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Rapid urbanization and economic development have led the diversified food production
and consumption. In this context, as a highly efficient and intensive cultivated land use
form, Greenhouse-led cultivated land (GCL) has continuously increased in recent decades
worldwide. Previously works have documented the irrational expansion of GCL in
challenging the ecological environment and sustainable agricultural development.
However, these studies either have been short-term and point-based studies or have
not revealed the long-term causes, process and patterns in a large-scale. In this study,
long-term annual remote sensing-based and statistical data were used to investigate the
spatiotemporal dynamics of GCL and its drivers in Shandong province, China from 1989 to
2018. The results showed that: 1) GCL in Shandong was toward continuous clustering
dominated bymedium-low andmedium densities, showing the same trend as the increase
of its total area; 2) GCL with a cumulative duration of more than 15 years and a demolition
frequency of less than 0.2 were mainly distributed in the industrial clustering regions and
roughly formed a circular expansion pattern around the central mountainous area with the
most expansion period appeared in the mid-2010’s; 3) Budget expenditure for rural
development, local retail sales and average earnings of local farmers were the most
important local driving factors of the GCL expansion in Shandong. 4) The competition of
external vegetable supply and the consumption demand from Beijing were the main
external driving forces of the expansion of GCL in Shandong. These findings can enhance
the comprehensive understanding of typical component of “Human-Nature” interaction
and support the sustainable development of regional agriculture.
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1 INTRODUCTION

With rising need for a balanced food supply within a year and the advancement of agricultural
technology in recent decades, the total area of protected agriculture has continuously increased at a
rate of close to 20% per year around the world (Jiménez-Lao et al., 2020). In this context, greenhouse-
led cultivated land (GCL) has been widely utilized worldwide, with an estimated area of 3.02 million
hectares in 2016 (Briassoulis et al., 2016), offering a micro-scale environment to counteract
unfavorable natural conditions for agricultural output. Although GCL has revolutionized
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extensive farming to intensive farming, changed the form of
seasonal food supply, and improved the socio-economic well-
being of small-scale farmers (Baudoin and Von Zabeltitz, 2002;
González-Yebra et al., 2018; Shi et al., 2022), its rapid global
expansion has also posed a number of ecological threats to the
local environment, such as soil continuous crop obstacle (Wen-
shou, 2004), soil biodiversity degradation (Zhang et al., 2015),
irrational fertilizer use (Min et al., 2012) or plastic waste (Sica and
Picuno, 2007). However, as a typical agricultural component that
people interact with natural systems (Liu et al., 2007; Zou et al.,
2022), the long-term causes, processes and patterns of GCL still
unclear. It is critical to investigate the spatiotemporal dynamics of
GCL and its drivers over a long-term period to comprehend the
complexity of the typical component of “Human-Nature”
interaction and support the sustainable development of
agriculture and ecosystem.

According to the results of the Seventh National Census,
China’s urban population reached 930 million in 2021, up
729 million since the “reform and opening-up” policy was
implemented in 1978. In this context, due to government
policy support and urban food-consumption demand, GCL in
China have rapidly increased from mid-1980, and reached the
world’s greatest coverage of 1.32 million hectares in 2016. The
rapid expansion of GCL in China not only brought some of the
above-mentioned environmental issues, but also posed a threat to
China’s strictest policy of protecting cultivated land and ensuring
food security (Liu et al., 2020), as the GCL are always disorderly
developed by the autonomous behavior of local farmers in the
early stages (Ge et al., 2019), reducing the possibility of restoring
grain-planting and the rational rural land use (He and Ma, 2007;
Su et al., 2019). Shandong province began to promote GCL for the
growing of vegetables in the early 1990s, particularly in
Shouguang (a county in Shandong), which is known as
“China’s cradle of ‘Winter-Warm’ greenhouse” (Ma et al.,
2021). Exploring the spatiotemporal dynamics of GCL and its
drivers in Shandong can provide a clear historical picture of the
China’s remarkable GCL expansion as well as a scientific
reference for other protected agriculture developing areas.

