifying vegetation restoration effectiveness
and driving factors on different micro-topographic types of hilly Loess Plateau:
From the perspective of ecological resilience. J. Environ. Manage. 289, 112562.
doi:10.1016/j.jenvman.2021.112562

Holben, B. N. (1986). Characteristics of maximum-value composite images from
temporal AVHRR data. Int. J. Remote Sens. 7 (11), 1417–1434. doi:10.1080/
01431168608948945

Hu, Y., Maskey, S., Uhlenbrook, S., and Zhao, H. (2011). Streamflow trends and
climate linkages in the source region of the Yellow River, China. Hydrol. Process. 25
(22), 3399–3411. doi:10.1002/hyp.8069

Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara,
L., et al. (2016). Effects of soil management techniques on soil water erosion in apricot
orchards. Sci. Total Environ. 551, 357–366. doi:10.1016/j.scitotenv.2016.01.182

Kong, J.-j., Yang, J., and Cai, W. (2019). Topography controls post-fire changes in
soil properties in a Chinese boreal forest. Sci. Total Environ. 651, 2662–2670. doi:10.
1016/j.scitotenv.2018.10.164

Legates, D. R., Mahmood, R., Levia, D. F., DeLiberty, T. L., Quiring, S. M., Houser,
C., et al. (2011). Soil moisture: A central and unifying theme in physical geography.
Prog. Phys. Geogr. Earth Environ. 35 (1), 65–86. doi:10.1177/0309133310386514

Lesch, S., Rhoades, J., Lund, L., and Corwin, D. (1992). Mapping soil salinity using
calibrated electromagnetic measurements. Soil Sci. Soc. Am. J. 56 (2), 540–548.
doi:10.2136/sssaj1992.03615995005600020031x

Leuthold, S. J., Quinn, D., Miguez, F., Wendroth, O., Salmeron, M., and
Poffenbarger, H. (2021). Topographic effects on soil microclimate and surface
cover crop residue decomposition in rolling cropland. Agric. Ecosyst. Environ. 320,
107609. doi:10.1016/j.agee.2021.107609

Li, M., Zhang, X., Wu, J., Ding, Q., Niu, B., and He, Y. (2021). Declining human
activity intensity on alpine grasslands of the Tibetan Plateau. J. Environ. Manage.
296, 113198. doi:10.1016/j.jenvman.2021.113198

Li, W., Wang, Y., Yang, J., and Deng, Y. (2022). Time-lag effect of vegetation
response to volumetric soil water content: A case study of guangdong Province,
southern China. Remote Sens. (Basel). 14 (6), 1301. doi:10.3390/rs14061301

Li, X., McCarty, G.W., Karlen, D. L., and Cambardella, C. A. (2018). Topographic
metric predictions of soil redistribution and organic carbon in Iowa cropland fields.
Catena 160, 222–232. doi:10.1016/j.catena.2017.09.026

Li, X., Wang, L., Guo, X., and Chen, D. (2017). Does summer precipitation trend
over and around the Tibetan Plateau depend on elevation? Int. J. Climatol. 37,
1278–1284. doi:10.1002/joc.4978

Liu, Y., Tian, J., Liu, R., and Ding, L. (2021). Influences of climate change and
human activities on NDVI changes in China. Remote Sens. (Basel). 13 (21), 4326.
doi:10.3390/rs13214326

Madonsela, S., Cho, M. A., Ramoelo, A., Mutanga, O., and Naidoo, L. (2018).
Estimating tree species diversity in the savannah using NDVI and woody canopy
cover. Int. J. Appl. Earth Obs. Geoinf. 66, 106–115. doi:10.1016/j.jag.2017.11.005

Meng, B., Gao, J., Liang, T., Cui, X., Ge, J., Yin, J., et al. (2018). Modeling of alpine
grassland cover based on unmanned aerial vehicle technology and multi-factor
methods: A case study in the east of Tibetan plateau, China. Remote Sens. (Basel). 10
(2), 320. doi:10.3390/rs10020320

