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Deep learning self-supervised algorithms that can segment an image in a fixed

number of hard clusters such as the k-means algorithm and with an end-to-end

deep learning approach are still lacking. Here, we introduce the k-textures algorithm

which provides self-supervised segmentation of a 4-band image (RGB-NIR) for a k

number of classes. An example of its application on high-resolution Planet satellite

imagery is given. Our algorithm shows that discrete search is feasible using

convolutional neural networks (CNN) and gradient descent. The model detects k

hard clustering classes represented in themodel as k discrete binarymasks and their

associated k independently generated textures, which combined are a simulation of

the original image. The similarity loss is themean squared error between the features

of the original and the simulated image, both extracted from the penultimate

convolutional block of Keras “imagenet” pre-trained VGG-16 model and a

custom feature extractor made with Planet data. The main advances of the

k-textures model are: first, the k discrete binary masks are obtained inside the

model usinggradient descent. Themodel allows for thegenerationof discrete binary

masks using a novel method using a hard sigmoid activation function. Second, it

provides hard clustering classes–each pixel has only one class. Finally, in comparison

to k-means, where each pixel is considered independently, here, contextual

information is also considered and each class is not associated only with similar

values in the color channels but with a texture. Our approach is designed to ease the

production of training samples for satellite image segmentation and the k-textures

architecture could be adapted to support different numbers of bands and for more

complex self-segmentation tasks, such as object self-segmentation. The model

codes and weights are available at https://doi.org/10.5281/zenodo.6359859.
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1 Introduction

In recent years, automatic extraction of cartographic

features from satellite images is undergoing a revolution

thanks to advances brought by deep convolutional neural

networks (CNNs). The main advantage of these supervised

CNNs is that they take raw data and automatically learn

features through training with minimal prior knowledge

about the task (LeCun et al., 1998). Furthermore, CNN

accuracy in remote sensing applications is similar to human-

level classification accuracy, but is consistent and fast, enabling

rapid application over very large areas and/or through time

(Brodrick et al., 2019). CNNs could support the fast acquisition

of accurate spatial information about land use and land cover

change, which is essential for country planning and monitoring.

However, among the most significant efforts that are being

made to map Land Use and Land Cover (LULC) such as the

project MapBiomas, which maps LULC change specifically for

Brazil (MapBiomas, 2018) or Global Forest Change product at

30 m spatial resolution of the University of Maryland (Hansen

et al., 2013), the CNNs are still under-used and semantic

classifications rely mostly on machine learning (ML)

algorithms, such as the random forest algorithm.

The use of supervised CNN techniques for these remote

sensing applications is limited by their need for large training

samples labeled by experts. Making manual samples, and even

dense labeling (each pixel attributed to a label) is feasible in sub-

metric spatial resolution images where objects such as buildings

or trees are visible. However, this is more difficult and inaccurate

for small objects at high or medium spatial resolution (5–30 m

resolution) satellite imagery, such as Planet, Sentinel, or Landsat,

which are typically used for LULC change mapping at regional to

global scales. As consequence, manual sampling is generally

made of spatial referenced points with labels determined

either with high-resolution imagery or in the field. These sets

of points are used to train machine learning (ML) algorithms,

such as Random Forest, and to validate classification results.

After the training step, in prediction, a class is attributed to each

pixel of the satellite image scene. The classification process

assumes that pixels are spatially independent. To improve the

spatial coherence of the prediction, additional temporal filters are

used to improve the classification. For example, a pixel labeled as

a forest cannot switch labels and then become a forest again

(Souza et al., 2020). Having unsupervised methods that could

automatically generate dense samples for one or several land

cover classes would ease the laborious manual part of the

mapping and enable to make a large number of samples to

train supervised CNNs and ML segmentation techniques.

Several classical unsupervised algorithms are used to produce

semantic segmentation in remote sensing classification of

medium spatial resolution images such as k-means, ISOSeg,

Maximum Likelihood, Mahalanobis Distance, and

Bhattacharyya Distance (Richards and Richards, 1999; Câmara

et al., 2008). However, they are not accurate enough to replace the

manual labeling approach. This is easy to understand since they

rely on clustering pixels with similar values in the color channels,

without considering spatial information of the neighbor pixels, or

considering spatial information with texture indices, which is

oversimplistic. For example, values in the spectral bands (or

values in the color channels red, green, and blue) can be seen as

one feature when we currently know that several features and

multiple levels of abstraction are needed to reach state-of-the-art

accuracy of classification (LeCun et al., 2015), as demonstrated by

the success of CNNs in computer vision tasks. Furthermore,

while for natural object color is an important feature, as it links

structural and chemical composition (Asner et al., 2015; Ferreira

et al., 2016), for most of the non-natural objects, the color is most

of the time an undesirable feature. For example, to recognize cars

or plastic balloons in images, color is not the most helpful feature,

and often the CNN models are even trained with images where

the hue is artificially changed (during data augmentation) to

impede the model to give too much importance to the color, that

is, overfitting, and to improve generalization (Chollet and Allaire,

2018). However, all these non-CNN classical unsupervised

algorithm techniques are still used for classifying the high to

medium spatial resolution satellite imagery because developing

deep learning equivalent of these unsupervised methods for

image segmentation is a current challenge. Furthermore,

specifically, to map LULC changes in tropical regions, the

community has now free access to the Planet images, which

are multispectral satellite cloud-free images at a spatial resolution

(5 m) and a monthly temporal resolution (Planet Team, 2017;

Planet, 2021). However, the Planet images are recent, the

monthly dataset started in September 2020, and few reference

datasets exist for these images. Today, because of the large

amount of freely available satellite data and the growing need

for sample production for supervised techniques, an

unsupervised deep learning approach for segmentation would

greatly benefit the community.

Unsupervised deep learning is seen as the future of deep

learning, as this is mostly how humans and animals learn, by

observations (LeCun et al., 2015; Bengio et al., 2021). This field of

research has gained interest in the last years, and the term “self-

supervision” is now preferred to “unsupervised” because the

model creates its own abstraction of objects. Self-supervised

image segmentation, in remote sensing or computer vision, is

currently one of the most challenging tasks for deep learning.

Recent works show that self-supervised deep learning models can

be trained in a way that semantic information emerges directly

inside the features of the model such as the self-supervised Vision

Transformer (Caron et al., 2021). Other attempts to

automatically segment images have used Variational

Autoencoder (VAE) or simpler CNNs to produce the features

and used k-means clustering on the features created by the

algorithm to provide pseudo labels (Girard et al., 2019; Kim

et al., 2020). Finally, the last method is redrawing, where the
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model extracts an object’s mask and redraws the object at the

same location (Chen et al., 2019). However, all of these

unsupervised segmentation techniques, and more generally all

the models of clustering with deep learning (Karim et al., 2021),

belong to soft clustering, that is, every pixel has a probability or

likelihood to belong to each of the clusters. Clusters are obtained

by the argmax function on the softmax layer of the object class

but are not used directly inside the model during optimization, as

the argmax function is non-differentiable. Alternatively, Fard

et al. (2020) have developed an unsupervised technique to

simultaneously train a representation model and the

associated soft clusters that can provide, in some conditions,

hard clusters but the model has a specific loss function which

contains the cluster number and limits the use of other loss

functions. If we had true binary masks used as a weight inside the

model, textures or images could be generated for each cluster

independently and with a loss function independent of the

number of clusters k.

