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Grasslands are the main land cover type and one of the most important ecosystems in arid
and alpine endorheic basins. The vegetation coverage of grasslands is spatially
heterogeneous in arid and alpine areas and it may lead to variations in water
allocation. The Soil and Water Assessment Tool (SWAT) is one of the most widely
used semi-distributed catchment-scale eco-hydrological models. The leaf area index
(LAI) is one of the vegetation coverage indexes and is incorporated in the SWAT
model. However, in SWAT, the LAI accumulation is controlled by heat, and neglects
other relevant factors such as precipitation and terrain. To address the drawbacks of the
SWAT in simulating vegetation coverage and plant patterns, several studies have focused
on improving LAI estimation. However, they still have been limited to arid and alpine
grasslands with different vegetation coverages. In this study, wemodified the SWATmodel
using remotely sensed LAI data with high temporal and spatial resolution. We used this to
better simulate eco-hydrological processes in grassland basins with different vegetation
coverages in the upper reaches of the Bayin River Basin. Results showed that for the
original SWAT model, the simulated LAI was homogeneous within each land use/cover
type, whereas the remotely sensed LAI was spatially heterogeneous and better captured
the vegetation coverage of the entire basin. The proper estimation of the LAI was reflected
in the improved simulation of the monthly streamflow and sediment yield at the basin outlet
and the monthly ET. These findings indicate that the modified SWAT could better simulate
hydrological processes in arid and alpine grasslands with different vegetation coverages.

Keywords: soil and water assessment tool, vegetation coverage, global land surface satellite, leaf area index,
grassland

1 INTRODUCTION

Grasslands are the main land cover type and one of the most important ecosystems in arid and alpine
endorheic basins (Gao et al., 2010; Zhang et al., 2020). The vegetation coverage of grasslands is
spatially heterogeneous in arid and alpine areas due to the terrain and impacts of climate change and
human activities (Fu et al., 2012; Sun et al., 2019). Different vegetation coverages have key impacts on
eco-hydrological processes, as differences in canopy interception and transpiration ability may lead
to variations in water allocation from precipitation—such as surface runoff, evaporation, and soil
water storage (Yang et al., 2009; Guo et al., 2010; Feng et al., 2017). Thus, it is essential to consider
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vegetation coverage when simulating eco-hydrological processes
in arid and alpine grassland ecosystems.

Distributed and mechanised hydrological models are effective
tools for simulating and elucidating eco-hydrological processes at
different spatiotemporal scales (Gassman et al., 2007; Karlsson
et al., 2016; Huang et al., 2017). The Soil and Water Assessment
Tools (SWAT) is a key component of the United States
Department of Agriculture Conservation Effects Assessment
Program and is one of the most widely used semi-distributed
catchment-scale eco-hydrological models (Parajuli et al., 2010;
Wang et al., 2019; Pang et al., 2020). However, it has the following
limitations in modelling plant growth in grasslands with different
vegetation coverages in arid and alpine areas: 1) Land use/cover
types are important input parameters for SWAT to derive its
basic calculation unit—HRUs, but are generally classified without
consideration of the vegetation coverage (Jin et al., 2019). 2) In
SWAT, the leaf area index (LAI) is the key parameter that
connects vegetation dynamics with the water cycle (Arnold
et al., 2012; Alemayehu et al., 2017). It can reflect the plant
growth status, plant density, and vegetation coverage (Carlson
and Ripley, 1997; Jiang et al., 2019). However, in SWAT, the LAI
is calculated based on the average plant density in HRUs (Lai
et al., 2020). Moreover, LAI accumulation is controlled by a
uniform ideal leaf area development model based on heat, which
neglects other relevant factors such as precipitation and terrain
(Arnold et al., 2012; Ma et al., 2019).