Remote sensing technology has been proved its advantages in
spatio-temporal explicit monitoring for GCL on different scales
when compared to traditional statistics (Jiménez-Lao et al., 2020).
Multiple sources of satellite imagery have introduced for GCL
mapping, including Landsat TM/ETM+/OLI (Levin et al., 2007;
Chaofan et al., 2016), Sentinel-2 MSI (Novelli et al., 2016; Balcik
et al., 2019), GF-1/2 (Gao et al., 2018; Li et al., 2020), QuickBird
(Agüera et al., 2008; Agüera and Liu, 2009; Carvajal et al., 2010) or
WorldView-2 (Koc-San, 2013; Aguilar et al., 2014), etc.
Meanwhile, a number of unsupervised methods based on the
novel AG-extraction indices, such as the vegetable land extraction
index (VI) (Zhao et al., 2004), moment distance index (MDI)
(Aguilar et al., 2016), plastic-mulched landcover index (PMLI)
(Lu et al., 2014), plastic greenhouses index (PGI) (Yang et al.,
2017) and greenhouses detection index (GDI) (González-Yebra
et al., 2018), have been proposed to distinguish GCL from other
land use types. In order to improve the robustness of such
unsupervised methods, previous studies also have adopted the
supervised approaches, such as support vector machine (SVM)

(Bektas Balcik et al., 2020), random forest (RF) (Lin et al., 2021),
artificial neural network (ANN) (Carvajal et al., 2006) and
convolutional neural network (CNN) (Sun et al., 2021), to
extract the spatial distribution of GCL. Despite the fact that all
of these researches performed well and produced a number of
accurate GCL maps in various locations and years, only a few
studies used the resulting GCL maps to detect spatio-temporal
dynamics and driving forces of GCL (Arcidiacono and Porto,
2010; Picuno et al., 2011; Yu et al., 2017; Ou et al., 2020). To our
knowledge, a few of these studies have revealed the annual
spatiotemporal dynamics of GCL and its drivers over a large-
scale and long-term period, which failed to provide a
comprehensive and macroscale description of GCL for
policymakers.

In this paper, in order to address the aforementioned research
gaps, a comprehensive analysis framework that integrated spatial
information entropy, kernel density estimation, time-series
segmentation sliding algorithm, annual expansion index,
geographic detector and granger causality test, was proposed
to investigate the spatiotemporal dynamics of GCL and its
drivers in Shandong from 1989 to 2018 using long-term
annual remote sensing-based and statistical data. The main
contributions of this paper were as follows:

• The spatio-temporal dynamics of GCL, including spatial
clustering, temporal continuity and expansion trajectory in
Shandong were quantified;

• The local driving mechanism between GCL expansion and
the change of local economic scale, population growth,
transportation conditions, rural infrastructure,
consumption demand, farmers’ willingness as well as
government support in Shandong were detected;

• The external driving mechanism between GCL expansion
and the change of the supply and demand of vegetables in
external markets in Shandong were clarified.

2 MATERIALS AND METHODS

2.1 Study Area
Shandong province is located in the eastern coastal region of
China (34°22’~38°24’N, 114°47’~122°42’E), with a total area of
approximate 157,900 km2 (Figure 1). The inland area of
Shandong borders the provinces of Tianjin, Hebei, Henan,
Anhui, and Jiangsu from north to south and the coastal area
of Shandong is surrounded by the Yellow Sea and the Bohai Sea.
Its landform can be characterized as a mountain area dominating
the south-central part, a plain area dominating the southwest and
northwest, and a hill area dominating the east. The study area
belongs to a warm temperate monsoon climate zone, with the
annual average temperature, ranging from 11 to 14°C and the
annual average precipitation, ranging from 550 to 950 mm. Due
to such geographical conditions, Shandong has become a major
agricultural production province in China, with a cultivated land
area of about 7.59 million hectares. In 2019, the total agricultural
output value of the province was 547.65 billion yuan and the grain
output was 53.57 million tons, ranking second in the country.
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Furthermore, Shandong province is not only a major grain
producing province, but also an important cash crop
producing province in China, with a highest export volume of
agricultural products for decades. Particularly in the vegetable-
producing industry, Shandong ranked first in the national
vegetable supply provinces, with an output of 81.92 million
tons, and the planting area of protected vegetables accounting
for approximately one-fourth of the planting area of protected
vegetables in China.