By contrast, in hard clustering, the pixels belong or do not

to the cluster, 0 or 1. This problem of discretization using

gradient descent is currently not known to be solvable by deep

learning because it is impossible currently to compute the

gradient for discrete search. In other words, having a

function that returns 0 or 1 (or more generally a step

function) is discrete and non-differentiable and is not

optimized by current gradient-based deep learning

techniques. However, here, we present a simple technique to

avoid this limitation, and to render a discrete search possible,

that is, in our case, to assign a hard cluster to each class and use

it in the gradient computation but without disrupting the

gradient descent. There have been some works on the

binarization of the weights in the deep learning field (Qin

et al., 2020) and some very close to the methods used here

(Sakr et al., 2018; Courbariaux et al., 2015). However, the

objective of these works was to build lighter and more

computationally efficient networks, not to use directly the

binary weights as labels to provide the segmentation of an

image.

Our model is called k-textures as it self-segments the image

in k hard clustering classes of different textures. As a study case,

it was tested for self-semantic segmentation of a cloud-free

RGB-NIR 20 km × 20 km Planet satellite image at 4.78 m of

spatial resolution covering a degraded region of the Amazon

forest in Brazil. The planet images over the tropics image have

been made available by Norway’s International Climate and

Forest Initiative (NICFI, https://www.nicfi.no/) (Planet Team,

2017). The results of k-textures were compared to the results

obtained by k-means, which is the closest nondeep learning

machine learning algorithm for clustering images.

Furthermore, we compare the obtained classes to the real

world in land cover types obtained from MapBiomas (2018)

to understand the capabilities and limitations of the k-textures

model.

2 Proposed K-textures model

2.1 Hard sigmoid activation function with a
very steep linear part

The objective of this section is to create a differentiable

function that can return a binary value of 0 or 1 from a

continuous value, to create a binary mask for each k class of

the model. A step function that returns only 0 or 1 from a

continuous input variable is not differentiable and, thus, not

usable in deep learning with gradient descent optimization.

However, a differentiable function that returns 0 or 1 for most

of the input values should exist. The hard sigmoid function is

amongst the functions that are differentiable and used as an

activation function in deep learning and has this characteristic.

The hard sigmoid function σ(x) was originally defined in Eq. 1

(Courbariaux et al., 2015) and Figure 1. The function is

composed of three connected parts, one that is constant and

equal to 0, one that is linear and rises from zero to 1, and a final

part, constant and equal to 1. For example, in Tensorflow

(https://www.tensorflow.org/api_docs/python/tf/keras/activations/

hard_sigmoid) (Abadi et al., 2016) the hard sigmoid function tf.

keras.activations.hard_sigmoid return 0 if x < −2.5,

return 1, if x > 2.5 and if −2.5 < � x < � 2.5: return 0.2 × x + 0.5,

Eq. 2 and Figure 1. The coefficients of the hard sigmoid function

can be adjusted so that the slope can occur in a very limited range of

x values. In other words, the coefficients can be set so that the

function returns as y constant values of 0 or 1 on most of the x

values range and only returns y values on the range (0,1) on a very

narrow range of x values, with the advantage that the function

remains differentiable. For example, in our hard sigmoid activation

function, we use the coefficients of Eq. 3 which constrain the linear

part that rises from 0 to 1 between x values of 0 and 0.0002 and

Figure 1.

σCourbariaux x( ) � max 0, min 1, x × 0.5 + 0.5( )( ) (1)
σTensorflow x( ) � max 0, min 1, x × 0.2 + 0.5( )( ) (2)
σours x( ) � max 0, min 1, x × 5000 + 0( )( ). (3)

2.2 A CNN to approximate the hard
sigmoid function

As using the hard sigmoid function with such a steep slope

directly inside a CNN would be unstable, and, to ease the

convergence, the hard sigmoid function was approximated

by a CNN. This enables to decomposed of the hard sigmoid

function in an ensemble of small and easy to differentiate

operations. To train a CNN that is able to approximate our

hard sigmoid function, we build a small CNN architecture

(σCNN) and simulated the data to train the model, Figure 1B,

Figure 2 and Eqs 4–11. This CNN model is used to generate
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dummy variables for k categories inside the k-textures

model. Using a CNN allows us to decompose our problem

in a series of small linear operations that can be easily used as a

layer with fixed weights inside a larger deep learning model,

to transform continuous data into categorical data while

still enabling the use of gradient descent optimization. The

architecture of the hard sigmoid CNN model (σCNN) is

presented in Figure 1B. The model is made of two

convolution blocks with 64 filters a and 1 × 1 kernel, both

consisting of the application of a 2D convolution layer, batch

normalization, elu activation, and dropout. Dropout was used

to perform further implicit data augmentation and avoid

overfitting during training. Finally, the output is produced

with a final 2D convolution layer with 1 × 1 kernel, 1 filter,

and our custom hard sigmoid activation function (Section 2.1).

The simulated input and output data to train the model were

built with the functions described in Eqs 4–11, where k is the

number of classes, kthreshold is the x values located at the end of the

rising linear part where y reaches the value of 1, xsim are the

simulated input values ysim are the simulated output values andU

a random uniform distribution for n samples ranging from a

defined minimum and maximum value. Input values were

sampled from three uniform distributions with differences in

frequency, that is, most of the input values (96.97%) were

sampled in a random uniform distribution located in the

linear part of the curve, Eq. 5. For the two other distributions,

the same number of values were simulated on each side of the

linear part of the hard sigmoid curve to ease convergence, Eq. 5.

All the simulated input values in the interval [−0.001,1.001] were

clipped to [0,1] to match the range of values returned by a

sigmoid activation function and also to have data for x = 0

and x = 1.

To simulate the y value, the starting point is a sine function,

Eq. 7, with a large amplitude (5,000) computed from the

simulated x values normalized between −1 and 1. The result

is then clipped to the interval [0, 1]. Then, test/corrections are

made by applying sequentially Eqs 8–11 to ensure that y values

are equal to 0 or 1 on the extremes, near x = 0 and x = 1. A sine

function was used to ease the production of simulated output

for different values of k classes. As a convention, we keep the

constant part equal to 1 on the right, so the function is inverted

along x for k classes that are even. Simulated output data for k =

2 are presented in Figures 2E,F, for k = 3 in Figure 2G, for k =

4 in Figure 2E and for k = 10 in Figure 2I.

kthreshold � k − 1( )/k (4)
xsim � U min � −0.001, max � kthreshold, n � 128 × 2( ),(

U min � kthreshold − 0.003, max � kthreshold + 0.003, n � 128 × 128( )),
U min � kthreshold, max � 1.001, n � 128 × 2)( )

(5)
xsim � clip xsim, 0, 1( ) (6)

ysim � 5000
k − 1

× sin
π/2
1/k( ) × xsim × 2( ) − 1( )( )( ) (7)

ysim �
0, if ysim < � 0
1, if ysim > � 1
ysim, otherwise

⎧⎪⎨⎪⎩ (8)