Mngadi, M., Odindi, J., Mutanga, O., and Sibanda, M. (2022). Estimating
aboveground net primary productivity of reforested trees in an urban landscape
using biophysical variables and remotely sensed data. Sci. Total Environ. 802,
149958. doi:10.1016/j.scitotenv.2021.149958

Moran, P. A. (1948). The interpretation of statistical maps. J. R. Stat. Soc. Ser. B 10
(2), 243–251. doi:10.1111/j.2517-6161.1948.tb00012.x

Mu, W., Yu, F., Li, C., Xie, Y., Tian, J., Liu, J., et al. (2015). Effects of rainfall
intensity and slope gradient on runoff and soil moisture content on different
growing stages of spring maize. Water 7 (6), 2990–3008. doi:10.3390/
w7062990

Mzid, N., Castaldi, F., Tolomio, M., Pascucci, S., Casa, R., and Pignatti, S. (2022).
Evaluation of agricultural bare soil properties retrieval from landsat 8, sentinel-2
and PRISMA satellite data. Remote Sens. (Basel). 14 (3), 714. doi:10.3390/
rs14030714

Niu, Y., Zhu, H., Yang, S., Ma, S., Zhou, J., Chu, B., et al. (2019). Overgrazing
leads to soil cracking that later triggers the severe degradation of alpine
meadows on the Tibetan Plateau. Land Degrad. Dev. 30 (10), 1243–1257.
doi:10.1002/ldr.3312

Praeg, N., Seeber, J., Leitinger, G., Tasser, E., Newesely, C., Tappeiner, U., et al.
(2020). The role of land management and elevation in shaping soil microbial
communities: Insights from the Central European Alps. Soil Biol. Biochem. 150,
107951. doi:10.1016/j.soilbio.2020.107951

Preece, J. R., Shinker, J. J., Riebe, C. S., and Minckley, T. A. (2021). Elevation-
dependent precipitation response to ElNino-Southernoscillation revealed in
headwater basins of theUScentral Rocky Mountains. Int. J. Climatol. 41 (2),
1199–1210. doi:10.1002/joc.6790

Qiu, Y., Fu, B., Wang, J., and Chen, L. (2001). Spatial variability of soil moisture
content and its relation to environmental indices in a semi-arid gully catchment of

Frontiers in Environmental Science frontiersin.org14

Zhang et al. 10.3389/fenvs.2022.950547

https://doi.org/10.3389/fpls.2020.00949
https://doi.org/10.3389/fpls.2020.00949
https://doi.org/10.1016/j.ecolind.2019.105654
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.5846/stxb201306201748
https://doi.org/10.3390/rs12193150
https://doi.org/10.3390/rs12193150
https://doi.org/10.1016/j.catena.2020.104987
https://doi.org/10.1016/j.agrformet.2021.108681
https://doi.org/10.1016/j.agrformet.2021.108681
https://doi.org/10.1016/j.catena.2013.11.011
https://doi.org/10.1016/j.catena.2013.11.011
https://doi.org/10.1016/j.ecolind.2020.106173
https://doi.org/10.1016/j.foreco.2008.08.010
https://doi.org/10.2134/agronj1982.00021962007400060016x
https://doi.org/10.2134/agronj1982.00021962007400060016x
https://doi.org/10.1016/j.catena.2014.02.007
https://doi.org/10.1016/j.catena.2014.02.007
https://doi.org/10.1016/j.jenvman.2021.112562
https://doi.org/10.1080/01431168608948945
https://doi.org/10.1080/01431168608948945
https://doi.org/10.1002/hyp.8069
https://doi.org/10.1016/j.scitotenv.2016.01.182
https://doi.org/10.1016/j.scitotenv.2018.10.164
https://doi.org/10.1016/j.scitotenv.2018.10.164
https://doi.org/10.1177/0309133310386514
https://doi.org/10.2136/sssaj1992.03615995005600020031x
https://doi.org/10.1016/j.agee.2021.107609
https://doi.org/10.1016/j.jenvman.2021.113198
https://doi.org/10.3390/rs14061301
https://doi.org/10.1016/j.catena.2017.09.026
https://doi.org/10.1002/joc.4978
https://doi.org/10.3390/rs13214326
https://doi.org/10.1016/j.jag.2017.11.005
https://doi.org/10.3390/rs10020320
https://doi.org/10.1016/j.scitotenv.2021.149958
https://doi.org/10.1111/j.2517-6161.1948.tb00012.x
https://doi.org/10.3390/w7062990
https://doi.org/10.3390/w7062990
https://doi.org/10.3390/rs14030714
https://doi.org/10.3390/rs14030714
https://doi.org/10.1002/ldr.3312
https://doi.org/10.1016/j.soilbio.2020.107951
https://doi.org/10.1002/joc.6790
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.950547


