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Soil nutrients are vital for plant growth and survival and present a crucial role

in terrestrial function and productivity. However, little is known about the

effect mechanism of groundwater table on soil nutrients in an arid desert

ecological system. This study investigated the impacts of groundwater depth

on the concentrations of soil organic carbon (C), available nitrogen (N),

phosphorus (P), and potassium (K) at shallow groundwater depths (0.4, 0.8,

1.2, 1.8, and 2.2 m) and field deep groundwater depths (2.5, 4.5, and 11.0 m) in

a desert-oasis ecotone in Central Asia in 2015 and 2016. Soil nitrate-N,

inorganic-N, soil available P, and K concentrations were significantly

affected by shallow and field deep groundwater. Groundwater depths did

not alter soil ammonium-N concentration. Soil organic C concentration was

influenced by field deep groundwater depth. Structural equation model

showed that groundwater depth directly affected soil nitrate-N and K

concentrations and indirectly altered the soil inorganic-N, soil organic C

and available P concentrations in shallow groundwater. Moreover,

groundwater depth directly influenced soil nitrate-N and soil organic C,

available P and K concentrations and indirectly affected soil inorganic-N

concentration in deep groundwater. Hence, groundwater depth should be

considered one of the most critical environmental factors affecting soil

nutrient variation in an arid desert. This study provides new insights into the

soil nutrient variation under a declining groundwater depth in a hyper-arid

ecosystem.
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Introduction

Soil nutrients are essential for plant growth, survival, and

distribution and present a crucial role in terrestrial functions

and productivity. Soil organic carbon is substantial for

maintaining soil fertility and represents soil quality, which

impacts a wide range of soil physical, chemical, and biological

properties (Cheng and An, 2015). Soil nitrogen (N),

phosphorus (P), and potassium (K) are three crucial

macroelements that individually or jointly affect plant

productivity and play a considerable role in terrestrial

functions (Hati et al., 2008; Quilchano et al., 2008; Liu

et al., 2010; Li et al., 2016; Guan et al., 2017; Zhang et al.,

2021a; Zhang et al., 2021b). Soil nutrient concentrations are

influenced by lots of environmental factors, such as

vegetation succession (Cheng and An, 2015), land

utilization (Ross et al., 1999; Fang et al., 2012; Gelaw et al.,

2014), N deposition (Ma et al., 2011), precipitation (Patil

et al., 2010), and groundwater depth (Hefting et al., 2004;

Rhymes et al., 2016).

Groundwater is the most critical limiting factor in an arid

ecosystem (Zeng et al., 2006). Although Rhymes et al. (2016)

reported that dune slacks are sensitive to slight variations in

groundwater levels. Denitrification reduction led to an

increase in soil nitrogen concentration with just a 10 cm

decrease in groundwater depth. Lowered water depths will

likely intensify biological effects, promote soil carbon

decomposition, and potentially depress carbon

sequestration in dune slack soils. Hefting et al. (2004)

found that water table levels of 10 and 30 cm are the

thresholds that characterize the soil microbial N cycle,

leading to variations in nitrification, ammonification, and

denitrification rates, which in turn alter the N dynamics.

Furthermore, the Soil C, N, and P concentrations are

significantly affected by groundwater depth in a desert

ecosystem (Zhang et al., 2018b). Although we can find

pieces of research information on the effects of the

groundwater depth on soil nutrient concentrations,

systematic studies on the variation of soil nutrient

concentrations, especially C, N, P, and K, under reduced

groundwater depth in an arid desert ecological system

are rare.

In the arid region of Central Asia, the groundwater depth

gradually deepened in the desert-oasis transition ecotone due to

increasing human activity, indicating water resources shortage

(Liu, 2007). The decline of groundwater depth remarkably

affects soil water content, plant biomass accumulation, plant

growth rate, plant photosynthesis, and plant water uptake,

which further influences community structure and ecosystem

composition (Nilsson et al., 1997; Li et al., 2010; Gui et al., 2013;

Li et al., 2015). Zhang et al. (2018c) observed significant

differences in soil nutrients among 2.5, 4.5 and 11.0 m

groundwater depths in a desert ecosystem in an arid region.

Topsoil P and K concentrations are positively altered by

groundwater depths in the desert ecosystem (Zhang et al.,

2021a). However, little is known about groundwater depth’s

direct and indirect effect on soil nutrient concentrations in

different groundwater depths. Therefore, we hypothesized the

following: 1) Groundwater depth directly affects soil nutrients,

such as ammonium-N, nitrate-N, and inorganic-N and organic

C, available P and K concentrations, in the different

environments. 2) Groundwater depth is a critical factor that

affects the variation of soil nutrients in an arid desert ecological

system.