FIGURE 1
Hard sigmoid curves for x values ranging between −4 and 4 for the function of Courbariaux et al. (2015), Tensorflow 2.8 (Abadi et al., 2016) and
our function where the linear part rises from 0 to 1 for x values between 0 and 0.0002 in panel (A). Panel (B): Architecture of the hard sigmoid
approximation σCNN model. Note that all the convolution layers have kernels of 1 × 1 indicating that each value is independent of the neighbors.
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ysim � 1, if xsim < 1/k( )/2
ysim, otherwise

{ (9)

ysim � 1 + ysim × − 1( ) , if k is even
ysim, otherwise

{ (10)

ysim � 1, if xsim > 1 − 1/k( )/2( )
ysim, otherwise

{ (11)

The hard sigmoid approximation σCNNmodel for each k class

was trained with 16,384 images of 128 × 132 × 1 that represent

276824064 simulated x values and their correspondent simulated

y value. All x and y were simulated again at each epoch. The

model σCNN was trained for 5,000 epochs with a batch size of

1,024. During network training, we used a standard stochastic

gradient descent (SGD) optimization with a learning rate of

0.0001. The loss function was designed as a sum of two terms:

binary cross-entropy and the Dice coefficient-related loss. The

model with the minimum mean absolute error was chosen. If the

linear part that rises from 0 to 1 of the curve produced by the

CNN was in the interval ±0.0001 around the value 1–1/k, the

desired accuracy was achieved and the training was stopped.

Otherwise, the training continued for 5,000 more epochs until

FIGURE 2
Data generated for training a CNN (σCNN) to approximate the hard sigmoid function with k classes. The frequency of the simulated x values (Eqs
5, 6) for k = 2 (A), simulated sin function from the simulated x valueswith Eq. 7 (B), clipped values on the range [0,1] Eq. 8 (C), y value different of 1 set to
1 for x value near 0 9 (D), inversion along x for even k classes, Eq. 10, and y value different of 1 are set to 1 for x value near 1, Eq. 11, to obtain the final y
value used to train themodel for a number of classes k= 2 (E), details of the linear part where y rise from 0 to 1 (F), examples of data simulated to
train the model for a number of k classes of 3 (G), 4 (H) and 10 (I).
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the accuracy was attained (and repeated if necessary). The

training of the model with k = 16 and 5,000 epochs took

approximately 27 min using a Nvidia RTX2080 Graphics

Processing Unit (GPU) with an 8 GB memory.

The hard sigmoid approximation (σCNN) model with fixed

weights corresponding to the k class is used during the generation

of the binary masks for each class in the k-texture model. For

example, for k = 3 classes, the three binary masks can be

computed with σCNN for an input whose values are in the

range [0,1], as presented in Figure 3. The range [0,1]

corresponds to the values returned by the convolution layer

with a sigmoid activation function and here the example is given

for input values on the range [0,1] with a uniform distribution,

Figure 3A. The first binary mask is computed by applying the

σCNN model directly on the input value, Figure 3B. The second

binary mask is obtained by applying the σCNN model to the (1 -

input value), Figure 3C. The third binary mask is computed by

removing the sum of the two previously obtained masks to a

tensor the same size as the mask, filled with 1, Figure 3D. The

sum of the three masks is a tensor of ones. The operation to

produce the binary masks can be generalized to any desired

number of classes with a simple operation on the input values

and the obtained intermediate masks (code available at https://

doi.org/10.5281/zenodo.6359859). Note that the values in the

masks can be different from 0 or 1 if an x value is located on the

linear segment that rises from 0 to 1 of the hard sigmoid

produced by the σCNN model. This issue is resolved later

during the training of the k-texture model. Note that this

method enables us to use the σCNN model to transform a

continuous into a binary variable and at the same time this

model can be used with gradient descent because the σCNN is fully

differentiable.

2.3 K-textures model architecture

The objective of the k-textures algorithm is to self-segment

an image in k number of classes. The architecture of the

k-textures algorithm is divided into two paths, Figure 4, an

encoder to generate the k binary masks and an independent

generator of textures. Both join before the end of the architecture

to reconstruct the image.

The first path of the model is an encoder where the input

image goes through two convolution blocks with 64 filters and

1 × 1 kernel (2D convolution layer, batch normalization, and elu

activation), and a last 2D convolutional layer which returns a

tensor with sigmoid activation cropped to the size of (128,128,1),

Figure 4. Kernels of 1 × 1 are used in the encoder (each pixel is

independent of the other), as CNNs using a 3 × 3 kernels are

already used in the feature extractor of the Loss function and

there is no need to have them here (even if it is possible to use an

encoder with 3 × 3 kernels). Furthermore, it enables to decrease

in the number of weights and it is more comparable to the

k-means models where pixels are considered independently. A

Gaussian noise (mean = 0, sd = 0.0005) is added to the sigmoid

activation tensor returned by the encoder, and the σCNN model

with fixed weights corresponding to the k number of classes is

applied to generate the k binary masks.

The Gaussian noise amplitude (sd = 0.0005) is slightly larger

than the x value of the linear part of the σCNN model that rises

from 0 to 1, to ensure that all x values in the linear part are

FIGURE 3
Computing binary mask values for k = 3 with our σCNN model
which approximate a hard sigmoid function. Sample of uniform x
values on the range [0,1] (A), values of the mask obtained by the
binarization for maskclass1 (B), maskclass2 (C) and
maskclass3 (D).
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significantly affected by the noise. This adds instability to the

gradient during training on the risen part of the hard sigmoid so

that the algorithm tends to avoid these values. For example, on

one epoch the x values on the slope plus Gaussian noise can

return a y value of 0 and 1 in the next epoch. With this simple

Gaussian noise, the model is unable to learn the rising part of the

curve and tends to avoid it because of its instability. Furthermore,

and more importantly, the model is unable to use this part of the

curve to propagate information, and, as a consequence, it tends to

return either 0 or 1. On the other hand, the x values located on the

constant part of the curve (equal to 0 or 1) are stable even with the

Gaussian noise.

The second path of the model is designed to generate k

textures, that is, one texture for each class. The texture is

generated from a random Gaussian tensor of size (144, 144,

1). The texture is generated on a larger tensor than the original

image to avoid the border effects. The random Gaussian tensor is

then applied a series of four identical convolutional blocks (2D

convolution layer, batch normalization, and leaky relu activation)

with 16 filters and a kernel size of 3 × 3. Then a 2D convolution

with 4 filters, a kernel size of 3 × 3, and a sigmoid activation are

applied to produce the texture image. The generated textures are

then clipped to the size of the binary masks. Finally, the two paths

meet to produce the reconstructed image from the k binary

masks and the k textures. Each binary mask is multiplied by its

correspondent textures, and all the resulting tensors are all

summed together to produce the reproduced image, the

output of the model.

The model is trained with the same image as input and as the

image to reproduce, the only difference is that the input is slightly

larger (136 × 136) than the image to reproduce (128 × 128) to

avoid border effects. As these images are patches of a larger

FIGURE 4
K-textures Model Architecture and example for k = 4. The Planet image (4,096 × 4,096 pixels) is inputted to the k-textures algorithm in square
patches of 136 × 136 pixels with 8 pixels of overlap (1,024 patches). k binary masks are generated for each patch. One texture is generated for each k
classes with the texture generator, to produce k textures of 128 × 128 pixels. Note that only k textures of 128 × 128 pixels are estimated for the entire
Planet image (k = 4 in the example). The k textures and the k binary masks are then multiplied and the result summed to produce a simulate
image of each patch. During the training, the loss that contains the VAE and VGG16 feature extractors is computed between the input and simulated
images.
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image, the larger border for the input is obtained by overlapping

the neighbor patches and when overlapping is not possible,

missing input data on the border is extrapolated by mirroring.