the Loess Plateau, China. J. Arid. Environ. 49 (4), 723–750. doi:10.1006/jare.2001.
0828

Rabii, F., Achour, H., Rebai, N., and Jallouli, C. (2017). Hypsometric integral for
the identification of neotectonic and lithology differences in low tectonically active
area (Utica-Mateur region, north-eastern Tunisia). Geocarto Int. 32 (11),
1229–1242. doi:10.1080/10106049.2016.1195890

Salcedo, F. P., Cutillas, P. P., Cabañero, J. J. A., and Vivaldi, A. G. (2022). Use
of remote sensing to evaluate the effects of environmental factors on soil
salinity in a semi-arid area. Sci. Total Environ. 815, 152524. doi:10.1016/j.
scitotenv.2021.152524

Shah, S. H. H., Wang, J., Hao, X., and Thomas, B. W. (2021). Modeling the effect
of salt-affected soil on water balance fluxes and nitrous oxide emission using
modified DNDC. J. Environ. Manage. 280, 111678. doi:10.1016/j.jenvman.2020.
111678

Shao, H., Sun, X., Wang, H., Zhang, X., Xiang, Z., Tan, R., et al. (2016). A method
to the impact assessment of the returning grazing land to grassland project on
regional eco-environmental vulnerability. Environ. Impact Assess. Rev. 56, 155–167.
doi:10.1016/j.eiar.2015.10.006

Sharma, R., Bell, R., and Wong, M. (2017). Dissolved reactive phosphorus played
a limited role in phosphorus transport via runoff, throughflow and leaching on
contrasting cropping soils from southwest Australia. Sci. Total Environ. 577, 33–44.
doi:10.1016/j.scitotenv.2016.09.182

Shu, X., Zhang, K., Zhang, Q., and Wang, W. (2017). Response of soil physico-
chemical properties to restoration approaches and submergence in the water level
fluctuation zone of the Danjiangkou Reservoir, China. Ecotoxicol. Environ. Saf. 145,
119–125. doi:10.1016/j.ecoenv.2017.07.023

Suleymanov, A., Abakumov, E., Suleymanov, R., Gabbasova, I., and Komissarov,
M. (2021). The soil nutrient digital mapping for precision agriculture cases in the
trans-ural steppe zone of Russia using topographic attributes. ISPRS Int. J. Geoinf.
10 (4), 243. doi:10.3390/ijgi10040243

Taghdis, S., Farpoor, M. H., and Mahmoodabadi, M. (2022). Pedological
assessments along an arid and semi-arid transect using soil spectral behavior
analysis. Catena 214, 106288. doi:10.1016/j.catena.2022.106288

Tong, S., Lai, Q., Zhang, J., Bao, Y., Lusi, A., Ma, Q., et al. (2018a). Spatiotemporal
drought variability on the Mongolian Plateau from 1980–2014 based on the SPEI-
PM, intensity analysis and Hurst exponent. Sci. Total Environ. 615, 1557–1565.
doi:10.1016/j.scitotenv.2017.09.121

Tong, S., Zhang, J., Bao, Y., Lai, Q., Lian, X., Li, N., et al. (2018b). Analyzing
vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent
and influencing factors from 1982–2013. J. Geogr. Sci. 28 (5), 595–610. doi:10.1007/
s11442-018-1493-x