To address these drawbacks, several studies have focused
on improving LAI estimation. Strauch and Volk (2013)
added a user-defined minimum LAI to the SWAT model
to simulate perennial vegetation included patterns in the
tropics. Alemayehu et al. (2017) incorporated a
straightforward but robust soil moisture index to improve
the vegetation growth module of SWAT for simulating LAI
in tropical forests. Lai et al. (2020) also involved average
forest density to the forest growth module of SWAT to
estimate eco-hydrological processes of forests with
different vegetation coverages in the Meijiang River Basin,
China. These adjustments added more parameters to the
plant growth module and thus improved the performance of
the SWAT in modelling eco-hydrological processes under
different plant densities and cover patterns. However, an
increase in parameters makes the model more complex. At
the regional scale, remotely sensed LAI has considerable
advantages over LAI values measured in the field. Ma
et al. (2019) proposed a method to enhance the modelling
of vegetation dynamics in evergreen forests. This method
used the Moderate Resolution Imaging Spectroradiometer
(MODIS) LAI product, which increases the applicability of
the SWAT in tropical or subtropical areas. Paul et al. (2021)
integrated MODIS LAI data into the SWAT to improve crop
yield predictions in homogenous row-crops. However, these
researches has been limited to arid and alpine grasslands
with different vegetation coverages.

During past decades, remote sensing techniques of different
platforms are used to rapidly and efficiently retrieve LAI on the
landscape scale, the sensors involves not only optical remote
sensing, but also the active LiDAR system ranges from terrestrial,

airborne, satellite based system (Zheng and Moskal, 2009; Zhao
et al., 2013). Most of the researches focused on the estimation of
spatial distribution of LAI in a given region with a single time
based on different remote sensing techniques (Zheng andMoskal,
2009). Another important aspect of LAI estimation is the time
series issue, which is important in land surface processes models
(Xie et al., 2019). The passive satellite remote sensing based long
time series LAI products are widely used because of the wide
spatial-temporal coverage and easy to access (Fang et al., 2012;
Xiao et al., 2016; Xie et al., 2019), such as MODIS (Moderate-
resolution Imaging Spectroradiometer) LAI (Zhao et al., 2013),
GLASS (Global LAnd Surface Satellite) LAI (Xiao et al., 2016),
GLOBMAP (Long-term Global Mapping) LAI (Xie et al., 2019)
etc. Among these LAI products, the GLASS LAI was proved
having high accuracy in China (Xiao et al., 2016).

In this study, we aimed to improve the simulation of eco-
hydrological processes in grassland basins with different
vegetation coverages. We combined the GLASS based and
Landsat-based LAI to obtain a LAI dataset with high
spatiotemporal resolution that could fit the time step and
spatial calculation units of the SWAT model. Next, we
replaced the LAI calculation module and mapped the grid-
based LAI to HRUs. The upper reaches of the Bayin River
were selected as the study area. The catchment is a typical
arid and alpine area located in the northeast of the Qaidam
Basin in the Qinghai-Tibet Plateau (Jin and Jin, 2020). The
majority of the catchment area is covered by grasslands with
different vegetation coverages (Zhu et al., 2012). The site-based
streamflow, sediment yield data and remotely sensed actual
evapotranspiration (ET) data of the Bayin River were used to
estimate the performance of the original and modified SWAT
models.

2 METHODS

2.1 Simulation of Vegetation Dynamics in
SWAT
SWAT incorporates a simplified erosion productivity impact
calculator model to estimate plant growth (Neitsch et al.,
2011). The plant growth module contains two parts: biomass
accumulation and LAI accumulation. LAI can reflect plant
growth status and plant patterns (Neitsch et al., 2011; Lai
et al., 2020), and its development model is described below.

Before the LAI reaches its maximum value, the new LAI on
day i is calculated as follows:

ΔLAIi � (frLAImax,i − frLAImax,i−1) × LAImax × {1
− e[5×(LAIi−1−LAImax)]} (1)

where ΔLAIi is the new LAI on day i; frLAImax,i and frLAImax,i−1 are
the maximum LAI calculated based on heat on days i and i − 1,
respectively; LAImax is the maximum LAI for a plant; and LAIi−1
is the LAI on day i − 1.

The LAI does not change after reaching its maximum value.
However, after leaf senescence exceeds leaf growth, the LAI is
calculated as follows:
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LAI � LAImax ×
1 − frPHU

1 − frPHU,sen
frPHU >frPHU,sen (2)

where LAI is the LAI on a day; LAImax is the maximum LAI for a
plant; frPHU is the accumulated potential heat unit fraction on a
day; and frPHU,sen is the fraction of days where leaf senescence
exceeds leaf growth in the entire plant growth season.