Materials and methods

Study area

The study is conducted at the Cele National Station of

Observation and Research for Desert and Grassland

Ecosystem (Cele station; 37°00.77″N, 80°43.45″E) on the

southern edge of the Taklamakan Desert in Xinjiang

Uyghur Autonomous Region of China. Cele station is in

the desert-oasis transition ecotone, which is occupied by

dominant Alhagi sparsifolia (Zhang et al., 2021b). The

vegetation coverage is 60%–80% (Zhang et al., 2018a), and

the groundwater depth varies from 1.2 to 15.0 m. The study

site’s elevation is 1,366 m, the mean annual temperature is

11.9°C, the mean potential annual evaporation is 2,600 mm,

and the mean annual precipitation is only 35 mm (Gui et al.,

2013; Liu et al., 2016; Zhang et al., 2021b). The temperatures

can reach extreme levels, such as −31°C in the winter and

41.9°C in the summer. It is an arid region, with hot summers

and cold winters. The soil is sandy, and the bulk density is

1.36 g/cm3 (Li et al., 2015; Liu et al., 2016). In 2015, the

precipitation at Cele station was 34.2 mm, while in 2016, it

was 43.4 mm.

This study conducted simulation and field experiments in

2015 and 2016, respectively. The simulation experiment

investigated the effect of shallow groundwater (0.4, 0.8, 1.2,

1.8, and 2.2 m) on soil nutrient variation. The field

experiment determined the effect of deep groundwater (2.5,

4.5, and 11.0 m) on soil nutrient variation. A dominant

phreatophytic species, A. sparsifolia, was grown in concrete

soil containers (1 m × 1 m) with different artificial

groundwater tables in April 2015. The groundwater table in
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each treatment was maintained at a fixed level by adding water

through pipes weekly. More detailed information about the

experimental layout is available in our previous publication

(Li et al., 2015).

In the field experiment, various depths of groundwater were

selected at three sites, including those with depths of 2.5 m

(N37°01′18″, E80°42′29″), 4.5 m (N37°00′40″, E80°42′13″),
and 11.0 m (N37°00′33″, E80°42′25″). Each of the three sites

covered approximately 2 ha. The groundwater depths at these

three sites did not change significantly between 2015 and 2016.

More detailed information is available from previous studies

(Liu, 2011; Gui et al., 2013; Zhang et al., 2018b; Zhang et al.,

2021a).

Field sampling and chemical analysis

A previous study found no significant differences between

the soil organic C, total and available N, and P concentrations

beneath 50 cm soil depth around the A. sparsifolia at depths

of 2.5, 4.5, and 11 m on the same research site (Liu,

2011). However, there were significant differences in soil

organic C, total and available N, and P concentrations in

the 0–20 cm under ground at various groundwater depths

(Zhang et al., 2018b). Therefore, at each sampling stage,

six soil samples in the shallow groundwater depths and

nine soil samples in the deep groundwater depths around

the canopy of A. sparsifolia were collected monthly from

0 to 20 cm depth using standardized collection protocols

from June to October in each groundwater depth level in

2015 and 2016. Soil samples were air-dried, ground, and then

passed through a 1-mm sieve. Soil organic carbon was

determined by the K2Cr2O7 digestion method (Nelson and

Sommers, 1975). We used 2 M KCl to extract fresh soil

samples (10 g). Nitrate-N was measured with a continuous

flow spectrophotometer using the cadmium reduction

method and ammonium-N using the salicylate method

(FIAstar 5000; Foss Tecator, Denmark). Inorganic N is

composed of ammonium and nitrate (Lü et al., 2014). We

measured the availability of P by colorimetry after extracting

with 0.5 M NaHCO3 (Olsen et al., 1954). Available K was

determined by using the flame photometer.

Data analysis

We performed all analyses with R software (version 4.0.3).

Multiple comparisons of treatment means were conducted using

the Tukey test. Linear relationships between groundwater

and soil nutrients were analyzed using the “corrplot” package.

Groundwater depth’s direct and indirect effects on soil nutrients

were statistically separated and quantified by a piecewise

structural equation modeling (piecewise SEM) study using the

R package (Lefcheck, 2016). To determine whether the causal

model missed essential links, we used the D-separation test of

Piecewise SEM; p > 0.05 indicated that the model was valid

(Shipley, 2002).