2.2 Data Sources and Processing
A sequential and fine-resolution GCL mapping dataset is the
fundamental information for exploring annual spatiotemporal
dynamics of GCL and its driving forces. In this study, we used a
series of Landsat-derived maps of GCL in Shandong province,
China during 1989–2018 with annual temporal resolution and
30 m spatial resolution (Ou et al., 2021). This dataset was
developed based on 8,450 Landsat images on the Google Earth
Engine (GEE) and an annual remote sensing mapping method of
GCL oriented to the provincial area and long-term period, which
was the first dataset with accurate and long-term GCL dynamic
maps in China. The average User’s Accuracy, Producer’s
Accuracy and F1-score of GCL over 30 years were 96.56%,
86.64%, and 0.911, respectively. This dataset was consistent
and comparable over time, which benefits from the same
mapping window, feature optimization as well as temporal

consistency correction, could serve as a suitable dataset for
more comprehensive characterization of GCL expansion.

In addition, a number of variables were selected for the driven
mechanism analysis (for details, Supplementary Material S1).
The physical aspect included 7 driving variables: elevation (AVE),
slope (SLP), soil type (ST), distance to rivers (DRV), distance to
rural settlements (DR), distance to town centers (DT) and
distance to urban centers (DU), which were used to analyze
their driving effect on GCL expansion in terms of three relatively
stable aspect over a long time period: topography, soil and
location. The socioeconomic aspect included 16 driving
variables: primary industry added value (VP), secondary
industry added value (VS), tertiary industry added value (VT),
rural population (RPOP), urban population (UPOP), road
mileage (RO), motorway mileage (MO), effective irrigation
area (EI), agricultural machinery (AM), rural electricity
consumption (REC), local retail sales (LRS), average earning of
local famers (AE), budget expenditure for rural development
(BER), vegetable production in other provinces (VPO), total
value of agricultural exports (VAE) and consumption demand
of vegetable in adjacent metropolises (CDM), which were used to
analyze their driving effect on GCL expansion in terms of seven
relatively dynamic aspect over a long time period: economic scale,
population growth, transportation conditions, rural
infrastructure, consumer demand, farmers’ willingness and
government support.

FIGURE 1 | Study area (modified it from Ou et al., 2021).
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2.3 Spatiotemporal Dynamics Analysis
2.3.1 Spatial Information Entropy
The spatial information entropy has been widely used in studies
such as geography, ecology and life sciences to describe or explain
the heterogeneity of data or the distribution of “things” in space
due to its ability to characterize the amount of information,
uncertainty, heterogeneity and other concepts, in this study we
applied it to quantify the global change of GCL clustering in
Shandong over the past 30 years, which can be defined as
(Leibovici et al., 2014):

H(X) � ∑I
i�1
p(xi)log 1

p(xi)
where X is the discrete variable containing the corresponding
value xi (in this study is divided into x0 and x1, representing other
land use types and GCL, respectively); p(xi) is the probability
mass function (PMF) of X, and its result is based on PMF
quantifying the average information of X. The lower Shannon
information entropy value indicates that the spatial distribution
of GCL is more clustered, and the higher Shannon information
entropy value indicates that the spatial distribution of GCL is
more discrete.

2.3.2 Kernel Density Estimation
In order to further reflect the spatial heterogeneity of GCL
clustering, the density of GCL in each year was classified
based on the kernel density estimation (KDE). KDE is a non-
parametric test method used to estimate unknown density
functions, which has been widely used in natural disasters,
public health, industrial spatial layout hotspot analysis and
detection, etc. Its calculation formula is as follows (Cai et al.,
2013):

f̂ (x, y) � 3

nh2π
∑n
i�1
(1 − (x − xi)2 + (y − yi)2

h2 )
2

where f̂(x, y) is the kernel density of GCL in the grid to be
estimated, h is the kernel density estimation bandwidth (set to a
30-year average bandwidth of 42,926 m that guaranted the
comparability of each KDE result over the past 30 years), xi,
yi are the coordinates of the grid centroids to be estimated, n is
the number of all sample points within the bandwidth, and x, y
are the coordinates of the central sample points within the
bandwidth.