The actual LAI is affected by the stress factors. The plant
growth factor—defined as the fraction of actual plant growth to
potential plant growth—is used to adjust the LAI calculation on
each day as follows:

γreg � 1 −max(wstrs, tstrs, nstrs, pstrs) (3)
where γreg is the plant growth factor (range, 0–1); wstrs is the
water stress on a day; tstrs is the temperature stress on a day;
nstrs is the nitrogen stress on a day; and pstrs is the phosphorus
stress on a day. If one of the four stress factors exceeds 0, the LAI
on day i is adjusted as follows:

ΔLAIact,i � ΔLAIi ×
���
γreg

√
(4)

where ΔLAIact,i is the actual LAI on day i; γreg is the plant growth
factor; and ΔLAIi is the potential LAI calculated by Eqs 1, 2.
Neitsch et al. (2011) contains a detailed calculation of LAI in the
SWAT model. The LAI is an important parameter and influences
processes such as biomass, surface runoff, and ET (Neitsch et al.,
2011; Ma et al., 2019). Figure 1 shows the plant growth module of
the original SWAT model.

2.2 Modifications to the Simulation of
Vegetation Dynamics in SWAT
2.2.1 Derivation of the Land Use/Cover Classification
We derived land use/cover types using Landsat Operational Land
Imager images of upper reaches of the Bayin River in 2018. Using a
1:50,000 topographic map as the datum and the Albers projection,
images were geometrically corrected using a quadratic polynomial
model. Interpretation keys of the images were established using
land use maps and observed data for the same period, including 53

FIGURE 1 | The plant growth module of the original Soil and Water Assessment Tool (SWAT) model.

FIGURE 2 | Land use/cover type in the study area.
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ground control points (to verify the accuracy). Next, we performed
supervised human-machine classification and image interpretation
using ArcGIS 10.7 (ESRI, Redlands, CA, United States) and the
ENVI 5.6 image processing software (Harris Geospatial Solutions,
Inc., Broomfield, CO, United States). Results were compared with
land use maps of the study area for the corresponding period. On-
site verification revealed that the qualitative accuracy of the data
classification exceeded 93%. Compared with those of the existing
land use maps of the study area, the kappa coefficients of the
interpreted land use maps in this study exceeded 0.92. Main land
cover types in the study area were grassland and barren land. We
classified land use in this study as forest, grassland, water,
residential, and barren land (Figure 2).

2.2.2 Modifications to the Plant Growth Module
In the original SWATmodel, plant growth module estimates plant
growth and patterns based on the average vegetation density in
each HRU, and LAI represents the growth status and coverage for
one plant. Therefore, the LAI remains constant for one land cover
type unless the hydrothermal and nutrient conditions differ
between HRUs. To accurately derive the spatiotemporally
heterogeneous LAI, we replaced the LAI calculation module and
instead mapped the downscaled GLASS LAI to HRUs (Figure 3).

The spatial and temporal resolutions of the GLASS LAI product
used in this study were 500m and 8 days, respectively. However, the
spatial resolution of land use/cover, soil, and the digital elevation
model (DEM) used to derive HRUs was 30m, and the time step of
the SWATmodel was 1 day. Therefore, the GLASS LAI product was
downscaled to fit the SWAT model. The Enhanced Spatial and
Temporal Adaptive Reflectance Fusion Model (ESTARFM) (Zhu
et al., 2010) was used to produce fine-spatial-temporal-resolution
LAI maps by fusing coarse-spatial-fine-temporal and fine-spatial-
coarse-temporal remote sensing images. The ESTARFM contains
two fusion methods: blend-then-index (BI) and index-then- blend
(IB). BI inputs original images into the fusion model, blends them,
and then calculates the index, whereas IB calculates the index based
on original images, inputs the index maps to the fusion model, and
then derives synthetic maps. Recently, IB has been shown to be

generally more accurate than BI (Tian et al., 2013; Yan et al., 2018).
Therefore, we used the IB approach to generate the synthetic LAI.
The detailed fusion steps for the GLASS LAI and Landsat images
were as follows:

(1) A regression model was established between the GLASS LAI
and MOD13A1/MYD13A1 normalised difference vegetation
index (NDVI).

(2) The Landsat-based NDVI was used with the regression
model to obtain the Landsat-based LAI.

(3) The GLASS-based LAI was sampled to a 30 m resolution and
the projection of the Landsat- and GLASS-based LAI data
was uniformed.