Tran, T. V., Tran, D. X., Ho, N., Latorre-Carmona, P., and Myint, S. W. (2021).
Characterising spatiotemporal vegetation variations using LANDSAT time-series
and Hurst exponent index in the Mekong River Delta. Land Degrad. Dev. 32 (13),
3507–3523. doi:10.1002/ldr.3934

Tran, T. V., Tran, D. X., Myint, S. W., Huang, C.-Y., Pham, H. V., Luu, T. H., et al.
(2019). Examining spatiotemporal salinity dynamics in the Mekong River Delta
using Landsat time series imagery and a spatial regression approach. Sci. Total
Environ. 687, 1087–1097. doi:10.1016/j.scitotenv.2019.06.056

Unamunzaga, O., Besga, G., Castellón, A., Usón, M., Chéry, P., Gallejones, P.,
et al. (2014). Spatial and vertical analysis of soil properties in a Mediterranean
vineyard soil. Soil Use Manag. 30 (2), 285–296. doi:10.1111/sum.12110

Wang, D., Zhou, H., Zuo, J., Chen, P., She, Y., Yao, B., et al. (2022a). Responses of
soil microbial metabolic activity and community structure to different degraded and
restored grassland gradients of the Tibetan plateau. Front. Plant Sci. 13, 770315.
doi:10.3389/fpls.2022.770315

Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., et al. (2020a). Machine
learning-based detection of soil salinity in an arid desert region, northwest China: A
comparison between landsat-8 oli and sentinel-2 msi. Sci. Total Environ. 707,
136092. doi:10.1016/j.scitotenv.2019.136092

Wang, X., Li, T., Ikhumhen, H. O., and Sá, R. M. (2022b). Spatio-temporal
variability and persistence of PM2. 5 concentrations in China using trend analysis
methods and Hurst exponent. Atmos. Pollut. Res. 13 (1), 101274. doi:10.1016/j.apr.
2021.101274

Wang, Y., Zhang, C., Han, X., Mao, T., and Jia, X. (2015). Choosing an optimal
land-use pattern for restoring eco-environments in a semiarid region of the Chinese
Loess Plateau. Ecol. Eng. 74, 213–222. doi:10.1016/j.ecoleng.2014.10.001

Wang, Z., Zhang, F., Zhang, X., Chan, N. W., Kung, H.-t., Zhou, X., et al. (2020b).
Quantitative evaluation of spatial and temporal variation of soil salinization risk

using GIS-based geostatistical method. Remote Sens. (Basel). 12 (15), 2405. doi:10.
3390/rs12152405

Webb, H., Barnes, N., Powell, S., and Jones, C. (2021). Does drone remote sensing
accurately estimate soil pH in a spring wheat field in southwest Montana? Precis.
Agric. 22 (6), 1803–1815. doi:10.1007/s11119-021-09812-z

Wu, D., Jia, K., Zhang, X., Zhang, J., El-Hamid, A., and Hazem, T. (2021a).
Remote sensing inversion for simulation of soil salinization based on hyperspectral
data and ground analysis in Yinchuan, China. Nat. Resour. Res. 30 (6), 4641–4656.
doi:10.1007/s11053-021-09925-2

Wu, J., Zheng, H., and Xi, Y. (2019). SWAT-based runoff simulation and runoff
responses to climate change in the headwaters of the Yellow River, China.
Atmosphere 10 (9), 509. doi:10.3390/atmos10090509

Wu, Y., Zhao, S., Dai, L., Liu, Y., Xie, L., Zhang, Z., et al. (2021b). Tides affect plant
connectivity in coastal wetlands on a small-patch scale. Chemosphere 262, 127977.
doi:10.1016/j.chemosphere.2020.127977

Xu, H., Demetriades, A., Reimann, C., Jiménez, J. J., Filser, J., Zhang, C., et al.
(2019). Identification of the co-existence of low total organic carbon contents and
low pH values in agricultural soil in north-central Europe using hot spot analysis
based on GEMAS project data. Sci. Total Environ. 678, 94–104. doi:10.1016/j.
scitotenv.2019.04.382

