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Climate change and human interference pose a significant threat to fishery

habitats and fish biodiversity, leading to changes in fishery resources. However,

the impact of environmental change on lake fishery resources has been largely

blurred in assessments due to the complicated variables of the lake

environment. Here, taking the largest freshwater lake (Poyang Lake) in China

as a study case, we first proposed a conceptual model and simulated the effect

of environmental variables on fish catches based on remote sensing techniques

and machine learning algorithms. We found that the hydrometeorological

conditions of fishery habitats are critical controlling factors affecting the fish

catches in Poyang Lake through a long time series of simulations. Among the

involved hydrometeorological variables, the temperature, precipitation, and

water level are strongly correlated with the fish catches in the simulation

experiments. Furthermore, we tested other experiments and found that the

integration with water quality variables (correlation coefficient (R) increased by

11%, and root mean square error (RMSE) decreased by 2,600 tons) and water

ecological variables (R increased by 17%, and RMSE decreased by 3,200 tons)

can further improve the accuracy of fish catch simulation. The results also

showed that fish catches of aquatic species in Poyang Lake are more

susceptible to water ecological variables than water quality refers to the

model performance improvements by different input variable selections. In

addition, a multi-dimension variable combination involving

hydrometeorological conditions, water quality, and water ecological

variables derived from remote sensing can maximally optimize the model

performance of fish catch simulation (R increased by 21%, and RMSE

decreased by 4,300 tons). The approach developed in this study can save

the labor and financial costs for large-area investigation and the assessment of

lake fishery resources compared to conventional methods. It is expected to

demonstrate an efficient way for public authorities, stakeholders, and decision-

makers to guide fishery conservation and management strategies.
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1 Introduction

As an essential part of natural resource supply, the fishery

sector can provide plentiful high-protein food and bring

considerable employment and income for human beings

(Pauly and Zeller, 2017). However, as climate change unfolds

and anthropogenic stress intensifies, the overall sustainability of

global fishery resources has decreased significantly. Thus, the

assessment of sustainable utilization of the fishery habitats and

resources has attracted wide attention worldwide (Barbarossa

et al., 2021; Comte et al., 2021). Furthermore, lakes are significant

reserves of accessible fresh water and provide vital habitats for

fish living and breeding (La Notte et al., 2017; Kao et al., 2020).

Therefore, investigation about the dynamics of lake fishery

resources and better understanding of the impacts of various

environmental factors are urgently needed.

Lake fisheries are particularly vulnerable to environmental

changes (Venard and Scarnecchia, 2005). In particular, fish

distribution is usually limited by environment temperature

(Missaghi et al., 2017), water quality (Araujo et al., 2018),

ecosystem structure (Ferrari et al., 2018), and other external

distractions (Weijerman et al., 2019; Sifundza et al., 2021). In

addition, different phases of the fish life cycle, including

spawning, feeding, nursery, and migrations, require specific

environmental conditions, involving a series of complicated

driving factors (Petitgas et al., 2006; Giannoulaki et al., 2017;

Sólmundsson et al., 2018). Previous studies have confirmed that

environmental degradations have led to significant shifts in fish

catches and species composition in many lakes (Mccullough

et al., 2009; Njiru et al., 2018; Rypel et al., 2019; Zadereev

et al., 2020). However, these studies evaluate the relationship

between fisheries and environmental factors based on the

traditional method with spot or transect sampling. It is greatly

limited by the inaccessibility of regional environmental data with

spatiotemporally full coverage. Thus, how these various

environmental factors influence lake fishery resources at large

spatial scales is still very complex to comprehend and remains

largely unelucidated.

Satellite remote sensing provides an effective way to capture

spatio-temporal continuous environmental data and to provide a

holistic view of the influencing variables of fishery resources.

Previous studies have demonstrated that remote sensing can be

used for investigating lake fishery resources, assessing fish

habitats, and forecasting fish situations (Lucas and Baras,

2000; Herold et al., 2007; Grimm et al., 2016; Qi et al., 2021).