(4) The Landsat- and GLASS-based LAI data were added to the
ESTARFM model to obtain the 8-day LAI with a resolution
of 30 m.

Spatially, one HRU may corresponding to mutiple LAI grids.
Thus, to map the grid-based downscaled GLASS LAI to each
HRU, we added the LAI of all the grids and calculated the average
value for each corresponded HRU. The plant growth module was
further modified to reflect the vegetation coverage for grassland.
Moreover, we used the piecewise linear interpolation method to
interpolate the 8-day GLASS LAI and derive the daily LAI to fit
the time step of the SWAT model.

2.3 The Study Area
The Bayin River watershed is located between 96°30′ and 98°10′E
and 37°02′ and 38°10′N in the northwest margin of the Qinghai-
Tibetan Plateau, and is a typical inland river (or terminal lake)
basin with a drainage area of approximately 10,000 km2. The upper
reach in QilianMountain has a drainage area of 6,499 km2 and was
selected as the study site (Figure 4). This area primarily generates
the runoff for the entire basin (Jin and Jin, 2020). Its elevation
ranges from 3,024 to 5,249 m, and the annual precipitation ranges
from over 150 mm (in areas above 3,100 m) to 500 mm (at the
summit). The dominant land cover types within the watershed is
grassland with different vegetation covarage, and the main soil
types are light frigid calcic soil and dark frigid calcic soil (Figure 4).

2.4 The SWAT Model Setup
The following data sets for the study area were used to setup the
SWAT model and evaluate its performance: 1) DEM with a spatial
resolution of 30m, 2) land use map with a spatial resolution of
30 m, 3) soil map with a spatial resolution of 30m, 4) climatic data,
including daily maximum andminimum air temperature and daily
precipitation at Delingha Meteorological station (all climate data
were obtained as daily averages), 5) the flow data at the outlet of the
study watershed (Delingha Hydrological Station), 6) the sediment
yield data at the outlet of the study watershed and 7) the
Operational Simplified Surface Energy Balance model-simulated
ET with a spatial resolution of 1 km (Lei et al., 2019). Apart from
the ET data, all other datasets were provided by the National
Tibetan Plateau/Third Pole Environment Data Centre of China
(https://data.tpdc.ac.cn/en/).

The SWAT model was run at monthly intervals for various
periods from 2013 to 2018: the warm-up period (2013), the

FIGURE 3 | The modified plant growth module.
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calibration period (2014–2016), and the validation period
(2017–2018). The model performance in fitting the observations
was measured using three objective functions according to Moriasi
et al. (2007): Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe,
1970), percent bias (PBIAS), and coefficient of determination (R2).
NSE measures the “goodness of fit” with a value ranging from 0 to 1
(indicating a perfect match). PBIAS measures the average tendency
of the simulated values to be larger or smaller than the observed
values, and is expressed as a percentage as follows: −10% to +10%
represents a very good performance rating, and −25% to +25%
represents a satisfactory performance rating. R2 describes the
proportion of variance in the measured data that is explained by
the model. R2 ranges from 0 to 1, with higher values indicating lower
error variance. Values greater than 0.5 are typically considered
acceptable (Nash and Sutcliffe, 1970; Moriasi et al., 2007; Jin
et al., 2015). NSE, PBIAS, and R2 were calculated as follows:

NSE � 1 − ⎡⎢⎢⎢⎣ ∑n
i�1(Vobs

i − Vsim
i )2

∑n
i�1(Vobs

i − Vmean)2⎤⎥⎥⎥⎦ (5)

PBIAS � ⎡⎢⎢⎣∑n
i�1(Vobs

i − Vsim
i ) × 100

∑n
i�1V

obs
i

⎤⎥⎥⎦ (6)

R2 �
[∑N

i�1(Vsim
i − �V

sim)(Vobs
i − �V

obs
i )]2

∑N
i�1(Vsim

i − �V
sim)2∑N

i�1(Vobs
i − �V

obs)2
(7)