2.3.3 Time-Series Segmentation and Sliding Algorithm
One of the significant advantages of remote sensing-based data is
the ability to continuously observe the same area and thus obtain
continuous information (Maus et al., 2016). Therefore, we
proposed a time-series segmentation and sliding algorithm
(TSS) based on the annual remote sensing mapping products
of GCL, aiming to analyze the spatiotemporal dynamics of GCL
in cumulative duration, demolition frequency and expansion
trajectory.

As shown in Figure 2, the annual GCL maps were stacked to
obtain the classification labels of each pixel from 1989 to 2018,
and the temporal label sequences that need to be analyzed were
extracted based on the temporal segmentation window N. For the
cumulative duration analysis, the cumulative duration of GCL for
each pixel at that period can be obtained by accumulating all
labels of the segmented sequence. For the demolition frequency
analysis, the time sliding window n was further set to 2, and the
frequency of “01” or “10” combinations at that period can be
obtained by sliding backward from the starting year in steps of 1.
For the expansion trajectory analysis, we set the time sliding
window n to 1, slide backward from the starting year in steps of 1,
and assign the year information to each pixel when “1” appears
for the first time.

2.3.4 Annual Expansion Index
Regarding the expansion intensity, previous studies have focused
on urban expansion as represented by built-up or impervious

FIGURE 2 | The Time-series segmentation and sliding algorithm (TSS).
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areas. However, the major difference between GCL and urban is
that urban expansion is generally considered to be irreversible (Li
et al., 2015). In terms of GCL, due to the fluctuation of demolition
and construction, the information between each year would be
lost if the urban expansion intensity calculation rule is followed.
Therefore, we proposed an annual expansion index (AEI) based
on annual growth to reflect the true expansion intensity over a
certain period, which was calculated as follows:

AEI � ∑n
i�1GCLi

n

whereGCLi represents the annual GCL growth from year i to year
i + 1 in the specific grid, and n is the study period.

2.4 Driven Mechanism Analysis
2.4.1 Geodetector
Spatially stratified heterogeneity is a universal characteristic of
geographic data, and for geographic data in different layers, if
each layer of independent variables has an influence on the
dependent variable, its spatial distribution should be similar
(Wang et al., 2010). Geodetector is such a statistical method
for detecting the spatial heterogeneity and revealing the driving
factors behind it based on this assumption (Wang et al., 2016). In
this study, we applied the factor detection in Geodetector to
explain the local driven mechanism between GCL expansion and
the selected variables, which is calculated as follows:

q � 1 − ∑L
h�1Nhσ2

h

Nσ2

where L is the total number of stratifications of the dependent
variable Y or the independent variables X, Nh and N are the
number of units in stratum h and the whole region, respectively,
σ2h and σ

2 are the variance of the dependent variable Y in stratum
h and the whole region, respectively. q ∈ [0, 1], and the closer the
value of q is to 1, the stronger explanatory power of this
independent variable for the spatial heterogeneity of the
dependent variable (Zhang et al., 2019).

2.4.2 Granger Causality Test
Granger causality test is to determine whether a time-series
change in one variable is caused by a time-series change in
another variable (Freeman, 1983). In this study, we first used
the Augmented Dickey-Fuller test (ADF) to test whether the
time-series variables were stationary, which is based on the
following unit root tests (Krämer, 1998):

ΔXt � α + βt + δXt−1 +∑m
i�1
βiΔXt−i + ϵt

where the ADF tests whether the series xt rejects the original
hypothesis by judging the estimated value of δ. When δ is less
than the critical value of the correlation test, the series Xt is a
stationary series, otherwise, the series Xt is a non-stationary
series, and a further differential process is required to judge
the stationarity of the differenced series.

For variables that are still non-stationary and belong to the same-
order of single integer after differencing, further cointegration test

based on the Engle-Granger method is required to determine
whether there is a long-term stable relationship between the
variables, which is conduct by establishing the least squares
regression equation as following (Lee and Lee, 2015):

Yt � b0 + b1Xt + εt

when ε is less than the critical value of the correlation test, the
residual series εt remains a cointegration relationship between
variables, otherwise, there is no cointegration relationship
between variables in the residual series εt.