The k-texture model is designed to optimize simultaneously

using gradient descent, the k textures, and the k binary masks

that enable the production of an image the most similar to the

original image. The model can be trained with a various number

of classes and we give the weights of the σCNN model for the

number of classes k from 2 to 64 but note that we only tested that

the model works until k = 32. We used the ADAM optimizer

(Kingma and Ba, 2017) with a learning rate of 0.001 and the

gradient norms were scaled if the gradient vector exceeds 1. The

gradient scaling helps the convergence of the model as was

observed by trial and error.

For the k-textures model, we designed a loss function which

is the mean square error between the feature obtained from a

feature extractor on the original image (input image) and the

reconstructed image (model output). It enables the model to

compare the two images not only on one feature, such as the

color for example but for all the different features present in the

feature extractor. For the feature extractor, we use the pre-

trained VGG16 model (Simonyan and Zisserman, 2014) with

the fixed ImageNet weights available in Keras (Chollet et al.,

2015; Allaire and Chollet, 2016), specifically, the second to last

layer of the model (block5_conv3). The VGG16 feature

extractor works only for RGB (3 bands) images, and, as we

want to apply the model on 4 band images, we also train a

custom variational autoencoder (VAE) with 130 satellites

images (Planet Scope, Section 3.1) and a mean squared error

(mse) loss to be further used as 4 bands image feature extractor.

The VAE model was a standard U-Net model (Ronneberger

et al., 2015) (https://blogs.rstudio.com/ai/posts/2019-08-23-

unet/) with the input of (256 × 256 × 4) but without skip

connections in the decoder part. Note that other feature

extractors could be used. The fixed weight used in the

k-textures loss for feature extraction was obtained after

training the VAE model for 3,898 epochs when the best

accuracy of the VAE model was achieved (0.9703441). The

last central layer before the decoder of this VAE was used as a

feature extractor. Then both feature extractors, from

VGG16 and our custom VAE were used in the loss function.

The loss of the k-textures model was defined as the sum of two

terms: 1) the mean square error of the feature extracted with

VGG16 for the input and the simulated image, and 2) the mean

square error of the feature extracted by the custom VAE for the

input and the simulated image. Once trained, the model with

fixed weights can be eventually applied to other images. In this

case, it will generate the new binary masks and use the textures

obtained during training.

All the models were coded in the programming language R

(R Core Team, 2016) with Rstudio interface to Keras (Chollet

et al., 2015; Allaire and Chollet, 2016) and Tensorflow (Abadi

et al., 2016).

3 Experiments

3.1 Planet satellite image and associated
land use/cover datasets

The experiment was undertaken in a region of the

Brazilian Amazon forest located in the Mato Grosso State,

Brazil, and centered at 9°32′8.43″S, 59°9′1.69″W, Figure 5. The

region contains several different land cover types, such as

primary and secondary forests, pastures in use, and

abandoned and urban areas. Furthermore, this region is

currently of critical importance and at the center of

international attention because of the carbon emissions due

to deforestation and forest degradation. It also contains

numerous small patches of forests that would be highly

time-consuming to sample by hand in the high-resolution

image. Furthermore, in Brazil, the land cover types and water

surfaces have been already mapped by the MapBiomas

initiative using Landsat satellite image at 30 m spatial

resolution, enabling us to understand and compare what

the clusters of the k-textures and the k-means models

represent in the real world, Figure 5B.

The Planet image of 20 × 20 km at ~ 4.78 m spatial

resolution over the study region, Figure 5A, was downloaded

through the Planet API https://api.planet.com/basemaps/v1/

mosaics (Planet Team, 2017). The image was selected

because it has a lower cloud cover among the available

images of the region times series and because it did not

show a visible variation of atmospheric conditions or

illumination effects. The Planet ID of the image is ID_

ce7bad0f-a4a0-45fd-904b-eb6cc6eee373_PAGE_687-969_DATE_

2021-08-01. tif and was acquired in July 2021.We used 4 bands for

this image: Red (0.650–0.682 μm), Green (0.547–0.585 μm), Blue

(0.464–0.517 μm), and the NIR bands (0.846–0.888 μm) (Planet,

2021). All bands in raw image digital numbers (12 bits) were,

first, truncated to the range 0–2,540 for the RGB bands and

scaled between 0 and 2,540 for the NIR bands (i.e., divided by

3.937). Second, the 4 bands were scaled to 0–255 (8 bits) by

dividing by 10, and then the Red-Green-Blue-NIR (RGBNIR)

composite was built. The forest reflectance values are low in

the RBG bands ( < 500) and the specific scaling of these bands

was made to keep a good definition of the forest reflectance

values in 8 bits. The scaling of NIR is only a min-max

(0–10000) scaling as forest reflectance values are not low in

this band. No atmospheric correction was performed. A

second image was generated from the composite adding a

mirroring border of 4 pixels on each side for the generation of

input images.

The clusters obtained from the k-textures segmentation

were compared to the results obtained with a k-means

algorithm, which aims to partition the pixels values of the

image into k groups such that the sum of squares from pixels

values to the assigned cluster centers is minimized
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(MacQueen, 1967; Lloyd, 1982). The k-means were tested

using the four reflectance bands, that is, the same dataset

as for the k-textures, and for a number of k clusters from 4 to

16. Furthermore, to account for spatial information, we also

apply the k-means with five texture indices (mean, variance,

entropy, homogeneity, dissimilarity) in addition to the four

reflectance bands of the image. These texture indices were

computed with the R package glcm (Zvoleff, 2020) on the

grey-level image from the RGB reflectance bands. The

k-means were used with the MacQueen algorithm and a

maximum number of iterations of 10.000 for convergence.

Processing times for the k-means with 4 bands were 24.5 s for

4 classes, 157.0 s for 16 classes, and 518.5 s for 32 classes.

Mean absolute error (MAE) was computed a posteriori

between the original image and the image produced by

k-means, that is, with the cluster centers used as a texture

for each class. The loss of k-means for the 4-bands dataset was

computed using the loss function of the k-textures model with

the observed image and the image with cluster center values

for each cluster.

To test if our segmentation or the k-means-based

segmentation was consistent with independent datasets of

land cover/use maps of the region, and if the classes seen by

the k-texture model classes represent features in the real world,

we compared the results to the land use/cover map from the

Project MapBiomas - Collection 6 (MapBiomas, 2018),

Figure 5B. MapBiomas Project is a multi-institutional

initiative the to generate annual land cover and use maps

using automatic classification processes applied to satellite

images. A complete description of the project can be found at

http://mapbiomas.org. The MapBiomas land cover classes for the

year 2020 over the region study extent at 30 m spatial resolution

was obtained from google earth engine https://mapbiomas.org/

en/colecoes-mapbiomas-1?cama_set_language=en. The

MapBiomas image was resampled to overlay exactly the

Planet image spatial resolution using gdalwarp with the

nearest neighbor resampling method (GDAL/OGR

contributors, 2019). To compare the Mapbiomas forest class

to the forest classes obtained by the k-textures and the k-means,

the metrics precision, recall, accuracy, F1-score, and intersection

over union (IOU) were computed.