In particular, remote sensing allows large-scale, real-time, and

dynamic monitoring of the water environment variables, such as

chlorophyll-a concentrations (Chla), Secchia disk depth (SDD),

suspended particulate matter (SPM), and other water quality

parameters (Kutser, 2004; Awad, 2014; Cao et al., 2017; Hou

et al., 2017). Furthermore, in terms of lake hydrological

conditions, remote sensing technologies effectively monitor

water surface area, surface elevation, and volume of lakes

(Crétaux et al., 2016; Zhu et al., 2020; Chen et al., 2021; Luo

et al., 2021). However, few studies comprehensively employ

remote sensing to detect environmental changes that directly

or indirectly affect fish life events, such as spawning, breeding,

feeding, etc. Therefore, it is necessary to extend the remote

sensing techniques to interpret these environmental variables

that are essential for fish distribution and reproduction.

The environmental factors affecting lake fishery resources are

complex and diverse, and the main elements are still

controversial. Therefore, the machine learning algorithms

were considered to model the influences of various

environmental driving forces (hydrometeorological

parameters, water quality, and ecological indicators) on lake

fishery in this study as these algorithms can deal with

complex variables without prior knowledge (Mohammed

et al., 2016; Mahesh, 2020). To implement the machine

learning model of accurately simulating the dynamics of fish

catches in response to various influencing variables, we chose the

largest freshwater lake in China, Poyang Lake, as the study case.

Owing to inconsistent temporal spans of different influencing

variables, we designed two sets of simulation experiments with

different variable groups to investigate the model potential for

the simulation of lake fish resources and the sensitivities to

different environmental factors. Furthermore, we evaluated the

performance of fish catch simulation with different models and

the influence of key model parameters on the simulation results.

Finally, we discussed the associations of the decadal variability of

Poyang Lake fish catches with the freshwater fishery policy and

the socio-economic development of China.

2 Study area and data

2.1 Study area

The Poyang Lake, located in the middle reach of the Yangtze

River, is the largest freshwater lake in China, which is mainly fed

by five large rivers: Ganjiang, Fuhe, Xiuhe, Xinjiang, and Raohe

rivers, with the outlet northward being linked to the Yangtze

mainstream (Figure 1). The Poyang Lake basin, covering an area

of 162,200 km2, is characterized by a subtropical monsoon

climate, with the air temperatures varying from the winter to

summer in a range of 3.9–28.5°C. The mean annual precipitation

and evaporation are 1,600 mm/yr and 1,000 mm/yr, respectively

(Li et al., 2020). Poyang Lake is rich in fishery resources and plays

a vital role in maintaining and supplementing the aquatic

biodiversity of the Yangtze River (Liu et al., 2019). According
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to the field investigation of fish resources and prior literature, the

period March to June is the spawning season of carp and crucian

carp in Poyang Lake (Gong et al., 2009; Chen, 2020). The water

depth is less than 0.5 m is usually interpreted as the potential

spawning area of Poyang Lake (Jin et al., 2019). Furthermore, the

unique hydrological regime of Poyang Lake led to the sensitive

response of its fishery to seasonal hydrology and associated

environmental conditions (Jin et al., 2019).

2.2 Study data and processing

2.2.1 Gauging stations data
The lake water level and surrounding meteorological

conditions are important influencing factors of fishery catches,

which were selected as key input variables of machine learning

models. Daily water levels of four hydrological stations, Hukou,

Xingzi, Duchang, and Kangshan gauging stations, during

1960–2017 from the Hydrological Bureau of Jiangxi Province,

were collected to represent the upper, middle, and lower water

levels of Poyang Lake (Figure 1C). Furthermore, data on five

main climatological variables (i.e., precipitation, temperature,

pan evaporation, atmospheric pressure, and relative humidity)

from 26 meteorological stations within the Poyang Lake basin

during 1960–2017 were obtained from the China Meteorological

Data Sharing Service System (http://cdc.cma.gov.cn) (Figure 1B).

All the hydrological and meteorological data were composited at

a yearly timescale to simulate the annual fishery catches of

Poyang Lake.

2.2.2 Remote sensing data
Multi-source remote sensing data (Table 1) were employed to

retrieve the environmental parameters representing the water

quality and ecological conditions of Poyang Lake. First, we

utilized the moderate resolution imaging spectroradiometer

(MODIS) satellite data of 1-km resolution from 2000 to

2017 to estimate three typical water quality parameters based

on existing empirical algorithms within the Google Earth Engine

(GEE) platform (Supplementary Text S1 in Supporting

Information). The three water quality parameters included

Chla, SDD, and SPM (Le et al., 2013; Wu et al., 2013; Wang

et al., 2015; Feng et al., 2019). Chla is one of the crucial

components of phytoplankton, the primary producer in lake

ecosystems, and provides the necessary conditions for fish to

FIGURE 1
Study area with the distributions of meteorological stations in the Poyang Lake basin and hydrological gauging stations in Poyang Lake. (A)
Location of the Poyang Lake basin. (B) Location of Poyang Lake and main drainage network in its basin. (C) Spatial distribution characteristics of
elevation of Poyang Lake.
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spawn. In addition,, SDD and SPM are other two indicators of

lake water quality for assessing lake eutrophication and fish

habitat quality.