After testing the stationarity of the variables and the
cointegration relationship between the variables, Granger
causality tests were carried out on the time-series variables
that were stationary and had cointegration relationships, and
the following two regression models were estimated:

Yt � β0 +∑m
i�1
βiΔYt−i +∑l

i�1
αiXt−i + μt

Xt � δ0 +∑m
i�1
δiΔXt−i +∑l

i�1
λiY t−i + νt

where the original hypothesis is that Yt is not the Granger cause
ofXt andXt is not the Granger cause of Yt, and the F-test statistic
is performed with the sum of squares of residual μt and the sum of
squares of residual ]t, and if the F statistic is higher than the
critical value corresponding to the significance level, the original
hypothesis is rejected, which means that there is Granger
causality.

3 RESULTS

3.1 Spatiotemporal Dynamics of
Greenhouse-Led Cultivated Land
3.1.1 Spatial Clustering
The spatial information entropy was calculated for all years using
the annual maps of GCL in Shandong (Figure 3A). The unit area
entropy value of GCL exhibited a decreasing trend in general,
with the maximum value appearing in 1990 and the minimum
value appearing in 2017, which can be divided into three stages: 1)
from 1989 to 1996, the average unit area entropy value was 0.044;
2) from 1996 to 2005, the average unit area entropy value was
0.036; 3) from 2005 to 2018, the average unit area entropy value
was 0.031. It indicated that the spatial clustering of GCL in
Shandong over past 30 years was gradually increasing in
general, where the highest level of spatial clustering was in
2017 and the lowest was in 1990. Combined with the changes
in its total area, it can be seen that entropy value per unit area
decreased continuously with the expansion of greenhouses in
general, which means that the spatial clustering has a positive
synergistic relationship with the change of total area of GCL.

We further explored the spatial heterogeneity of GCL
clustering over 30 years by using the KDE method to partition
the spatial distribution density (Figure 3B). The percentage of
low density zones decreased from 96.82% in 1989 to 66.38% in
2018, with a decrease of 30.44% and an average annual decrease of
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1.05%; the medium-low density zones increased from 0.54% in
1989 to 23.51% in 2018, with an increase of 22.97% and an
average annual increase of 0.79%; the medium density zones
increased from 0.13% in 1995 to 7.80% in 2018, with an increase
of 7.67% and an average annual increase of 0.33%; the medium-
high density zones increased from 0.30% in 1998 to 1.36% in
2018, with an increase of 1.06% and an average annual increase of
0.05%; and the high density zones increased from 0.43% in
2001 to 0.95% in 2018, with an increase of 0.47% and an
average annual increase of 0.03%. It indicated that despite the
GCL expansion in Shandong was toward continuous clustering,
but mainly dominated by the medium-low andmedium densities.

3.1.2 Temporal Continuity
Based on the TSS algorithm, we calculated the cumulative
duration of GCL over the past 30 years. As shown in Figure 4,
GCL with the cumulative duration of 1 year accounted for 55.32%
and showed a scattered distribution pattern mainly around the
central mountainous area, and when the cumulative duration
reached more than 2 years, its percentage rapidly decreased to less
than 18.03%. And it can be found that the areas where the
cumulative duration of GCL was more than 15 years were
mainly distributed in northwestern Weifang, southwestern
Linyi and western of Liaocheng, showing a triangular
distribution pattern, which is similar to the pattern of the

FIGURE 3 | The spatial clustering patterns of GCL: (A) the spatial information entropy, (B) the spatial distribution density.

FIGURE 4 | The cumulative duration patterns of GCL: (A) enlarge area A, (B) enlarge area B, and (C) enlarge area C.
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spatial clustering, indicating that the higher level of spatial
clustering can extend the cumulative duration of GCL. In
addition, it can be seen from the detail enlargements in
Figures 4A–C that there was a certain spatial continuity in
the extension of the cumulative duration.

Then the demolition frequency of GCL over the past 30 years
was also calculated based on the TSS algorithm. As shown in
Figure 5, the demolition frequencies of GCL in the range of
0.8~1.0 accounted for 60.65% during the 30-year period, and
showed a scattered distribution pattern mainly around the central
mountainous area. The demolition frequencies in the range of
0.6~0.8–0.4~0.6 accounted for about 13%, and when the
demolition frequency dropped to 0.4, its percentage decreased
rapidly to below 12.33%. At the same time, it can be found that
the areas with demolition frequency below 0.2 were mainly
distributed in northwestern Weifang, southwestern Linyi and
western Liaocheng, which is similar to the patterns of the spatial
clustering as well as the cumulative duration, indicating that the
higher level of spatial clustering can not only ensure the duration
but also the continuity of GCL. In addition, from the detailed
enlarged Figures 5A–C, it can be seen that there is a certain
continuity in the change of demolition frequency, in which the
area with low demolition frequency tends to form the area with
relatively low demolition frequency around it.