3.2 Training

Clipping the Planet image in 136 × 136 pixels images with

4 pixels of overlap resulted in a sample set of 1,024 images to

train the model. The model output is a 128 × 128 image,

however, using a 136 × 136 pixels image as input enabled to

avoid border effects in the encoder output when using the

kernel of 3 × 3 pixels. This size of 136 × 136 pixels was

selected because the main texture of the land cover and land

use classes are assumed to visible in an image of that size

(136 pixels ~ 649 m) and, because of GPU memory

limitation, as a larger image would need larger GPU

memory. Note that, for larger GPU memory, the

algorithm could be adapted. We trained our network for

15,360 epochs with a learning rate of 0.001, and where each

epoch comprised 1 batch with 1,024 images for the k classes

from 4 to 24 and 32. Training the model took ~18 min for k =

4 and ~80 min for k = 32 using GPU on an Nvidia

RTX2080 with 8 GB of dedicated memory.

FIGURE 5
Geographical location of the region of interest with RGB composite of the Planet image used in the experiment (A); land use/cover classes of
the region of interest for the year 2020 from the MapBiomas project (B).
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4 Result

4.1 Model convergence

Here, we compare the evolution of the loss value during

training of 15,360 epochs with different values of k for the planet

image presented in Figure 5A). The k-textures model converged

as shown by the decrease of the loss during the 15,360 epochs of

training for all values of k, Figure 6. The loss of the model for k of

4 is higher than expected, as with only 4 classes the model is not

able to reproduce the variability of the image. For other k values,

lower loss values are observed but without clear order. The model

shows sometimes relatively sharp changes in loss when

improving, that could be due to the reorganization of textures

order or the creation of new textures/classes. The decrease in loss

indicates that the model is able to train, that is, it can estimate the

binary class and texture jointly to reproduce the original image.

The k-textures model produces a better classification than the

k-mean when looking at mean average error (mae) and Loss,

Table 1. The k-textures model reaches a lower mean average

error (mae) with fewer k-classes when compared to k-means. For

example, for 4 classes, the mae of k-textures is equivalent to the

mae of 7 classes for k-means; and, for 9 classes, it already reaches

the mae corresponding to 16 classes with k-means. This result

was expected (and our experiments confirm it) since k-textures

results involve several colors along with spatial information for

one class while k-means only includes one color per class, the

cluster center, that has one unique value in each of the four

bands. Adding the spatial information with the texture bands in

the k-means does not improve the MAE, and MAE is always

above the k-means MAE and k-textures MAE on four bands. For

the loss, the reconstruction of the image with simulated textures

also provides a resulting image that is closer to the original image,

specifically, more similar in features than the image returned by

the k-mean algorithm, has shown by the lower value of loss for

k-textures in Table 1. This is also expected as this is the value that

the k-textures try to minimize during training. While k-means

only focus on the values of pixels taken independently, the

k-textures model uses CNNs and consequently multiple levels

of abstraction and it can perform better.

While for the k-means, Loss, and mae systematically improve

when adding a class, the results of k-textures seem more subject

to variations and to reach a limit where the model does not

further improve. This effect could be related to the number of

epochs, as 15,360 epochs might not be enough for a high number

of groups, or other model parameters such as the batch size and

learning rate. Further experiments will be needed to determine

how to obtain the best model for a class. Sometimes, the

k-textures model does not find the requested number of k

classes. In this case, the missing clusters are always those

corresponding to the extreme values of the encoder sigmoid

activation value (near 0 or near 1). Finally, like the k-means, the

k-textures results are always different between runs.

4.2 Binary masks

All the binary masks obtained after training for

15,360 epochs are mostly filled with 0 and 1, that is, more

than 99.999% of the values, Table 2. This shows that our

model produces stable binary masks that are effectively used

as weights during the training with stochastic gradient descent.

However, there were still a few nonbinary values and they

represent a proportion ranging from 0.0000015 to 0.0004612%

of the total pixels of the masks, Table 2. As the linear increasing

part of the hard sigmoid returned by the σCNN model ranges in a

maximum interval of ±0.0001 (0.0002) on the x-values. The

percentage of expected values in this interval to be obtained by

chance from a random distribution (ranging from 0 to 1 and with

40962 values like our tensor) will be of 0.02%. Here, the observed

percentage of nonbinary values is relatively smaller than this

0.02 percent, as the max percent of non-binary values in our

study is 0.0004612%. So, the model is likely avoiding the linear

increase. It cannot learn this part of the hard sigmoid, but still,

due to the update of weights, some weights combinations in the

encoder can sometimes result by chance in a nonbinary value in

the mask. So here, we acknowledge that we still cannot impede

that a very limited number of values returned by the σCNN model

for the mask are nonbinary. In our case, for self-segmentation,

this is not so important, as even in the case of a nonbinary value

FIGURE 6
Evolution of the Feature Loss during the training of
15,360 epochs for the k considered classes, that is, from 4 to
24 and 32. The loss line stops at the best loss value for the run with
15,360 epochs and only the points with decrease in loss are
represented. Loss is given in logarithmic scale to ease visualization.

Frontiers in Environmental Science frontiersin.org10

Wagner et al. 10.3389/fenvs.2022.946729

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.946729


for a pixel a unique cluster is attributed to the pixel with the

argmax function. However, in further works which cannot have

any non-binary values, not even a very small percentage, this

might be improved by increasing the slope of the hard sigmoid

estimated by the σCNN model.

The binary masks provided by the model, for example in

Figure 7, are estimated by the model and then used to multiply

the corresponding textures that are also estimated

simultaneously. The final reconstituted image is then the

sum of all the products of the binary masks and their

corresponding textures, Figure 4. A pixel of the image can

have the value 1 in only one binary mask. The values in the

binary masks are weights of the models. Observing Figure 7, it

appears clearly that the binary mask can form a coherent spatial

patterns, that is the model can estimate the weights of the mask

and of the texture at the same time, inside the same neural

network. This shows that under certain conditiona, here in our

case the restriction of the search space to discrete search space,

the CNN is able to converge even with some weights being only

0 and 1.