Xu, L., and Wang, Q. (2015). Retrieval of soil water content in saline soils from
emitted thermal infrared spectra using partial linear squares regression. Remote
Sens. (Basel). 7 (11), 14646–14662. doi:10.3390/rs71114646

Yang, L., Chen, L., and Wei, W. (2015). Effects of vegetation restoration on the
spatial distribution of soil moisture at the hillslope scale in semi-arid regions.
Catena 124, 138–146. doi:10.1016/j.catena.2014.09.014

Yang, S., Liu, X., Cheng, T., Luo, Y., Li, Q., Liu, L., et al. (2021). Stepwise
weakening of aeolian activities during the holocene in the gannan region, eastern
Tibetan plateau. Front. Earth Sci. (Lausanne). 9, 686677. doi:10.3389/feart.2021.
686677

Yao, J., Yang, Q., Mao, W., Zhao, Y., and Xu, X. (2016). Precipitation trend-
Elevation relationship in arid regions of the China. Glob. Planet. Change 143, 1–9.
doi:10.1016/j.gloplacha.2016.05.007

Yin, L., Feng, X., Fu, B., Chen, Y., Wang, X., and Tao, F. (2020a). Irrigation water
consumption of irrigated cropland and its dominant factor in China from 1982 to
2015. Adv. Water Resour. 143, 103661. doi:10.1016/j.advwatres.2020.103661

Yin, L., Wang, X., Feng, X., Fu, B., and Chen, Y. (2020b). A comparison of
SSEBop-Model-Based evapotranspiration with eight evapotranspiration products
in the Yellow River Basin, China. Remote Sens. (Basel). 12 (16), 2528. doi:10.3390/
rs12162528

Yu, X., Huang, Y., Li, E., Li, X., and Guo, W. (2018). Effects of rainfall and
vegetation to soil water input and output processes in the Mu Us Sandy Land,
northwest China. Catena 161, 96–103. doi:10.1016/j.catena.2017.10.023

Zhang, X., Liu, M., Zhao, X., Li, Y., Zhao, W., Li, A., et al. (2018a). Topography
and grazing effects on storage of soil organic carbon and nitrogen in the northern
China grasslands. Ecol. Indic. 93, 45–53. doi:10.1016/j.ecolind.2018.04.068

Zhang, Y., Dong, S., Gao, Q., Liu, S., Zhou, H., Ganjurjav, H., et al. (2016). Climate
change and human activities altered the diversity and composition of soil microbial
community in alpine grasslands of the Qinghai-Tibetan Plateau. Sci. Total Environ.
562, 353–363. doi:10.1016/j.scitotenv.2016.03.221

Zhang, Y., Sui, B., Shen, H., and Wang, Z. (2018b). Estimating temporal changes
in soil pH in the black soil region of Northeast China using remote sensing. Comput.
Electron. Agric. 154, 204–212. doi:10.1016/j.compag.2018.09.005

Zhao, Y., Wang, X., Ou, Y., Jia, H., Li, J., Shi, C., et al. (2019). Variations in soil
δ13C with alpine meadow degradation on the eastern Qinghai–Tibet Plateau.
Geoderma 338, 178–186. doi:10.1016/j.geoderma.2018.12.005

Zhong, Y., Lin, A., Xiao, C., and Zhou, Z. (2021). Research on the spatio-temporal
dynamic evolution characteristics and influencing factors of electrical power
consumption in three urban agglomerations of Yangtze River Economic Belt,
China based on DMSP/OLS night light data. Remote Sens. (Basel). 13 (6), 1150.
doi:10.3390/rs13061150

Zhu, M., Feng, Q., Qin, Y., Cao, J., Zhang, M., Liu, W., et al. (2019). The role of
topography in shaping the spatial patterns of soil organic carbon. Catena 176,
296–305. doi:10.1016/j.catena.2019.01.029

Zhu, Y., and Shao, M. (2008). Variability and pattern of surface moisture
on a small-scale hillslope in Liudaogou catchment on the northern Loess
Plateau of China. Geoderma 147 (3-4), 185–191. doi:10.1016/j.geoderma.2008.
08.012