Results

Soil inorganic-N, C, P, and K
concentrations affected by groundwater
depth

In the shallow groundwater, soil nitrate-N and inorganic-

N concentrations increased first and then decreased with the

increasing groundwater depths (Figures 1A,E;

Supplementary Figure S2). The concentrations of soil

nitrate-N and inorganic-N at 0.8 and 1.2 m groundwater

depths significantly elevated compared with 0.4, 1.8, and

2.2 m depths. Moreover, no significant differences in

ammonium-N concentrations were observed among all

groundwater depths (Figure 1C). The soil organic C

concentration at 1.2 m groundwater depth was

significantly greater than those at 1.8 and 2.2 m

(Figure 2A). Moreover, no significant difference in soil

available P concentrations was found among all

groundwater depths (Figure 2C). Soil available K

concentration at 0.4 and 0.8 m groundwater depth

significantly raised compared with 1.8 and 2.2 m depths

(Figure 2E; Supplementary Figure S4).

In the deep groundwater, soil nitrate-N and inorganic-N

concentrations increased with increasing groundwater depths

(Figures 1B,F; Supplementary Figure S3). The concentrations

of soil nitrate-N and inorganic-N at 11.0 m groundwater

depth significantly increased compared with 2.5 and 4.5 m

depths. No significant differences in ammonium-N

concentrations were observed among all groundwater

depths during 2015 and 2016 (Figure 1D). The soil organic

C, available P and K concentrations increased with increasing

groundwater depths (Figures 2B,D,F; Supplementary Figure

S5). Concentrations of soil organic C, available P and K at

11.0 m groundwater depth significantly enhanced compared

with 2.5 and 4.5 m depths.

Relationships between groundwater and
soil nutrients

In the shallow groundwater, depths were negatively related to

soil nitrate-N, inorganic-N, and K concentrations (Figure 3A).

Soil nitrate-N was positively associated with soil inorganic-N and

soil organic C and available K concentrations. Soil ammonium-N

was closely linked to soil inorganic-N, organic C, and available P

concentrations. Soil inorganic-N was positively related to soil
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organic C and available K concentrations. Soil available P was

significantly correlated with soil organic C and available K

concentrations. Depth had a significant direct impact on soil

nitrate-N and soil available K concentrations (Figure 4A). Soil

inorganic-N was significantly affected by soil nitrate-N and soil

ammonium-N. Soil organic C was significantly influenced by soil

nitrate-N concentration. Soil available P was significantly

determined by soil nitrate-N, ammonium-N, and Soil organic

C concentrations. Soil available K was significantly altered by

groundwater depth, soil ammonium-N, and available P

concentrations.

In the deep groundwater, depths were positively related to

soil nitrate-N and inorganic-N, organic C, and available P and K

concentrations (Figure 3B). Soil organic C was positively

associated with soil nitrate-N, soil inorganic-N, and soil

available P and K concentrations. Soil inorganic-N was

positively related to soil nitrate-N, soil ammonium-N, and soil

available P and K concentrations. Soil available P was

significantly correlated with soil nitrate-N and soil available K

concentrations. Soil available K was positively influenced by soil

nitrate-N and soil ammonium-N. A significant positive

correlation was shown between soil nitrate-N and soil

ammonium-N. Depth directly regulated soil nitrate-N and soil

organic C, available P and K concentrations (Figure 4B). Soil

inorganic-N was significantly altered by soil nitrate-N and soil

ammonium-N. Soil available K was significantly determined by

FIGURE 1
(A, C, E) represent variations of soil N concentration in shallow groundwater. (B, D, F) represent variations of soil N concentration in deep
groundwater.
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groundwater depth and soil available P concentration. Soil

organic C was significantly affected by groundwater depth.

Soil available P was significantly influenced by groundwater

depth and soil organic C concentrations.