3.1.3 Expansion Trajectory
Based on the TSS algorithm, we also identified the year in which
GCL first appeared in Shandong province over the past 30 years.

As shown in Figure 6, the expansion trajectory of GCL roughly
formed a circular expansion pattern around the central
mountainous area, among which the expansion trajectories
were more disorderly in Dezhou, Jinan, Binzhou and
Dongying, and more orderly in Weifang, Liaocheng, Linyi,
Zaozhuang and Jining. Combined with its spatial clustering
pattern, it can be seen that the expansion trajectories were
more orderly in the GCL concentration areas. In terms of each
period, in period 2004~2008 and period 2014~2018 accounted
for the most percentage of GCL expansion with 25.18% and
20.62%, respectively, followed by period 1999~2003 (18.92%) and
period 2009~2013 (18.40%), and the least was period 1989~1993
(7.22%) and period 1994~1998 (9.67%). In addition, from the
detail enlarged Figures 6A–C, in northwestern Weifang,
southwestern Linyi and western Liaocheng showed an obvious
pattern of circle outward expansion trajectories.

We further calculated the GCL expansion intensity in the
above-mentioned periods at the 1 km grid scale, and classified it
into five types: slow expansion, low-speed expansion, medium-
speed expansion, high-speed expansion, and rapid expansion
based on the natural break method (De Smith et al., 2007). As
shown in Figure 7, the areas with rapid expansion intensity were
mainly located in the northwestern plains represented by
Weifang in period 1989~1999 and continued to expand in
period 1999~2004, the southern plains represented by Linyi
began to appear in the rapid expansion intensity in period
1999~2004 as well. In period 2004~2014, the areas with rapid
expansion intensity shrank to the plain areas of northwestern and

FIGURE 5 | The demolition frequency patterns of GCL: (A) enlarge area A, (B) enlarge area B, and (C) enlarge area C.
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FIGURE 6 | The expansion trajectory patterns of GCL: (A) enlarge area A, (B) enlarge area B, and (C) enlarge area C.

FIGURE 7 | The expansion intensity patterns of GCL at different periods: (A) period 1989–1994, (B) period 1994–1999, (C) period 1999–2004, (D) period
2004–2009, (E) period 2009–2014, (F) period 2014–2018.
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southern Shandong, and appeared in the plain areas represented
by Liaocheng in the west. After that, the new areas with rapid
expansion intensity appeared in the southeastern of Weifang and
the junction of Jining and Heze from 2014 to 2018.

3.2 Driven Mechanisms of Greenhouse-Led
Cultivated Land
3.2.1 Local Driven Mechanism
In order to reveal the differences in the local driven mechanism of
GCL at different periods, we first divided the past 30 years into
three different periods based on the annual change rate (ACR) of
the total area of GCL, which were the stable period (1989~1996,
with an ACR of −2.28 kha/year), the growth period (1997~2005,
with an ACR of 23.09 kha/year) and the fluctuating period
(2006~2018, with an ACR of 14.03 kha/year), respectively.
Meanwhile, the ACR of the selected local dynamic variables
were calculated and identified as “ACR_XX” within each
period. For those local stable variables that vary little over
time, were also quantified based on factor detection at
different periods.

Regarding the results of factor detection for the local
dynamic variables in each period (Figure 8A), the top three
q-values were ACR_BER (0.1164), ACR_EI (0.1153) and
ACR_AE (0.1055) in the stable period, ACR_LRS (0.0389),
ACR_RO (0.0386) and ACR_AM (0.0354) in the growth
period, and ACR_AE (0.0365), ACR_AM (0.0328) as well as
ACR_BER (0.0316) in the fluctuating period. It indicated that
1) budget expenditure for rural development reflecting
government support and average earning of local famers
reflecting farmers’ willingness were both the major driving
factors for farmers to promote GCL in the stable as well as the
fluctuating period, 2) effective irrigated area reflecting
agricultural production conditions only played a major
driving role in the stable period, 3) local retail sales
reflecting local consumer demand and road mileage
reflecting transportation conditions played a key driving
role in the growth period.