In addition, we employed the Landsat-5 TM (1984–2013),

Landsat-7 ETM+ (1999-present), and Landsat-8 OLI (2013-

present) images to calculate the Normalized Difference

Vegetation Index (NDVI) (Supplementary Text S1 in

Supporting Information), which could indicate the aquatic

vegetation status of Poyang Lake (Penuelas et al., 1993; Villa

et al., 2014; Chen et al., 2018). These sensors have a 30 m pixel

resolution and a revisiting cycle every 16 days on average. The

primary fish of Poyang Lake, such as carp and crucian carp,

usually use grass beds as preferential spawning grounds (Roche

et al., 2000; Huang and Li, 2016). Most of their spawning grounds

are distributed in the shallow parts of the lake and with abundant

aquatic vegetation (Du et al., 2017). Therefore, NDVI can assist

in the search of places with high vegetation concentrations as the

identification marks of fish spawning grounds.

Global Surface Water (GSW) datasets of the Joint Research

Centre (JRC) derived from Landsat series satellite data were

employed to extract the yearly and monthly water surface area

and shoreline length of Poyang Lake (Pekel et al., 2016). The ratio

of shoreline length and equal area circumference represents the

degree of shoreline development, indicating the range of fish

habitats. The yearly water surface area combined with the lake

bathymetry could estimate the water volumes in different years.

In addition, it is possible to obtain the distribution of potential

spawning grounds in a particular depth range for a specific

season based on monthly water surface area, NDVI, and

bathymetry (Herold et al., 2007; Grimm et al., 2016).

2.2.3 Other auxiliary datasets
We also used the Climatic Research Unit (CRU) dataset to

supplement the missing data at a few stations result in the time

gap of meteorological variables. CRU is a widely used climate

interpolation dataset based on meteorological stations and

provides a monthly grid at a resolution of 0.5° × 0.5° covering

the Earth, excluding Antarctica since 1901 (Harris et al., 2020).

We applied CRU TS v.4.05 version (https://crudata.uea.ac.uk/

cru/data/hrg/) from 1960 to 2017 in this study to provide five

climatological variables, including precipitation, temperature,

evapotranspiration, atmospheric pressure, and relative

humidity. These variables were the same as measured by

meteorological stations, and they had a strong association

with the fishery catches of Poyang Lake during the study

period. Therefore, these variables were aggregated into the

annual average as the model input parameters to simulate the

time series of yearly fishery catches extracted by the boundary of

the Poyang Lake basin.

Furthermore, the lake bathymetry map at a 1:10,000 scale was

surveyed in 2010, and data on yearly fishery catches during

1960–2017 were obtained from the Hydrological Bureau of

Jiangxi Province. The bathymetry map provided the water

depth of Poyang Lake and was used to estimate water volume

variations. The fishery catches’ data were involved in themachine

learning model for training and validation.

3 Methods

3.1 Conceptual model and design of
simulation experiments

The environmental impact on lake fishery resources is very

complex, and the dominant driving forces remain to be debated.

Considering the complexity and diversity of environmental

factors affecting lake fishery resources, we designed a

conceptual model to explicitly represent the different

dimensional influencing factors of fish catch (Figure 2). In the

model, hydrometeorological factors based on gauging stations,

water quality, and ecological indicators derived from remote

sensing were considered three-group independent variables

(Table 2). In addition, the fish catch was taken as the

dependent variable of the model to represent the lake fishery

resources (Figure 2). Combining remote sensing and machine

learning algorithms, we explored the effect of environmental

variables on fishery catch as illustrated in the conceptual model.

In this study, we established two sets of simulation

experiments based on the machine learning algorithm to

simulate fishery catches of Poyang Lake due to the

inconsistent temporal spans of different variables. The first set

of experiments was long-term simulations based on the

hydrometeorological variables for nearly six decades

(1960–2017). In these experiments, the hydrological and

TABLE 1 Main remote sensing data employed in the study.