Discussion

Soil inorganic-N, C, P, and K
concentrations affected by groundwater
depth

Nitrification and denitrification are crucial in regulating

nitrogen contents in ecosystems, whereas their rates are

affected by a variety of factors, such as groundwater levels

(Hefting et al., 2004; Rhymes et al., 2016), temperature (Reich

and Oleksyn, 2004; Lü et al., 2014), precipitation (Zhu et al.,

2017), and soil O2 levels (Burgin et al., 2010). Our results partly

support the first hypothesis that groundwater affected soil

nitrate-N and inorganic-N concentrations in the present

study. Soil nitrate-N concentrations were the highest at

0.8 and 1.2 m groundwater depths in the simulation

experiment in 2015 and 2016 (Figure 1A) may be due to soils

at 0.8 and 1.2 m groundwater depths having the best moisture

and aerobic conditions for nitrification (Li et al., 2015). This

finding is consistent with the following statements: moderate soil

moisture stimulates soil mineralization (Zhu et al., 2017); and soil

water content is significantly influenced by groundwater depth at

FIGURE 2
(A, C, E) represent variations of soil C, P, and K concentrations in shallow groundwater. (B, D, F) represent variations of soil C, P, and K
concentrations in deep groundwater.
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the same simulation experiment site (Li et al., 2015). In addition,

Soil nitrate-N concentrations were greater at 11.0 m groundwater

depths than at 2.5 and 4.5 m groundwater depths in the field

experiment in 2015 and 2016 (Figure 1B). It is consistent with the

report that drier slack dune soils inhibit denitrification, leading to

increased nitrogen retention and greater eutrophication (Rhymes

et al., 2016), and soil water content at 11.0 m groundwater depth

was significantly lower than those at 2.5 and 4.5 m depths

(Supplementary Figure S1).

However, soil nitrate-N concentration at 0.4 m groundwater

depth was lower than that at 0.8 and 1.2 m because the soil was

wetter and anaerobic conditions reduced the nitrification. This

finding confirmed that net nitrification is inhibited by the scarcity

of free oxygen in soil (Hefting et al., 2004). In contrast, soil

nitrate-N concentrations at 1.8 and 2.2 m were lower than those

at 0.8 and 1.2 m because the soils were too dry (Li et al., 2015),

and moisture inhibited nitrification. This result was similar to the

following finding: lower or higher soil moisture depressed soil

mineralization, resulting in the variation of soil inorganic-N

concentration (Zhu et al., 2017).

Conversely, no significant difference was found in

ammonium-N concentrations in shallow (0.4–2.2 m) and deep

(2.5–11.0 m) groundwater, which is consistent with the

observation that being different to nitrate-N, ammonium-N

was not influenced by soil water content (Song and Li, 2005).

In addition, the variation trends of inorganic-N under different

FIGURE 3
Relationships between groundwater depth and soil nutrients. Abbreviations of variables: WD, groundwater depth; C, soil organic carbon; NN,
soil nitrate-N; AN, soil ammonium-N; IN, soil inorganic-N; P, soil available phosphorus; K, soil available potassium. (A) Relationships between
groundwater depth and soil nutrients in the shallow groundwater; (B) Relationships between groundwater depth and soil nutrients in the deep
natural groundwater. * indicates the correlation was significant at a 0.05 level.

FIGURE 4
Controlling factor analysis of soil nutrients using the structural equation model. Solid lines indicate significant regressions (p < 0.05) and no
significant regressions by dashed lines. Blue arrows denote positive relationships, and red arrows denote negative ones. Abbreviations of variables:
WD, groundwater depth; C, soil organic carbon; NN, soil nitrate-N; AN, soil ammonium-N; IN, soil inorganic-N; P, soil available phosphorus; K, soil
available potassium. (A) Relationships between groundwater depth and soil nutrients in the shallow groundwater; (B) Relationships between
groundwater depth and soil nutrients in the deep natural groundwater.
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groundwater depths were similar to the changing trend of

nitrate-N (Figures 1A,B,E,F). The inorganic-N concentration

is the sum of nitrate and ammonium nitrogen. In this study,

soil nitrate-N concentration in the simulation experiment was

10-fold greater than the ammonium-N concentrations (Figures

1A,C). Therefore, the changing trend of inorganic-N was

attributed to the variation of nitrate-N. This finding is similar

to the changes in soil N in the field experiment (Figures 1B,D).

Hence, groundwater depth significant affected soil inorganic-N

concentration, especially nitrate-N concentration, in different

environments in an arid desert.