Frontiers in Environmental Science frontiersin.org15

Zhang et al. 10.3389/fenvs.2022.950547

https://doi.org/10.1006/jare.2001.0828
https://doi.org/10.1006/jare.2001.0828
https://doi.org/10.1080/10106049.2016.1195890
https://doi.org/10.1016/j.scitotenv.2021.152524
https://doi.org/10.1016/j.scitotenv.2021.152524
https://doi.org/10.1016/j.jenvman.2020.111678
https://doi.org/10.1016/j.jenvman.2020.111678
https://doi.org/10.1016/j.eiar.2015.10.006
https://doi.org/10.1016/j.scitotenv.2016.09.182
https://doi.org/10.1016/j.ecoenv.2017.07.023
https://doi.org/10.3390/ijgi10040243
https://doi.org/10.1016/j.catena.2022.106288
https://doi.org/10.1016/j.scitotenv.2017.09.121
https://doi.org/10.1007/s11442-018-1493-x
https://doi.org/10.1007/s11442-018-1493-x
https://doi.org/10.1002/ldr.3934
https://doi.org/10.1016/j.scitotenv.2019.06.056
https://doi.org/10.1111/sum.12110
https://doi.org/10.3389/fpls.2022.770315
https://doi.org/10.1016/j.scitotenv.2019.136092
https://doi.org/10.1016/j.apr.2021.101274
https://doi.org/10.1016/j.apr.2021.101274
https://doi.org/10.1016/j.ecoleng.2014.10.001
https://doi.org/10.3390/rs12152405
https://doi.org/10.3390/rs12152405
https://doi.org/10.1007/s11119-021-09812-z
https://doi.org/10.1007/s11053-021-09925-2
https://doi.org/10.3390/atmos10090509
https://doi.org/10.1016/j.chemosphere.2020.127977
https://doi.org/10.1016/j.scitotenv.2019.04.382
https://doi.org/10.1016/j.scitotenv.2019.04.382
https://doi.org/10.3390/rs71114646
https://doi.org/10.1016/j.catena.2014.09.014
https://doi.org/10.3389/feart.2021.686677
https://doi.org/10.3389/feart.2021.686677
https://doi.org/10.1016/j.gloplacha.2016.05.007
https://doi.org/10.1016/j.advwatres.2020.103661
https://doi.org/10.3390/rs12162528
https://doi.org/10.3390/rs12162528
https://doi.org/10.1016/j.catena.2017.10.023
https://doi.org/10.1016/j.ecolind.2018.04.068
https://doi.org/10.1016/j.scitotenv.2016.03.221
https://doi.org/10.1016/j.compag.2018.09.005
https://doi.org/10.1016/j.geoderma.2018.12.005
https://doi.org/10.3390/rs13061150
https://doi.org/10.1016/j.catena.2019.01.029
https://doi.org/10.1016/j.geoderma.2008.08.012
https://doi.org/10.1016/j.geoderma.2008.08.012
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.950547

	Spatiotemporal dynamics of soil water-salt and its topographic gradient effects on Alpine area over the Northeastern Tibeta ...
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data acquisitions and processing
	2.2.1 Soil sample data acquisition and processing
	2.2.2 Remote sensing data acquisition and processing

	2.3 Methods
	2.3.1 Regression analysis
	2.3.2 Moran’s I index and hot spot analysis
	2.3.3 Linear regression model and Hurst exponent


	3 Results
	3.1 Statistical characteristics and model construction
	3.2 Temporal variations in soil water–salt
	3.3 Spatial variations in soil water–salt
	3.3.1 Spatial distribution characteristics
	3.3.2 The variation trend analysis
	3.3.3 Future trend analysis

	3.4 Effects of different topographic factors on soil water–salt
	3.4.1 Effects of elevation on soil water–salt
	3.4.2 Effects of slope on soil water–salt
	3.4.3 Effects of aspect on soil water–salt


	4 Discussion
	4.1 Modeling of soil water–salt and its spatiotemporal change
	4.2 Influence of topography on soil water–salt
	4.3 Limitations and prospects

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