4.3 Generated textures

The k textures simulated by the k-textures model and the k

colors of the cluster obtained by the k-means for k in 4, 9, and

16 are given in Figure 8. In comparison to k-means, the

k-textures gives not only simple class correspondences, but

also reveal the characteristic spatial patterns of textures. The

textures estimated by the k textures model look natural and

organic. The textures estimated for the forest, for example, are

visually close to what is observed in the real images, with

brighter crowns and a lot of shade. The grain is different

between the obtained textures showing that our texture

generator is able to simulate a variety of textures. Some

textures appear with light strides but it is still not clear if

TABLE 1 Comparison between the k-textures and the k-means models of the number of clusters found (actual k), the feature loss and the mean
absolute error (MAE). MAE was computed a posteriori between the original image and the image produced by k-means, that is, with the cluster
centers used as texture for each class. The loss of k-means for the 4-bands datasetwas computed using the loss function of the k-texturesmodel with
the observed image and the image with cluster center values for each cluster.

k k-textures k-means k-means

RGB-NIR RGB-NIR RGB-NIR + textures bands

actual_k loss mae actual_k loss mae actual_k loss mae

4 4 0.0873 0.0163 4 0.2328 0.0209 4 — 0.0395

5 5 0.0695 0.0165 5 0.2027 0.0187 5 — 0.0353

6 6 0.0757 0.0137 6 0.1851 0.0172 6 — 0.0332

7 7 0.0720 0.0136 7 0.1375 0.0164 7 — 0.0317

8 8 0.0850 0.0148 8 0.1267 0.0155 8 — 0.0305

9 9 0.0582 0.0122 9 0.1192 0.0149 9 — 0.0286

10 10 0.0773 0.0144 10 0.1138 0.0145 10 — 0.0268

11 11 0.0744 0.0132 11 0.1048 0.0139 11 — 0.0259

12 10 0.0728 0.0196 12 0.1011 0.0134 12 — 0.0262

13 13 0.0777 0.0228 13 0.0957 0.0131 13 — 0.0251

14 14 0.0596 0.0121 14 0.0890 0.0126 14 — 0.0240

15 15 0.0661 0.0114 15 0.0863 0.0123 15 — 0.0239

16 16 0.0762 0.0133 16 0.0845 0.0121 16 — 0.0231

17 17 0.0661 0.0140 — — — 17 — —

18 17 0.0683 0.0135 — — — 18 — —

19 17 0.0689 0.0151 — — — 19 — —

20 20 0.0751 0.0202 — — — 20 — —

21 21 0.0704 0.0126 — — — 21 — —

22 20 0.0705 0.0135 — — — 22 — —

23 18 0.0718 0.0191 — — — 23 — —

24 23 0.0741 0.0158 — — — 24 — —

32 29 0.0677 0.0134 — — — 32 — —

Feature Loss is the mean of individual losses. Feature loss can only be computed for the 4-bands RGB-NIR dataset. The results for k-textures were obtained on a run of 15360 epochs for each

class. The results for k-means were obtained after 10000 iterations.
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this is due to the generator like it could be with GANs (Chollet

and Allaire, 2018), or because this is actually better for the loss.

No border effects between adjacent patches were observed

when segmenting a large image, however, some light border

effects sometimes appeared in the texture patches generated by

the k-textures model.

TABLE 2 Description of the values in the binary masks (0, 1 or non-binary values) which were obtained by the k-textures model for all the k classes
presented in this work (from 2 to 24 and 32).

k Number of
0

Number of
1

Number of
non-binary

Total number percent non
binary

4 50331631 16777199 34 67108864 0.0000507

5 67108804 16777156 120 83886080 0.0001431

6 83886079 16777215 2 100663296 0.0000020

7 100663109 16777029 374 117440512 0.0003185

8 117440511 16777215 2 1,34217728 0.0000015

9 1,34217685 16777173 86 150994944 0.0000570

10 150994842 16777114 204 167772160 0.0001216

11 167772089 16777145 142 184549376 0.0000769

12 184549187 16777027 378 201326592 0.0001878

13 201326541 16777165 102 218103808 0.0000468

14 218103757 16777165 102 234881024 0.0000434

15 234880957 16777149 134 251658240 0.0000532

16 251657621 16776597 1,238 268435456 0.0004612

17 268435275 16777035 362 285212672 0.0001269

18 285212603 16777147 138 301989888 0.0000457

19 301989392 16776720 992 318767104 0.0003112

20 318766787 16776899 634 335544320 0.0001889

21 335544143 16777039 354 352321536 0.0001005

22 352321512 16777192 48 369098752 0.0000130

23 369098492 16776956 520 385875968 0.0001348

24 385875506 16776754 924 402653184 0.0002295

32 520093579 16777099 234 536870912 0.0000436

FIGURE 7
Example of binary masks obtained by the k-textures model for k = 4, 9 and 16 classes for a patch of 128 × 128 pixels extracted from the planet
4,096 × 4,096 pixels image. For k = 9 and k = 16, the patch does not contain all the clusters, it is not mandatory for a patch to contain all the clusters.
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Surprisingly, the k-textures model sorts the textures, with

apparently less difference between the nearby textures, and

with the textures of higher hue at the opposite of the texture’s

lower hue. This 1D order likely emerged from the model

architecture and was unexpected. This could be due to the

methods for producing the binary masks with σCNN, as the

attribution to a class is only determined by the value ranging

between 0 and 1 returned by the encoder. It seems that the

model loss value is lower when textures are ordered, as this

order is found for all values of k. As the encoder is a CNN, it

might produce continuous variations from one class to

another, and the ordered textures could reflect this. Here

the RGB reflectance values in the satellite image do not

show extreme variations and are relatively close (~ terrains

colors), but it could be interesting to see how the model

behaves with a more complex reflectance value

composition. Ordering color is a challenge in machine

learning and here our algorithm manages to order the

classes by textures in 1D and clustering at the same time.

As a comparison, one of the best recent machine learning

algorithms to represent color or classes on a 2D projection,

t-SNe (Van der Maaten and Hinton, 2008), is designed to

order the pixels in a 2D plane to provide a representation of

the data, but not to cluster the data.

For k-means, the obtained colors are similar to those in

the textures produced by the k-textures, Figure 8. No order

appears as the k-means is not made for this and only searches

for centroids (in 4 dimensions in our specific case). Colors

with higher and lower hues are observed in the classes

returned by the k-means, while, for the k-textures model,

the colors with the highest or lowest hue appeared mixed in

textures with other colors.

FIGURE 8
Example of the k textures simulated by the k-textures model and the colors of the cluster obtained by the k-means for k = 4, 9 and 16 classes.
The matrix of textures are filled by row, starting by the top left, in the order returned by the models. Note that, for an easy visualization, only RGB
bands are displayed but the estimated textures have 4 bands, RGB and NIR. For the k-texturesmodel of 9 classes, the forests are mostly encountered
in the cluster 8 and 9; the savanna, grassland andwater bodies are in cluster 8, 7 and 6; and clusters lower than 5 are related to pasture and urban
areas, see Table 3.
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4.4 Comparison of k-textures classes with
real-world land use classes from
mapbiomas

The k-textures show association with the real-world land

cover class from Mapbiomas, that is, most of the land cover

classes are represented by a limited number of k-textures clusters,

Table 3. As ourmodel orders the textures, it renders the table easy

to read and to determine which cluster corresponds to which

class or to which transition between land cover classes, Table 3.

For example, from the results of a k-textures model trained using

9 classes, Table 3, it can be observed that the forests are mostly in

clusters 8 and 9 of the k-textures model (93.42%). Then the

savanna, grassland, and water bodies are in clusters 8, 7, and 6,

and clusters lower than 5 are related to pasture and urban areas.