3 RESULTS

3.1 Sensitivity and Calibration of
Parameters in SWAT
We built two SWAT models: the original SWAT model and the
modified SWAT model based on the remotely sensed,
spatiotemporally heterogenous and high-resolution LAI. Before
calibrating and validating the models, we determined the most
sensitive parameters—those were, key parameters and the degree
of parameter precision required for calibration (Arnold et al.,
2012; Jin et al., 2018). We used the monthly streamflow data from
the Deingha Station (2014–2016) to conduct a sensitivity analysis
of the original and modified SWAT models. Figure 5 shows
results of the sensitivity analysis and lists the ten most sensitive
parameters for streamflow simulation. The t-stat values
(Figure 5) provide a measure of sensitivity (where larger
absolute values indicate higher sensitivity) and the p-values
indicate the significance of the sensitivity (where p-values close
to zero indicate more significance). The first four parameters with
highest sensitivity in the original (Figure 5A) and modified
(Figure 5B) SWAT models were CN2 (initial SCS runoff
curve number for moisture condition II), ALPHA_BF (base
flow alpha factor), CH_K2 (effective hydraulic conductivity in
the main channel alluvium), and SOL_BD (moist bulk density).
The other sensitive parameters in the two models are listed
Figure 5. See Arnold et al. (2011) for details regarding the
parameters. These parameters were calibrated using the

FIGURE 4 | The study area.
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sequential uncertainty fitting version 2 algorithm in the SWAT-
CUP software. After the calibration of streamflow-related
parameters, four more sediment-related parameters were
calibrated: LAT_SED (sediment concerntration in lateral and
groundwater flow), USLE_P (USLE equation support practice
factor), SPCON (Linear parameter for calculating the maximum
amount of sediment that can be reentrained during chanel
sediment routing) and SPEXP (exponent parameter for
calculation sediment reentrained in channel sediment routing).

3.2 Remotely Sensed and
SWAT-Simulated LAI
We downscaled the GLASS LAI to fit the basic calculation units of
the SWAT model. Figures 6A,B shows a comparison of the
downscaled and original GLASS LAI data. Pixels of the two LAI
datasets had the same spatial distribution. Moreover, the
downscaled LAI had a higher spatial resolution and provided

more detailed spatial information. We calculated the monthly
average LAI for the entire watershed based on the downscaled
and original GLASS LAI datasets. The two datasets had the same
patterns of seasonal variations, where the LAI was highest in July
or August and lowest in January. While for the original SWAT
model, the LAI reaches the peak value in June (Figure 6C). In
almost every month, the remotely sensed LAI was noticeably
higher than the original SWAT simulated value. The deviation of
the downscaled and original GLASS LAI was −0.005 to 0.9 but
0.1–3.3 for the original SWAT simulated LAI and the two
datasets; the lowest and the highest deviation were during the
winter and during the summer months, respectively. The
correlation of the monthly LAI derived from the two datasets
was 0.9482 (Figure 6D). In summary, the downscaled remotely
sensed LAI data were reliable. We mapped the grid-based
downscaled GLASS (remotely sensed) LAI to each HRU.
Figure 7 shows the remotely sensed and original SWAT-
simulated long-term monthly average LAI mapped to the

FIGURE 5 | The sensitive parameters for the original (A) and modified (B) Soil and Water Assessment Tool (SWAT) models.

FIGURE 6 | Comparisons of the downscaled leaf area index (LAI) and the original Global LAnd Surface Satellite (GLASS) LAI. (A) Spatial distribution of the
downscaled LAI. (B) Spatial distribution of the original GLASS LAI. (C)Monthly variation of the downscaled LAI and GLASS LAI. (D)Correlation between the downscaled
LAI and GLASS LAI.
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HRU level. For the entire watershed, the remotely sensed LAI was
heterogeneous in each month. In contrast, in the original SWAT
data, the simulated LAI was homogeneous in the same land use/
cover types. In every month, the original SWAT simulated LAI
was 0 for the barren land, slightly higher for the grassland, and
highest for the sparsely distributed forest land (Figure 2).

3.3 Simulations of the Streamflow
The performance of the original and modified SWAT models in
simulating the monthly streamflow is shown in Figure 8 and

Table 1. During the calibration and validation periods, the
original SWAT model had the R2 of over 0.87, the NSE over
0.85, and the PBIAS within 0–9%. For the modified SWAT, the R2

was over 0.90, the NSE was over 0.89, and the PBIAS was within
0–4%. The performance of the modified SWAT to simulate the
monthly streamflow was better than that of the original SWAT.