Regarding the results of factor detection for the local stable
variables in each period (Figure 8B), the top three q-values

were ST (0.0410), AVE (0.0258) and RIV (0.0073) in the stable
period, AVE (0.0147), ST (0.0093) and DU (0.0040) in the
growth period, and AVE (0.0108), RIV (0.0069) as well as ST
(0.0410) in the fluctuating period. It indicated that 1) elevation
and soil type were always the main driving force for GCL
expansion in all local stable variables over time, 2) the driving
force of the distance to rivers exhibited a significant
performance in both the stable and fluctuating periods
among the location aspect, 3) compared with elevation, the
driving force of slope showed an insignificant performance in
all periods.

3.2.2 External Driven Mechanism
In order to reveal the driven mechanism of the supply and
demand of vegetables in external markets on GCL expansion
in Shandong, the following target and explanatory time-series
were selected: total area of GCL in Shandong province (Y);
vegetable production in Guangxi province (X1), Hainan
province (X2), Sichuan province (X3), Hunan province (X4),
Hubei province (X5), Guangdong province (X6), Jiangsu
province (X7); Total value of agricultural exports in Shandong
province (X8); consumption demand of vegetable in Beijing (X9)
and Shanghai (X10). To eliminate the effects caused by
heteroskedasticity of each time-series, which have been treated
with logarithm and denoted as “lnXn”.

As shown in Supplementary Material S2, the ADF values of
Y, X3, X4, and X7 in the original series were greater than all
critical values, indicating that these four original series were
non-stationary. The ADF values of X1, X2, X5, and X6 in the
original series were less than the critical values at 1% or 5%
significance level, indicating that these four original series were
stationary. The results of further differencing of each series
showed that series X2 was stationary after the second-order
differencing and the rest series were stationary after the first-
order differencing, which means that the target series Y and
the explanatory series X1, X3, X4, X5, X6, and X7 belong to the
first-order of single integer after differencing, which satisfied
the premise of the cointegration test, while the target series Y
and the explanatory series X2 belong to the second-order of
single integer after differencing, which also satisfied the

FIGURE 8 | The local driven mechanism of GCL at different periods: (A) factor detection for the local dynamic variables, (B) factor detection for the local stable
variables.
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premise of the cointegration test. Further based on the Engle-
Granger method, the target series was modeled with each
explanatory series to determine whether there was a
cointegration relationship between them. As shown in
Supplementary Material S3, the ADF test statistics between
the target series and each explanatory series were all less than
the critical values at all significance levels, indicating that there
was a cointegration relationship between the target series and
each explanatory series, and the Granger causality test between
them can be further analyzed.

Therefore, the target series after differencing was selected
for Granger causality tests with each explanatory series after
the same-order differencing at lag 1, lag 3, and lag 5
(Supplementary Material S4). From the perspective of the
supply of vegetables in the external markets, vegetable
production change in Guangxi, Hainan, Hunan, and Hubei
province were a one-way Granger causality of the development
of GCL in Shandong province, vegetable production change in
Sichuan province was a two-way Granger causality of the
development of GCL in Shandong province, and no
Granger causality between vegetable production change in
Guangdong province and the development of GCL in
Shandong. From the perspective of the consumption
demand of vegetable in the external markets, vegetable
consumption in Beijing was a one-way Granger causality of
the development of GCL in Shandong, and no Granger
causality between both vegetable consumption in Shanghai
as well as abroad and the development of GCL in Shandong.