For the temporary crops, some were in the cluster of vegetation

(around cluster 7) and some in clusters without vegetation or

cultures and with bare soils (cluster 2). The land cover class

sometimes overlaps with two or three clusters, however note that

the land cover classes are made with Landsat images at 30 m

spatial resolution while the Planet images used in the k-textures

models have a spatial resolution of ~4.77 m, so some overlap is

expected. The forests are mostly found in the cluster 1 and 2 of

the k-means model (88.37%). The table of the k-means results

TABLE 3 Distribution of the clusters of k-textures and k-means by Mapbiomas landcover classes.

algorithm cluster Forest Savanna Grassland Pasture Urban Water Temporary Total

Formations Formation Area bodies Crops cluster

number
(%)

number
(%)

number
(%)

number
(%)

number
(%)

number
(%)

number
(%)

number
(%)

k-textures 1 64 (0) 0 (0) 36 (0.02) 7960 (0.07) 3213 (0.89) 0 (0) 579 (3.82) 11,852 (0.07)

k-textures 2 4619 (0.11) 2 (0.01) 2240 (1.54) 2498506 (20.69) 135449 (37.31) 947 (10.09) 5037 (33.22) 2646800 (15.78)

k-textures 3 23190 (0.56) 78 (0.47) 8522 (5.87) 4481821 (37.12) 111,581 (30.74) 861 (9.17) 1459 (9.62) 4627512 (27.58)

k-textures 4 27314 (0.66) 277 (1.67) 8590 (5.91) 1580666 (13.09) 39856 (10.98) 603 (6.43) 679 (4.48) 1657985 (9.88)

k-textures 5 32008 (0.77) 1225 (7.38) 10631 (7.32) 955682 (7.91) 22656 (6.24) 650 (6.93) 776 (5.12) 1023628 (6.1)

k-textures 6 51570 (1.24) 4038 (24.33) 20606 (14.19) 849797 (7.04) 18829 (5.19) 1428 (15.22) 1562 (10.3) 947830 (5.65)

k-textures 7 134571 (3.24) 6234 (37.57) 38014 (26.18) 898254 (7.44) 17592 (4.85) 1974 (21.03) 2919 (19.25) 1099558 (6.55)

k-textures 8 1818045 (43.78) 4,671 (28.15) 49,543 (34.11) 780256 (6.46) 13,784 (3.8) 2245 (23.92) 2153 (14.2) 2670697 (15.92)

k-textures 9 2061754 (49.64) 70 (0.42) 7046 (4.85) 21763 (0.18) 44 (0.01) 677 (7.21) 0 (0) 2091354 (12.47)

k-meansa 1 2147535 (51.71) 602 (3.63) 11069 (7.62) 100767 (0.83) 834 (0.23) 559 (5.96) 5 (0.03) 2261371 (13.48)

k-meansa 2 1522473 (36.66) 240 (1.45) 1076 (0.74) 357783 (2.96) 8526 (2.35) 19 (0.2) 297 (1.96) 1890414 (11.27)

k-meansa 3 1201 (0.03) 0 (0) 601 (0.41) 364502 (3.02) 56652 (15.61) 515 (5.49) 3520 (23.21) 426991 (2.55)

k-meansa 4 294582 (7.09) 10166 (61.26) 81550 (56.15) 917499 (7.6) 11,513 (3.17) 3806 (40.55) 4782 (31.54) 1323898 (7.89)

k-meansa 5 84152 (2.03) 184 (1.11) 2120 (1.46) 849,102 (7.03) 22710 (6.26) 259 (2.76) 524 (3.46) 959,051 (5.72)

k-meansa 6 2423 (0.06) 1 (0.01) 1068 (0.74) 1641630 (13.6) 63548 (17.51) 316 (3.37) 1833 (12.09) 1710819 (10.2)

k-meansa 7 28413 (0.68) 145 (0.87) 9122 (6.28) 2984896 (24.72) 77664 (21.39) 718 (7.65) 905 (5.97) 3101863 (18.49)

k-meansa 8 8468 (0.2) 27 (0.16) 4171 (2.87) 2900254 (24.02) 75749 (20.87) 595 (6.34) 1123 (7.41) 2990387 (17.82)

k-meansa 9 63888 (1.54) 5230 (31.52) 34451 (23.72) 1958272 (16.22) 45808 (12.62) 2598 (27.68) 2175 (14.34) 2112422 (12.59)

k-meansb 1 918203 (22.11) 3928 (23.67) 31106 (21.42) 638,913 (5.29) 10674 (2.94) 996 (10.61) 1745 (11.51) 1605565 (9.57)

k-meansb 2 847786 (20.41) 3819 (23.01) 29268 (20.15) 559426 (4.63) 10645 (2.93) 1023 (10.9) 1725 (11.38) 1453692 (8.66)

k-meansb 3 8290 (0.2) 16 (0.1) 1588 (1.09) 397406 (3.29) 90821 (25.02) 1,003 (10.69) 2541 (16.76) 501,665 (2.99)

k-meansb 4 2236533 (53.85) 4906 (29.56) 38,817 (26.73) 639799 (5.3) 12175 (3.35) 1821 (19.4) 2193 (14.46) 2936244 (17.5)

k-meansb 5 38,478 (0.93) 1831 (11.03) 17504 (12.05) 2065906 (17.11) 48594 (13.39) 985 (10.5) 1280 (8.44) 2174578 (12.96)

k-meansb 6 3664 (0.09) 8 (0.05) 1816 (1.25) 1568851 (12.99) 74,108 (20.42) 480 (5.11) 3136 (20.68) 1652063 (9.85)

k-meansb 7 12,219 (0.29) 462 (2.78) 5930 (4.08) 2399872 (19.88) 18151 (5) 1,126 (12) 441 (2.91) 2438201 (14.53)

k-meansb 8 69315 (1.67) 928 (5.59) 10,535 (7.25) 1443624 (11.96) 62326 (17.17) 1257 (13.39) 1120 (7.39) 1589105 (9.47)

k-meansb 9 18647 (0.45) 697 (4.2) 8664 (5.97) 2360908 (19.55) 35510 (9.78) 694 (7.39) 983 (6.48) 2426103 (14.46)

a k-means computed with the RGB and NIR bands and b k-means computed with the RGB and NIR bands and five texture bands
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does not bring much visual information and seems to associate

one particular color to each class, at least for the k-means

computed with RGB-NIR bands, Table 3. For the k-means

computed with RGB-NIR bands and the five texture bands,

the Mapbiomas classes appeared more mixed between the

clusters. For example, the forest class is mainly distributed in

three clusters and pasture in five clusters. In our results, Table 3,

the k-textures clusters are more unbalanced (0.07%–27.58%)

than the k-means clusters (2.55%–18.49% for the k-means on

RGB-NIR bands and 2.99%–17.5% for the k-means on RGB-NIR

and texture bands) but this could be an artifact as k-means does

not search for the same number of observations inside each

cluster, and more investigation should be made to check if our

model is able to cluster data situation not know to be easily

resolved by k-means, such as when clusters are of different sizes

and densities.

The segmentation accuracy of the forest classes is obtained by

the k-textures (union of clusters 8 and 9), by the k-means (union

of clusters 1 and 2), and by the k-means with the band images and

the five texture indices (union of cluster 1, 2 and 4) are given in

Table 4. TheMapbiomas forest mask is at 30 m spatial resolution,

consequently, it is not expected that this mask contains small

forests that can be segmented with the k-textures or k-means in

the 5 m Planet spatial resolution, and the accuracy metrics results

should be interpreted with caution. The k-means with RGB-NIR

bands shown higher performance for the precision, accuracy, F1-

score, and intersection over union metrics. The k-means with

RGB-NIR bands and the five texture bands showed a higher

performance for the recall. Finally, the k-textures model was in

the second position for all performance metrics.