Dataset Sensor Period of
use

Spatial resolution Temporal resolution Parameter of
inversion

MOD09GA MODIS 2000–2017 1 km Daily Chla, SDD, and SPM

Landsat-7 ETM+ 2000–2017 30 m 16 days NDVI, shoreline

Landsat-8 OLI 2013–2017 30 m 16 days NDVI, shoreline

GSW JRC ETM+/OLI 2000–2017 30 m Monthly Water surface area
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meteorological gauging data and CRU data were trained and

simulated separately or recombined for the optimal stimulation

(termed Case 1, long time-series simulation experiments). Then,

based on the optimal simulation combination scheme in the first-

set experiments, we added the multiple environmental variables

representing water quality and ecological indicators in the second

set of experiments for the period 2000–2017. Thus, in the second

set of experiments, the different combinations of variables will be

applied to the machine learning algorithm to simulate the fishery

catches in the recent two decades (termed Case 2 and two-decade

simulation experiments).

3.2 Machine learning algorithms

We used the extreme gradient boosting tree (XGBoost)

algorithm with the hydrometeorological variables, water

quality, and water ecological variables in the conceptual model

to simulate the fishery catches of Poyang Lake over the recent

decades. XGBoost, an implementation of gradient boosted

decision trees (GBDT) designed for speed and performance, is

proposed by Chen et al. (2016). Recently, XGBoost has attracted

more attention in machine learning algorithms because it is

highly efficient, flexible, and portable. XGBoost is an

improved GBDT algorithm, but a new tree model loss

function with regularization is utilized to prevent overfitting

and reduce the complexity of the model (Song et al., 2020;

Fan et al., 2021). The equations of the XGBoost algorithm are

illustrated as follows:

Obj � ∑n
i�1
l(yi, ŷi) + ∑K

K�1
Ω(fk), (1)

Ω(fk) � γT + 1
2
λ∑T
j�1
ω2
j , (2)

where the l(yi, ŷi) is the difference between the simulated value

ŷi and the measured values yi. n represents the number of

training samples. Ω(fk) defines the complexity of the tree,

and K is the number of trees. Here, γ and λ represent the

regularization coefficients, T means the number of leaves, and

ω is the vector of scores on leaves.

Another two algorithms, the deep neural network (DNN)

and random forests (RF), were also employed to compare with

the XGBoost algorithm performance (more details about two

algorithms in Supplementary Text S2 in Supporting

Information). DNN is a powerful machine learning

algorithm implemented by stacking layers of neural

networks and the depth and width of smaller architectures

and needs a large amount of annotated data for training

(Chien, 2018). RF is a supervised machine learning

algorithm constructed from decision tree algorithms

introduced by Breiman (2001). Random forests are a

collection of classification and regression trees, using binary

splits on predictor variables to determine outcome predictions

FIGURE 2
Schematic diagram illustrating themachine learningmodel of fish catch simulation andmain environmental variables. Variables associated with
hydrometeorological conditions are in oval blue boxes. Variables associated with water quality are in brown-rounded rectangular boxes. Variables
associated with water ecological conditions are in green-hexagon boxes.
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(Breiman et al., 2017). Furthermore, XGBoost and RF are both

popular ensemble learning algorithms. DNN is a powerful

neural network and deep learning algorithm. All three

algorithms can deal with complex variables and are thus

selected to compare their performance in simulation

experiments. For all the three abovementioned algorithms,

the variables during the study period were randomly divided

into training sets (70% of the sample) and testing sets (30% of

the sample). The training data sets consisted of fishery catch

data and corresponding environmental variables, and the rest

were the testing data sets. After model training and testing, we

used the trained model to simulate the fishery catches in two

sets of experiments during the whole study period.