In previous studies, Gami et al. (2009) showed that soil organic C

is affected by soil drainage and landmanagement.Wang et al. (2000)

reported that soil moisture substantially affects soil organic matter

decomposition. Lower and higher soil moisture levels depress the

organic matter decomposition rate, resulting in soil organic C

concentration variation. Our study showed that groundwater

depth significantly influenced the soil organic C concentration in

shallow (0.4–2.2 m) and field deep (2.5–11.0 m) groundwater

(Figures 2A,B). The soil organic C concentration at 1.2 m

groundwater depths was greater higher than those at 1.8 and

2.2 m depths (Figure 2A). This finding is consistent with the

observation that soil moisture level at 1.2 m groundwater depth

may optimal for achieving the rate of organic matter

decomposition (Li et al., 2015), resulting in higher soil

organic C concentrations obtained at 1.2 m groundwater

depth than at other groundwater levels. In addition, soil

organic C concentration at 11.0 m groundwater depth was

significantly greater than those at 2.5 and 4.5 m (Figure 2B).

This finding is consistent with the results of a previous study, in

which soil moisture was the most vital factor affecting the

variation of soil organic C in the temperate grassland (Tao et al.,

2013) and there was significantly lower soil water content at

11.0 m groundwater depth than at 2.5 and 4.5 m

(Supplementary Figure S1). Hence, higher soil organic C

retention and lower C loss were likely obtained in drier soil

at 11.0 m groundwater depth.

Soil available P concentration depends on the dissolution of

phosphate minerals and the release of fixed phosphorus (Vance et al.,

2003). In the present study, no significant difference in soil P

concentration was found among different stimulated shallow

groundwater depths (Figure 2C), suggesting that groundwater

depth had no noticeable impact on the dissolution of phosphate

minerals and the release of fixed P in a short period. However, in the

field deep groundwater experiment, soil organic P concentration at

11.0 m groundwater depth was significantly greater than those at

2.5 and 4.5 m (Figure 2D). It is attributed to the dissolution of

phosphate minerals, and the release of fixed phosphorus might have

occurred over a prolonged period. The recalcitrant soil P pools do not

improve in the short term (Lehmann et al., 2001). This result is also

consistent with the observation that the P density of paddy soil is

influenced by groundwater table and soil drainage (Lin et al., 2009). In

addition, we concluded that P concentration was greater at 11.0 m

groundwater depth because the soil depth at 0–20 cm was drier,

resulting in the P loss at 11.0 m groundwater depth was less than that

at 2.5 and 4.5 m. It is also in accordance with the observation that at

11.0 m groundwater depth, soil water content was significantly lower

than at 2.5 and 4.5 m (Supplementary Figure S1).

The release of soil available K concentration is significantly

affected by soil moisture and groundwater (Wang et al., 2012;

Chen et al., 2014; Chen et al., 2017). In this study, soil available K

concentrations at 0.4 and 0.8 m groundwater depths were

significantly greater than those at 1.8 and 2.2 m groundwater

depths in the shallow groundwater depth (Figure 2E), which

suggested that soil moisture levels at 0.4 and 0.8 m groundwater

depths were suitable for the release of soil available K. This finding is

consistent with the fact that soil moisture is positively related to soil

available K, because changes in soil water affect the shrinkage and

expansion of clay minerals, resulting in the variation of fixation and

the release of soil K (Chen et al., 2014). In addition, soil available K

concentration at 11.0 m groundwater depth was significantly higher

than those at 2.5 and 4.5 m in deep groundwater (Figure 2F). This

finding suggested that soil available K loss was likely lower at

11.0 groundwater depth than at other depths.

Importance of groundwater depth as an
explanatory variable for soil nutrient
variability

Soil nutrient concentration is determined by multiple factors, such

as water levels (Hefting et al., 2004; Rhymes et al., 2016), temperature

(Reich and Oleksyn, 2004; Lü et al., 2014), precipitation (Zhu et al.,

2017), soil moisture content (Hefting et al., 2004; Lü et al., 2014), ages of

plants (Chen et al., 2014), and human factors (Wang et al., 2012; Chen

et al., 2017). In this study, our results confirm the secondhypothesis that

groundwater depth was one of the most critical environmental factors

affecting soil nutrient variation in an arid desert (Figure 4;

Supplementary Figure S6; Supplementary Table S1, S2).