4.5 Example of tropical forest self-
segmentation

In this section, the objective is to self-segment Planet satellite

image with the k-textures model to produce a highly accurate

training sample that could be used to train a supervised deep

learning model for tropical forest mapping. Just like in k-means,

the number of clusters in k-textures should be chosen manually.

Finding indices to help determine the best number of k classes for

the k-textures model will be addressed in future works. For

instance, the user has to visually check the original versus

predicted image and mask (for example Figure 9) or compare

with other data sets to determine the k-number of classes that

seems the best for the segmentation problem, such as the

Mapbiomas land cover data. Specifically, for forests, we are

searching for classification 1) with textures that reproduce the

texture of the forest, 2) without much inclusion of other clusters,

and 3) that does not have too many clusters on the pixel

representing border or transition classes. With k = 4, Figure 9,

the model included too many pixels in the cluster corresponding

to forest texture. For k = 16, the segmentation does not seem to

improve much when looking at the simulated image, in

comparison to k = 9, and it seems there are too many clusters

inside the forest. However, it can be also noted that the model

finds a good texture for the forest and keep this solution with one

texture while it had a lot of available classes. For forest

segmentation, it can be observed that a k-textures model with

k = 9 clusters already provides a good texture representation of

TABLE 4 Metrics of segmentation accuracy computed between the Mapbiomas forest class (reference) and the forest classes obtained with the
k-textures and the k-means.

Precision recall accuracy F1-score intersection over
union (IOU)

k-textures (RGB-NIR) 0.815 0.934 0.931 0.870 0.771

k-means (RGB-NIR) 0.884 0.884 0.942 0.884 0.792

k-means (RGB-NIR+ 5 texture bands) 0.668 0.964 0.872 0.789 0.651

FIGURE 9
Example of the simulated image and clusters obtained with
the k-textures algorithm for a number of classes k = 4, 9 and 16.
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FIGURE 10
Example of self-segmentation of a Planet image using the k-textures model and k = 9 classes. Original Planet image (A), for visualization only
RGB bands are used. Forest mask produced with k-textures self-segmentation (B) where clusters 8 and 9 have been interpreted by the user to be
forest and other cluster to represent other land used. Planet image with colors channels set to [255,255,255] for the pixels in the forest mask (C).
Planet image with colors channels set to [255,255,255] for the pixels outside the forest mask (D). Simulated Planet image from the k-textures
model with colors channels set to [255,255,255] for the pixels in the forest mask (E) and Simulated Planet image from the k-textures model with
colors channels set to [255,255,255] for the pixels outside the forest mask (F).
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the forest, Figure 9. Furthermore, a total of 93.42% of the pixels

classified as forest by Mapbiomas are in the k-textures clusters

8 and 9, Table 3. Consequently, these two clusters, 8 and 9, were

merged and used to make the forest mask, Figure 10B.

The forest mask resulting from the self-segmentation,

Figure 10B, can be used directly to train a supervised model,

such as a U-net model Ronneberger et al. (2015); Wagner et al.

(2019). The first advantage is that it gives a class per pixel,

consequently, it might bemore accurate spatially than amanually

drawn sample, which generally consists of manual-made

polygons that are therefore rasterized which led to large

inaccuracy on the pixels at the border of classes. The manual

equivalent of our model would be to determine the belonging of a

class for each pixel individually. It also has the advantages of the

CNNs: the segmentations are fast and consistent (Kattenhorns;

Kattenborn et al., 2021), and the pixel are classified using a large

number of features, not only the values in the color channels. For

example, the original and the simulated images are compared

with the 131,072 features from the second to the last layer of the

VGG16 model (block5_conv3 of size 16 × 16 × 512) and the

131,072 values of the central layer before the decoder of our

custom VAE (size 16 × 16 × 512). These features are extracted at

the end of the encoder for both VGG16 and the VAEmodel, and,

consequently, they represent a high level of abstraction. To

manually produce the mask given in Figure 10B would also be

extremely time-consuming due to a large number of forest

patches and likely not as accurate because of the large number

of features used in the model which humans are unlikely to

capture consistently. The main limitation of the k-textures is that

it cannot consider variations that comes from atmospheric

condition and shade and it can work properly only if there

are little to no variation in illumination inside a class. The model

does not account for the variation of texture between image

patches, for example, the same texture of 128 × 128 is used for all

the patches with forested pixels. To improve this in the future, the

model could be adapted to account for the variability of the

atmospheric condition or shade, for example, the simulated

image could be the sum of the texture × classes added or

multiplied to a layer of atmospheric/illumination.

Comparing the colors and textures of the original image,

Figures 10C, D, and the simulated image, Figures 10E, F, it

can be observed that the model enables to simulate colors and

textures that appear visually, to some extent, close to the

original image. Note that this is a sub-image and the texture

of the simulated forest is the same used in the entire image.

For the non-forest classes, the model tends to ignore the

roads which are of higher hue in the original image. The

colors and pattern of roads are smaller, only a few pixels, in

relation to the size of the texture patch (128 × 128), so this

could be why the model cannot reproduce this spatial

pattern. For the forest, the simulated texture is

comparable to the real forest textures, with shade and

some brighter pixels that are the crowns of the trees. In

the 10f, the pattern of the (128 × 128) texture patches can be

seen. For the production of masks for segmentation, even the

k-textures algorithm can produce extremely accurate

segmentations, we recommend that the user check visually

and correct the mask when necessary. For example, for

forests, the model is not expected to account for large

variations of features, for example, pink or yellow

flowering, clouds, and dark shade.

5 Conclusion

In this work, we present the k-textures algorithm, a self-

supervised algorithm that provides a per pixel self-

segmentation of an image according to k number of classes.

The model searches for binary masks using gradient descent,

that is, the binary masks are generated and used as weights

inside the algorithm. Note that some weight combinations in

the encoder can result by chance in a non-binary value in the

mask due to the update of weights, however in proportion

below 0.0005%. The model remains continuous and fully

differentiable by using methods involving the hard sigmoid

function and Gaussian noise. To our knowledge, this is the first-

time binary masks are produced and used as weights inside a

classical CNN to produce the classes. In contrast to the current

clustering method using deep learning that all belong to soft

clustering, our model returns hard clusters: each pixel has only

one class. These binary masks enable us to generate a texture

per class inside the k-textures architecture. Our model is better

than the k-means algorithm for self-segmentation because 1) it

resolves the same problem, that is, hard clustering of an image

in k classes but without assuming a particular distribution of the

values inside the clusters and 2) it uses the capacity of the

CNNs, mainly different level of abstraction and spatial context.

The k-textures model generates complex textures for each class

while the k-means relies on individual pixel values in the color’s

channels, and/or more complex features that can contain spatial

information, such as textural indices, but that has to be

designed manually. The k-textures produce textures similar

to the original image. Additionally, the k-textures model sorts

the textures along one dimension based on their characteristics.

This is likely because of the architecture of the σCNN model used

to generate the binary masks and because it helps to decrease

the loss. Finally, the hard clustering classes returned by our

model can be used for self-segmentation in order to produce

training sample of objects with particular texture, such as

shown for dense tropical forest cover in a Planet image.
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