3.4 Simulations of the Sediment Yield
The performance of the original and modified SWAT models in
simulating the monthly sediment yield is shown in Figure 9 and

FIGURE 7 | The remotely sensed (a1–a12) and Soil and Water Assessment Tool (SWAT)-simulated (b1–b12) long term (2014–2018) monthly average leaf area
index (LAI) on hydrological response units (HRUs). The boundaries between the HRUs are not shown.

FIGURE 8 | The monthly streamflow simulated by the original and modified Soil and Water Assessment Tool (SWAT) models compared to the that of observed
streamflow.
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Table 2. During the calibration and validation periods, the
original SWAT model had the R2 of over 0.85, the NSE over
0.79, and the PBIAS within 15–28%. For the modified SWAT, the
R2 was over 0.87, the NSE was over 0.86, and the PBIAS was
within −15 to 25%. The performance of the modified SWAT to
simulate the monthly sediment yield was obviously better than
that of the original SWAT.

3.5 Simulations of the ET
The spatial resolution of the remotely sensed ET data was
relatively high (1 km). Therefore, we analysed the performance
of the original and modified SWAT models to simulate the
monthly ET at subbasin level (Figure 10). The results
demonstrated that in most subbasins, the R2 and NSE values
of the modified SWAT were higher than those of the original
SWAT. Moreover, the absolute value of PBIAS was lower for the
modified SWAT than for the original SWAT in most subbasins:
During the calibration and validation periods, 82 and 83% of the
subbasins for the modified SWAT had higher R2 and NSE values
than that for the original SWAT. For the modified and original
SWAT, there were 62 and 55% of the subbasins had the PBIAS
values in −25 to 25%, respectively, during both of the calibration
and validation period. Therefore, the modified SWAT showed
better performance than the original SWAT in simulating the
monthly ET.

4 DISCUSSION

The simulated LAI was homogeneous within a land use/cover
type for the original SWAT, whereas the remotely sensed LAI was

spatially heterogeneous and could better capture the vegetation
coverage of the entire basin. The LAI calculated by the original
SWAT was primarily affected by land use/cover types, water
stress, temperature stress, nitrogen stress, and phosphorus stress
(Arnold et al., 2012; Alemayehu et al., 2017). Only one
meteorological station exist in the Bayin River Basin, and all
of the vegetation is natural and without fertilisation. Therefore, in
the original SWAT model, the spatial heterogeneity of LAI in
Bayin River Basin was only determined by the land use/cover
types (Figures 2, 7). The second-level classification of grassland
(Figure 4) could reflect vegetation coverage (Jia et al., 2018).
However, these land cover types are not included in the plant and
land cover database of the SWAT (Arnold et al., 2012). Therefore,
the original SWAT simulated LAI values were the same for one
land cover type. This does not conform to the spatial
heterogeneity of vegetation coverage especially within
grassland (Figure 4) in Bayin River Basin (Wang et al., 2014;
Yang et al., 2018). The downscaled remotely sensed LAI data in
this study was reliable, because: 1) Most remotely sensed LAI
products have gaps and missing values, and either underestimate
or overestimate the LAI in many areas (Fensholt et al., 2004; Sun
et al., 2014; Li et al., 2018), while the GLASS-based LAI used in
this study was spatially and temporally continuous with no gaps
and missing values and had high quality and accuracy in China
(Zhao et al., 2013; Li et al., 2018; Xie et al., 2019). 2) The GLASS
LAI was downscaled, and higher resolution LAI data would
reduce the mismatch boundary of HRUs in SWAT models
(Ma et al., 2019). The modified SWAT incorporated the
downscaled remotely sensed LAI which could better reflect the
spatiotemporal heterogeneity of the LAI and thus overcame the
limitation of the original SWAT.

SWAT models are commonly calibrated and validated with
streamflow and sediment yield data at the outlet of a watershed,
which improves the reliability of themodel simulations (Gassman
et al., 2007; Jin et al., 2015; Yang et al., 2020). The improved LAI
can improve the simulation results of the canopy interception
loss, soil water content, runoff and further, the whole water
budget in SWAT (Jaromir and Karsten, 2010; Zheng et al.,
2018; Ma et al., 2019). Moreover, the erosion process would
be improved because the SWAT model compute erosion caused
by rainfall and runoff with the Modified Universal Soil Loss
Equation (MULSE). In MUSLE, the average annual gross erosion

TABLE 1 | The performance of the original and modified Soil and Water
Assessment Tool (SWAT) models in simulating the monthly streamflow.