Groundwater depths had a substantial direct effect on soil nitrate-N

(−0.25) and soil available K (−0.26) concentrations in stimulated

shallow groundwater (Figure 4A), and soil nitrate-N (0.85), soil

organic C (0.58), soil available P (0.56) and available K (0.60)

concentrations in field deep groundwater (Figure 4B). Kalita and

Kanwar (1993) reported that groundwater depth affects the nitrate-

N concentration in groundwater. Nitrate-N concentration in

groundwater decreases with increasing groundwater depth. This

finding is related to the fact that the level of soil nitrate-N

concentration that leached to the groundwater decreased with

increasing depth. It is also in accordance with the fact that soil

nitrate-N concentration was greatest at 1.2m than those at 0.4 and

0.8m depths (Figure 1A), and soil nitrate-N concentrations were

greatest at 11.0m groundwater depths than at 2.5 and 4.5m

(Figure 1B). Soil available K concentration was greatly determined

by groundwater depth in field deep groundwater (Figures 3, 4B). This

finding is consistent with our previous study that groundwater depth
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had a significantly positive impact on soil available P and K

concentrations at 2.5–11.0m depth (Zhang et al., 2018b), and

groundwater depth significantly influenced the soil K concentrations

at 2.25–3.26m depth in a desert riparian ecosystem (Zhang et al.,

2018c).

Groundwater depth had a significant impact on soil organic

C (0.58) and available P (0.61) concentrations in field deep

groundwater (Figure 4B). This finding was consistent with the

result that soil C and P concentrations at 11.0 m groundwater

depth were significantly greater than those at 4.5 m (Zhang et al.,

2018b), and groundwater depth significantly influenced the soil

organic C and available P concentrations at 2.25–3.26 m depth in

a desert riparian ecosystem (Zhang et al., 2018c). In the present

study, groundwater depth was the driving force for soil nitrate-N,

soil organic C, and available P and K variations in deep

groundwater (2.5–11.0 m), indicating groundwater depth was

the most crucial factor affecting soil nutrient concentration at the

south rim of the Taklamakan Desert.

Although we did a series of research work through a 2-year

simulation and field experiments, there are still three limitations

in our manuscript. First, we just tested the topsoil nutrients at 2.5,

4.5, and 11.0 m depths in the present study because we found no

significant differences between the soil organic C, total and

available N, and P concentrations beneath 50 cm soil depth at

depths of 2.5, 4.5, and 11.0 m on the same research site (Liu, 2011).

Hence, this paper can not elucidate how groundwater influences

different layers of soil nutrient concentrations. The soil nutrients at

0.2–11.0 m should be tested to reveal the influence of groundwater

depth on different layers of soil nutrients in the future. Second, the soil

particle size distribution, commonly used to classify soils and

determine related soil properties, significantly affects soil water

movement and soil erosion. As soil depth increased, soil particle

size decreased in Northwestern China (Zhao et al., 2016). The fractal

dimension values of soil particles ranged from 2.11 to 2.27 in the Cele

Oasis at the southern rim of the Taklimakan Desert. The soil particle

size in our study area is closely related to the soil organic matter

contents (Gui et al., 2010).Webelieve thefine soil particles are essential

in affecting soil C, N, P, and K concentrations under different

groundwater depths. Hence, the mechanism of fine soil particles

influencing soil nutrient cycles under different groundwater depths

should be investigated in the future. Third, the effects of groundwater

depth on soil nutrients may be over a long period and a complex

process. Hence, more long-term data and environmental factors

(temperature, precipitation, soil O2 levels, and microorganism) on

soil nutrients in control and field experiments under different

groundwater depths are needed to measure and elucidate the

response mechanism of groundwater depth in the future. Despite

the above limitations, our study synthesized the investigation of the

changes in soil nutrients under varying groundwater depths in an arid

desert ecosystem.Our results provide novel evidence that groundwater

depth modulates different mechanisms affecting the concentrations of

C, N, P, and K in the sandy soil of the desert in an arid region.

Conclusion

Groundwater depths significantly influenced soil nutrient

concentrations in shallow (0.4–2.2 m) and field deep

(2.5–11.0 m) groundwater. Soil nitrate-N and soil available K

concentrations were directly affected by the groundwater

depths in shallow and deep groundwater. However,

groundwater depth hardly altered soil ammonium-N

concentration in different groundwater depths. In the

shallow groundwater, depths indirectly influenced soil

inorganic-N, soil organic C, and available P concentrations.

In the field deep groundwater, soil inorganic-N was indirectly

affected by depth. Besides, depths directly influenced soil

organic C and available P concentrations in the field deep

groundwater. Hence, groundwater depth is one of the most

critical factors affecting soil nutrients in an arid desert

ecosystem. This study could help elucidate trends in C, N, P,

and K concentrations in desert soil with different groundwater

levels and their responses to declining groundwater depth in a

desert. These findings would further enrich the existing soil

heterogeneity studies and may contribute to the protection and

restoration of desert plants in a hyper-arid desert ecosystem.
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