3.3 Model performance evaluationmetrics

In this study, we employed the correlation coefficient (R),

root mean square error (RMSE), mean absolute error (MAE),

and Nash–Sutcliffe efficiency (NSE) to evaluate the model

performance. The Nash–Sutcliffe efficiency index is a widely

used and potentially reliable statistic to assess the

performance of hydrologic models (Jain and Sudheer,

2008). Precisely, the aforementioned metrics are calculated

by the following equation:

R � ∑n
i�1(Mi − �M)(Oi − �O)������������������������∑n

i�1(Mi − �M)2∑n
i�1(Oi − �O)2√ , (3)

RMSE �
�������������∑n

i�1(Mi − Oi)2
n

√
, (4)

MAE � ∑n
i�1|Mi − Oi|

n
, (5)

NSE � 1 − ∑n
i�1(Mi − Oi)2∑n
i�1(Oi − �O)2 , (6)

whereMi is the model result for the year i and Oi is the observed

value for the year i; n represents the number of years �M, and �O

represent the average value of all the model results and observed

values, respectively.

TABLE 2 List of environmental variables involved in the machine learning model.

Category Parameter Data source Spatial
resolution

Temporal
span

Data type Meaning or
function

Hydrometeorological
conditions

Water level Gauging data — 1960–2017 Point Flooded spawning
ground condition

Habitat suitability
condition

Temperature Gauging data — 1960–2017 Point (Gauging)
Raster (CRU)

Suitable spawning
condition

Precipitation CRU data Habitat suitability
condition

Pressure

Relative humidity

Evapotranspiration

Water quality Chla MODIS satellite
image

1 km 2000–2017 Raster Suitable spawning
condition

SDD 1 km 2000–2017 Raster Habitat suitability
condition

SPM 1 km 2000–2017 Raster

Water ecological variable Water area Landsat 7, 8 30 m 2000–2017 Polygon (shp) Range of fish for
spawning or roosting

Water volume GSW and
bathymetry

— 2000–2017 Raster Flooded spawning
ground condition

Degree of shoreline
development

Landsat 7, 8 30 m 2000–2017 Polyline (shp) Indicate fish biodiversity

NDVI Landsat 5, 7, 8 30 m 2000–2017 Raster Growth status of aquatic
vegetation

Area of potential spawning
grounds

Landsat 7, 8, and
bathymetry

30 m 2000–2017 Polygon (shp) Spawning range
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4 Results and analyses

4.1 Spatio-temporal characteristics of
typical environmental variables of Poyang
Lake

The time series of hydrometeorological variables monitored

from hydrological and meteorological stations are shown in

Figure 3. Precipitation and temperature had a generally

consistent fluctuation trend that had strong influences on

the fish catches. For example, in the flood event year of

1998, the highest values of the annual mean temperature

(18.95°C) and annual precipitation (2,138.36 mm) of Poyang

Lake matched the extreme of total fish catch (71.90 thousand

tons) during 1960–2017. Yet, the atmospheric pressure

(994.56 hPa/yr) monitored at various stations in the Poyang

Lake basin had remained almost constant during the study

period, which also showed that atmospheric pressure had little

effect on fishery resources. On the other hand, based on

observations from 26 meteorological stations in the Poyang

Lake basin, relative humidity showed a fluctuating decline

during the study period with a plunge in 2002. Furthermore,

evapotranspiration in the Poyang lake basin showed a

continuous downward trend during the study period, from

4,138.86 mm in 1960 to 2,411.02 mm in 2017. In addition,

the water level of Duchang, Hukou, Kangshan, and Xingzi

stations showed similar fluctuations from 1960 to 2017 with

the apparent difference in water level between the upper,

middle, and lower reaches of Poyang Lake. The maximum

water level difference between upstream and downstream

was close to 5 m. Therefore, the difference in water level also

affected the spatial distribution of fish species and fishery

resources.

Figure 4 displays the monthly time series and spatial

distribution of the annual average of Chla, SDD, and SPM in

the Poyang Lake based on remote sensing estimations. The

inversion results of the three water quality parameters all

appeared periodic fluctuations. The seasonal change of three

parameters each was Chla (5.03 μg/L), SDD (0.90 m), and SPM

(26.56 mg/L). Moreover, the spatial distribution of water quality

was significantly different between upstream and downstream.