Modified SWAT Original SWAT

R2 Calibration period 0.9 0.87
Validation period 0.95 0.90

NSE Calibration period 0.89 0.84
Validation period 0.94 0.89

PBIAS (%) Calibration period 3.3 8.1
Validation period 3.7 14.6

FIGURE 9 | The monthly sediment yield simulated by the original and modified Soil and Water Assessment Tool (SWAT) models compared to the that of observed
sediment yield.
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is predicted as a function of runoff factor. Therefore, the modified
SWAT that incorporated the high resolution LAI corresponded
to a better estimation in streamflow and sediment yield. This
study used high-resolution (1 km) remotely sensed ET data
(SSEBop) to validate the original and modified SWAT models
at the subbasin and HRU levels, because model performance
should be analysed at a more detailed scale as well, especially
when testing high-resolution input data (Alemayehu et al., 2017;
Paul et al., 2020). SSEBop is also known to have a higher quality
than several other datasets in grass covered surface (Herman
et al., 2018; Dembélé et al., 2020). LAI is a key parameter that
calculate the regional ET. Thus, the modified SWAT
corresponded to a better estimation in ET. In summary,
streamflow, sediment yield and ET which are the vegetation
coverage-affected processes (Chen et al., 2006; Wang et al.,
2021) were more accurate when using the remotely sensed

high temporal and spatial resolution LAI. The spatial and
temporal accuracy of the LAI was confirmed as being of
crucial importance for SWAT predictions.

Coupling the SWAT model with the MODIS LAI product has
been used for enhanced modelling of green vegetation dynamics
(in tropical or subtropical areas) and crop patterns (in semi-arid
areas), and may improve the applicability of SWAT in
corresponding areas (Ma et al., 2019; Paul et al., 2020). The
improvement of the SWAT in these studies was catalogued by the
remotely sensed LAI, which could properly capture a more
realistic plant phenology and patterns at a higher resolution.
In this study, the remotely sensed LAI could capture the
vegetation coverage of the grassland and barren land, which
are the main land cover types for the whole study area. In
addition, considerable areas of barren land have been
converted to grassland under the impact of climate change
and artificial vegetation restoration, and the vegetation
coverage of grassland has increased in the Bayin River Basin
(Jin et al., 2019). These changes can be elucidated in the LAI with
high spatial and temporal resolution derived in this study.

The major limitations of this study are as follows: 1) There is
only one meteorological station in the study area, which
presented the only set of meteorological data. Although, two
paraneters (PLAPS, precipiattion lapse rate; TLAPS, temperature
lapse rate) were used to modify the precipitaion and temperature
of the study area. This would still impose uncertainties in
hydrological process modelling, especially in mountainous

FIGURE 10 | The performance of the original andmodified Soil andWater Assessment Tool (SWAT) models in simulating themonthly evapotranspiration at the level
of subbasins.

TABLE 2 | The performance of the original and modified Soil and Water
Assessment Tool (SWAT) models in simulating the monthly streamflow.

Modified SWAT Original SWAT

R2 Calibration period 0.93 0.89
Validation period 0.87 0.82

NSE Calibration period 0.89 0.83
Validation period 0.86 0.79

PBIAS (%) Calibration period 21.24 27.28
Validation period -15.20 15.60
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areas. 2) Piecewise linear interpolation was used to interpolate the
8 days and 30 m LAI data to the daily time interval. However, the
LAI may not vary linearly, and this may cause some uncertainties.

5 CONCLUSION

Using remotely sensed LAI data with high spatiotemporal
resolution, we modified the SWAT model to better simulate
eco-hydrological processes in grassland basins with different
vegetation coverages in the Bayin River Basin. Site-based
streamflow, sediment yield data and remotely sensed ET data
(at the subbasin and HRU levels) were used to estimate the
performances of the original and modified SWAT models. We
report two important findings. First, the simulated LAI was
homogeneous within a land use/cover type for the original
SWAT, whereas the remotely sensed LAI was spatially
heterogeneous and could better capture the vegetation
coverage of the entire basin. Second, the improved LAI may
be used to simulate canopy interception loss, soil water content,
and the water budget; therefore, the modified SWAT performed
better than the original SWAT in simulating the hydrological
processes.
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