4 DISCUSSION

4.1 Significance of Greenhouse-Led
Cultivated Land Dynamics in Shandong
Over the Past 30 years
Our study revealed that GCL in Shandong was widespread over the
past 30 years from 1989 to 2018, involving a total expanded area of
353 kha. In terms of spatial clustering of GCL, the entropy value per
unit area of GCL decreased from 0.043 to 0.029 and the spatial
distribution of GCL clustering was mainly medium-low and
medium densities, which means that despite the GCL expansion
in Shandong over the past 30 years was toward continuous
clustering, the industrial clustering effect was not evident from
the macro level. In terms of temporal continuity of GCL, more
than half of GCL with a cumulative duration was 1 year only and
more than 60% of GCL with a demolition frequency in range of
0.8~1.0, which means that GCL in most region of Shandong lacked
stability except a few industrial clustering regions. In terms of
expansion trajectory of GCL, the expansion trajectory of GCL
roughly formed a circular expansion pattern around the central
mountainous area over the past 30 years and the most expansion
period appeared in the mid-2010’s, which means that the
development of GCL has shown an obvious spatiotemporal
heterogeneity in Shandong over the past 30 years. These findings
provided a deeper understanding in spatiotemporal dynamics of
GCL over a large-scale and long-term period.

4.2 Drivers of Greenhouse-Led Cultivated
Land Expansion in Shandong Over the Past
30 years
By combining a number of variables involving physical and
socioeconomic aspects with the ACR of the total area of GCL,
we further explored the local and external driven mechanisms
behind rapid GCL expansion in Shandong over the past
30 years. In terms of local driven mechanism, the change of
government support and farmers’ willingness showed the
significant drive forces in both stable and fluctuating period
of GCL, the change of agricultural production conditions
played a major driving role in the stable period of GCL,
and the change of local consumer demand as well as
transportation conditions were the dominate driven
variables in the growth period of GCL, which means the
local driven mechanism behind GCL expansion varied in
each period and an effective regulation of its expansion
needs to consider the differences of each period. In terms of
external driven mechanism, vegetable production change in
four provinces showed a great influence on the expansion of
GCL in Shandong, the consumption demand of vegetable in
Beijing and the expansion of GCL in Shandong were mutually
driven, and the consumption demand of vegetable in Shanghai
as well as aboard had no significant impact on the expansion of
GCL in Shandong, which indicated that the competition of
external vegetable supply and the consumption demand from
nearby metropolises were the main external driving factor of
the expansion of GCL in Shandong over the past 30 years.

4.3 Limitations and Future Works
Our results provided a comprehensive and macroscale
description of GCL expansion in Shandong province, China
over the past 30 years and indicated that the long-term causes,
processes and patterns of GCL varied in each period as well as
different regions. However, some limitations are worth noting.
For instance, we mainly analyzed the spatiotemporal dynamics
and driven mechanisms in Shandong province, which is the
earliest and largest province in China to promote GCL,
considering that GCL has been widely popularized in China
and there are differences in the pattern of GCL expansion
between in other provinces and Shandong, we will expand the
quantitative analysis of the spatiotemporal dynamics and driven
mechanisms of GCL at national scale in the follow-up study. In
addition, the analysis of driven mechanisms in this study was
partially limited by the availability of data, and the micro level
information such as farmers’ decision-making, terms of trade of
GCL products and government subsidy policies were not taken
into account. In the future, field research can be carried out to
obtain more detailed micro data, so as to realize a more in-depth
analysis.

5 CONCLUSION

In this study, we proposed a comprehensive analysis
framework which oriented to investigate the spatiotemporal
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dynamics and driven mechanisms of GCL over a long-term
period in a large-scale area. The results showed the following:
1) The spatial clustering of GCL in the area of research during
1989~2018 was gradually increasing in general, which was
mainly dominated by medium-low and medium densities. 2)
GCL in most region of the area of research lacked stability
except a few industrial clustering regions, and the expansion
trajectory of GCL roughly formed a circular expansion pattern
around the central mountainous area with the most expansion
period appeared in the mid-2010’s. 3) Local driven
mechanism behind GCL expansion varied in each period,
and budget expenditure for rural development, local retail
sales and average earnings of local farmers were the most
important local driving factors of the GCL expansion in
Shandong. 4) From the external perspective, the
competition of external vegetable supply in Guangxi,
Hainan, Hunan as well as Hubei province and the
consumption demand from Beijing were the main external
driving forces of the expansion of GCL in Shandong. In
general, our study quantified a range of spatiotemporal
dynamics of GCL and its drivers over a large-scale and
long-term period, which puts forwards the potential of
earth observations to evaluate the impacts of cultivated
land use and management.
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