For instance, the Chla concentration was lower downstream

(usually less than 3 μg/L) and higher upstream (over 10 μg/L),

consistent with the spatial distribution of aquatic vegetation in

Poyang Lake. Aquatic vegetation is necessary for fish to spawn, so

the distribution of Chla concentration will affect the spatial

FIGURE 3
Time series of hydrometeorological variables derived from gauging stations in the Poyang Lake basin during 1960–2017. The points in different
colors represent the measured value from different meteorological stations. The blue lines in each meteorological variable represent the time series
of multi-site averages. Color lines in the right-bottom panel are the measured value derived from hydrological stations.
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distribution of spawning grounds. In addition, the spatial

distribution of SPM and SDD presented a significant negative

correlation. For example, the lower reaches of Poyang Lake had

lower SDD (0–0.25 m) and higher SPM (50–70 mg/L). SPM in

the middle part of the lake was usually higher than that in other

areas, especially near the entrance of the Yangtze River (over

70 mg/L). The SDD in the west and east was more significant

than the lake outlet and the lake center, and the difference

reached 1–1.5 m.

The potential spawning grounds of Poyang Lake showed

an inevitable inter-annual fluctuation, and the lowest was only

371.78 km2 in 2010. After 2016, the area of potential spawning

grounds gradually increased and reached 501.25 km2 in 2017

(Figure 5). The size of the potential spawning grounds can

indicate the fish caught in the next year, which had a strong

correlation with the number of fish catches. From spatial

distribution, the potential spawning grounds were located

in the sub-lakes of the upper and middle reaches of Poyang

Lake with relatively low depth. Yet, the deep water zones

represented by the gray pixels cannot be the potential

spawning grounds.

4.2 Long time-series simulation
experiments based on
hydrometeorological variables

Long time series of simulated annual fish catches based on

the different combinations of hydrometeorological variables were

illustrated in Figure 6 (Case 1). The difference between the

measured and simulated annual fish catches in Poyang Lake

almost completely fall in the one-fold or two-fold uncertainty

range, represented by the standard deviation (SD) of multiple-

iteration simulations. It suggests that the simulation results could

well capture details of annual fish catch in Poyang Lake based on

hydrometeorological variables participating in machine learning

training. In the past 60 years, the fish catches in Poyang Lake

increased first and then decreased and experienced a dramatic

rise in 1998 with an extreme flood in the Yangtze. The annual fish

catches were between 20 and 40 thousand tons in most years

except for a few memorable years (e.g., 1966–1972, 1974–1979,

and 1996–1999).

Although the simulation results derived from different

parameter combinations participating in the machine learning

FIGURE 4
Time-series (left panels) and spatial distribution (right panels) of the annual average of Chla, SDD, and SPM estimated from MODIS data for the
Poyang Lake. The green line represents the time series of Chla. The blue line represents the time series of SDD. The orange line represents the time
series of SPM. Error bars represent the uncertainty of remote sensing inversion results.
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algorithm training can well capture the details of annual fish

catches in Poyang Lake, different parameter combinations

induced slight discrepancy. For example, the third group

experiment (No. 3 CRU in Figure 6) was only based on CRU

meteorological variables participated in the training, with the

correlation coefficient (R) and root mean square error (RMSE)

being 0.78 and 12,900 tons, respectively. As a result, the No.

3 group experiment showed a more significant error than the No.

1 and No. 2 group experiments, which employed measured

values to participate in the training. Furthermore, the

simulation results of multiple variables participating in the

modeling are better than single variables (No. 4, No. 5, and

No. 6 groups). The best simulation experimental results can be

observed in the fifth group (No. 5 HS + MS in Figure 6), which

involved monitoring data from hydrological and meteorological

stations participating in the training and had the minimum

simulation error with R and RMSE of 0.90 and 8,900 tons,

respectively. From these different combinations, it can be

inferred that the hydrometeorological conditions of fishery

habitats were important controlling factors affecting the fish

catches of Poyang Lake during the study period.

4.3 Two-decade simulation experiments
coupled with water quality and ecological
variables

To further explore the effects of other environmental factors

on fish catches, we integrated the water quality and ecological

variables with the hydrometeorological conditions of fishery

habitats in the new simulation experiments based on Case 1

(Case 2). As shown in Figure 7, the time series of simulated

FIGURE 5
Area of potential spawning grounds estimated based on lake topography and monthly water area extent. The upper left panel represents the
average depth of Poyang Lake during the study period. The upper right panel represents the distribution of the frequency of potential spawning
grounds (%). The gray pixels in the background represent the places that are unlikely to be spawning grounds. The bottom panel shows the area time
series of potential spawning grounds.
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annual fish catches based on combined hydrometeorological,

water quality, and ecological variables performed better than that

only based on hydrometeorological variables. In addition, water

quality (No. 2 WQ) and water ecological (No. 3 WECO)

parameters as independent variables participating in the

model had better simulation results than hydrometeorological

station data (No. 1 HM). Therefore, it can be inferred that

parameters impacting the fish catches from high to low are

water ecological indicators, water quality, and

hydrometeorological variables (No. 1, No. 2, and No. 3 in

Figure 7). Furthermore, no matter water quality (No. 4 HM +

WQ in Figure 7) or water ecological (No. 5 HM + WECO in

Figure 7) parameters can further improve the accuracy of fish

catches simulation of Poyang Lake by a combination with the

hydrometeorological station data.

The combination of different dimensions of variables also

affected the simulation results. For instance, the No. 6 groups

with the combination of water quality and ecological variables

participating in the model had better simulation performance

than the combinations of No. 4 and No. 5 groups. The best

simulation result was derived from the No. 7 group experiment

(HM + WQ + WECO in Figure 7), which involved gauging data

from hydrometeorological stations, water quality, and water

ecological variables with the R and RMSE of 0.98 and

1700 tons, respectively. On the other hand, the No. 4 group

experiment (R = 0.88, RMSE = 3,400 tons) showed a more

significant error than the No. 5 group experiments (R = 0.94,

RMSE = 2,800 tons), which meant that aquatic species of fish

catches in Poyang Lake might be more susceptible to water

ecological factors than water quality during the study period.

5 Discussion

5.1 Comparison of different machine
learning algorithms for fish catch
simulation

Based on hydrometeorological variables of the simulation

experiments in Case 1 (Group No. 5), XGBoost, DNN, and RF

machine learning approaches were employed to simulate the fish

catches. The performance of the XGBoost algorithm was best

compared with DNN and RF algorithms (Figure 8). Although the

DNN and RF algorithms generally derived comparable temporal

patterns of the simulated results with the XGBoost algorithm,

they cannot precisely capture the abrupt shifts (e.g., the peak in

1996–1999). The results based on the three algorithms all have

strong correlations (>0.7) with the validated samples. In terms of

FIGURE 6
Long time series simulation results based on hydrometeorological variables. Red scatter represents the measured value of the fish catch. The
solid line is the simulation result of fish catch. The dark ribbon is the one-fold SD of the simulation results, and the light ribbon is the two-fold SD of
the simulation result.
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the RMSE and MAE, the XGBoost model had the lowest values.

Furthermore, the NSE of the XGBoost model was high as 0.97,

indicating the model was the most satisfactory in this study.

Differences in model results are mainly contingent on their

algorithm principles. For example, the XGBoost algorithm comes

with a built-in cross-validation method at each iteration, which

prevents the model from overfitting (Chen and Guestrin, 2016).

By contrast, DNN and RF algorithms cannot learn the

covariances among the input variables and allow the

application of regularization parameters to control the

FIGURE 7
Simulation results based on the combination of hydrometeorological conditions, water quality, and ecological variables.
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overfitting of the model. Furthermore, the DNN algorithm

usually requires more training data for model simulation than

the other two algorithms, like thousands of labeled samples.

However, the data used in this study does not reach this level. In

addition, the RF model is good at classification but not for

regression issues. More importantly, the XGBoost model uses

parallelized implementation to build the process of the sequential

trees, which can substantially improve the algorithm efficiency.

5.2 Influence of the key modeling
parameter of the XGBoost algorithm on
simulation results

The XGBoost algorithm includes many input parameters,

such as maximum tree depth, learning rate, maximum iterations,

L1 and L2 regularization terms on weight . In general, one of the

critical parameters for the simulation of fish catches is the

maximum iterations in this study. To explore and compare

the sensitivity of the key parameter of the XGBoost algorithm

on simulation results, we used a robustness test to analyze the

importance of the maximum iterations of the XGBoost algorithm

and the influence of the maximum iterations on the simulation

results. Figure 9 shows the simulation results with different

maximum iterations and the robustness test of the maximum

iterations (e.g., 5, 6, 7, 8, 9, 10, 100, 1,000, and 10,000). With the

increase in maximum iterations, the simulation results based on

the XGBoost algorithm were closer to the measured values

(Figure 9A). For example, the modeling performance was

significantly improved when maximum iterations increased

between 5 and 100. Concurrently, the model performance

tended to be more robust in terms of the R, RMSE, MAE,

and NSE (Figure 9B). Furthermore, when the maximum

iterations of the XGBoost algorithm exceeded 100, modeling

results became robust (Figure 9B).

5.3 Associations of the variations of
Poyang Lake fish catches with the
development of freshwater fishery in
China

The machine learning model is a data-based method.

Although it can reasonably simulate the relationship between

the environmental factors and the fish catch, the lack of

explanation of internal physical mechanism leads to failure to

capture the detailed changes at certain moments, such as a peak

in 1996. It is undeniable that the impacts of fishery resources

FIGURE 8
Predicted fish catches of Poyang Lake based on XGBoost, DNN, and RF models (A) and performance evaluation of the XGBoost (B), DNN (C),
and RF (D) models.
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come from natural factors and human activities (e.g., fishing

policy formulation and innovation in fishing technology).

However, the development of freshwater fishery in China is a

human-led activity, unlike other continuous environmental

variables that can participate in the model. Therefore, we used

the method of mutation point detection (Christopoulos, 2016) to

find the inflection points in the time series and discuss the human

activities leading to the abrupt changes in fish catches.

China has a long fishery history and rich fishing culture,

but the fishery activities were conducted in an original way and

in local areas until the 1950s (Hu et al., 2021). The

development of freshwater fishery in modern China dates

back to the founding of the People’s Republic of China

when fishery production recovered and developed rapidly.

The time series of fish catches in Poyang Lake have

experienced several critical stages and nodes as follows.

They could be related to the contemporary fishery

development in China according to inflection points

(Figure 10). In the first stage (1960–1978), the fish catch of

Poyang Lake was consistent with the national fishery

production level and kept a relatively steady state of

fluctuation. Since 1978, when China began to implement the

reform and opening-up policy, fishery production has

developed rapidly (Hu et al., 2021). In 1985, the No.

5 Central document was released, marking that China fully

liberalized the national aquatic product market (Lin, 1997; Gui

et al., 2018). Maybe because of the implementation of this

policy, the fish catches of Poyang Lake showed a steady growth

trend in the second stage (1978–the 1990s). Particularly, the

fish catches in Poyang Lake increased dramatically and reached

a peak in 1998. This is because the Yangtze River basin suffered

severe floods, resulting in a large number of fish in the artificial

ponds escaping into the lake. In the third stage (2000–2017),

the fish catches in Poyang Lake began to steadily decline again.

In this stage, the spring fishing ban act may explain the drop in

fishing catches, with the feature year in 2004.

FIGURE 9
Comparison of simulations at different maximum iterations (A) and robustness test of the maximum iterations (B).
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6 Conclusion

Taking the largest freshwater lake in China (Poyang Lake) as a

study case, we designed two sets of simulation experiments with

different input variable combinations to model the environmental

influences on lake fish catches. We aimed to assess and analyze the

potential of applying remote sensing andmachine learning approaches

to simulate lake fish resources and their sensitivities to environmental

factors. Based on the simulation experiments at different timescales, we

found that the hydrometeorological conditions of fishery habitats are

critical controlling factors affecting the fish catches of Poyang Lake in a

six-decade simulation. Fish catches of aquatic species in Poyang Lake

are more susceptible to water ecological factors than water quality. In

addition, the two-decade simulation experiments of independent

variables indicate that the parameters impacting the fish catches

from high to low are water ecological indicators, water quality, and

hydrometeorological variables. Among the different simulation

experiments, the optimal scheme is the combination of

hydrometeorological conditions, water quality, and water ecological

variables all involved in the model training. The R value is as high as

0.98, and RMSE is 1,700 tons.

We highlight the capacity of machine learning algorithms

and remote sensing to advance our understanding of the effect of

environmental variables on lake fishery resources. Our method

could save labor and economic costs in the field investigation and

is friendly for users with inadequate prior knowledge. Integrating

machine learning algorithms with the ground and satellite-based

data can help improve efficiencies in fishy resources surveys and

benefit lake fisheries and aquatic food security. Although remote

sensing and machine learning methods have been used

FIGURE 10
Time series of fish catches in Poyang Lake and historical background of inflection points.
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extensively to monitor and assess the aquatic environmental

impacts, we suggest fish ecologists, public authorities,

stakeholders, and decision-makers take the proposed approach

to improve fishery resource management. Future work should

extend such efforts to longer periods and larger spatial scales.
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