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The Qinghai–Tibet Plateau (QTP) plays a significant role in global climate change and
biodiversity conservation. As the third pole of the Earth, it has a wide range and complex
terrain. QTP has a vertical distribution of vegetation, and its forest ecosystems play a key
role in the region. Forest extraction in this region is still a comprehensive problem because
of the phenological periods of different forest types in distinct regions of the QTP and the
characteristics of frequent rain and cloudy weather in the south. Taking these factors into
consideration, multiple features, including reflectance, spectral indices, statistical
backscattering coefficients, topographic slope, and aspect, derived from a multisource
dataset incorporating optical remote sensing data, synthetic radar, and digital elevation
models, were applied to extract forest in the QTP based on the random forest (RF)
classification method. As more than 30 features were involved, the 5-folded cross-
validation method was used to determine the optimal parameters and features for the
RF model. Using 14,919 forest samples and a multifeature optimized RF classification
model, a 10-m resolution forest cover map of QTP in 2021 was generated based on the
Sentinel series of satellite datasets and digital elevation model datasets on the Google
Earth Engine (GEE) platform. After verification, the overall accuracy of the forest cover map
generated in this article is 98.3%, and the Kappa coefficient is 0.95, which is better than the
European Space Agency (ESA) WorldCover forest layer.

Keywords: Qinghai-Tibet plateau, Google Earth engine, random forest, forest cover map, Sentinel satellite images,
multisource dataset

1 INTRODUCTION

As the primary component of the terrestrial ecosystem, the forest is one of the key indicators of global
warming and carbon storage changes (Fang et al., 2001; Gao et al., 2022). The growth status and cover
area of the forest ecosystem have a certain relation to a series of global and regional changes, such as
temperature shift and water regulation, biodiversity disturbance, and human settlement construction
(Pickell et al., 2016; Li et al., 2022; Su et al., 2022). Forest cover extraction is an intuitive observation
element for forest ecosystems in the fields of global warming and changes in the human living
environment. Therefore, accurate and quick extraction of the forest cover is quite meaningful for
scientific research and political decision on global climate change and human activity.
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As the third pole, the Qinghai–Tibet Plateau (QTP) is the
largest geographic area with the highest elevation on the Earth
and acts as an important indicator for climate warming,
hydrological cycle, and phenological changes in east Asia and
even for the whole world (Yang et al., 2011; Qiu, 2012; Yao et al.,
2012; Liu et al., 2017). The plateau shows significant
environmental features, such as cold climate in a high
elevation region and unique ecological patterns known as
“Tibetan zonation” (Mo et al., 2004). The QTP region has a
large variety of ecosystem types, from the subtropical broadleaf
forest in the southeast mountain region and mixed coniferous
forest in the east mountain region to alpine grassland in the
northwest desert region (Zhang, 1978; Chen et al., 2014).
Meanwhile, climate change has an obvious effect on the
phenological information of coniferous forests and
broadleaf forests in the QTP region, such as temperature,
precipitation, and radiation (Wang et al., 2020). For example,
the shift of temperature at the start and end of the growing
season has the main effect on the extent of trees in the forested
area across the QTP (Wang et al., 2020). Moreover, global
warming brings forward the growth period of forests in
nontropical regions of the northern hemisphere, which
forces forests to face the water stress or frost risk and
suppresses the forest growth in the dry region of
Qinghai–Tibet Plateau (Yang et al., 2017). Therefore, the
forest cover extraction helps researchers to understand the
response of the QTP ecosystems to global change.

In the field of forest information extraction, remote sensing is
an accurate and efficient technology to obtain large-scale forest
cover mapping. For forest cover extraction in the large-scale
region, the various models of support vector machine, decision
trees, and random forest (RF) were proposed to serve for the
experiments, while the RF algorithm has the balance between the
classification accuracy and operation efficiency (Belgiu and
Drăguţ, 2016). Since Google Earth Engine (GEE) was designed
to make planetary-scale remote sensing analysis feasible, this
cloud-based platform for geospatial research provides access to
abundant multisource datasets and the capacity to utilize cloud
computing resources (Gorelick et al., 2017). According to the
packaged machine learning algorithms in the GEE platform,
remote sensing applications over a large area, involving large
volumes of data, are becoming more prevalent (Rogan et al.,
2008). In recent years, there are many types of research
implemented to enlarge the forest cover extraction in the GEE
platform by the RF algorithm (Long et al., 2019; Zhang et al.,
2020; Hu et al., 2021). Chen et al. (2019) developed the first
Sentinel-2 10-m resolution global land cover map (FROM-
GLC10) in 2017, which is generated by the global training
samples from Landsat images. FROM-GLC10 utilized all the
spectral bands but the atmospheric bands from Sentinel-2
images and the elevation, slope, and aspect data from the
Shuttle Radar Topographic Mission as the source datasets. As
the multisource forest cover map, FROM-GLC10 has the benefit
of more training features and better distinguishing forests from
shrubs or grasslands, compared with the single data source
products. However, the parameters of the random forest
model for the large-scale forest cover were not discussed in

the research. The performance of the random forest model
was not fully explored.

As the mapping forest cover over large areas is concerned,
some questions are needed to discuss the parameters and features
of the classification model in the remote sensing field. As an
ensemble classifier producing multiple decision trees, RF has the
capacity of handling high-dimensional andmulticollinearity data,
as well as achieving fast and insensitive to overfitting (Belgiu and
Drăguţ, 2016). The trees of the RF are created by drawing a series
of training samples through a bagging approach, which denotes
that the training samples could be selected randomly from the
dataset and construct the variability of trees and stability of RF.
The structure of the RF model is defined by the tree number,
maximum depth of the tree, minimum sample number to split an
internal node, and minimum sample number to be at a leaf node
(Breiman, 2001). Since the RF classifier has been applied for land
cover, there are still some contents to research about the influence
of the classifier parameters and feature importance on the
classification results of forest cover extraction in the QTP
region. When the sample number becomes enormous and the
classification region becomes large-scale, the parameters of RF in
the process decide the stability and accuracy of the result. The
combination of features from the multisource data influences the
balance of precision and efficiency in the RF classifier.

The objective of this article was to quantify and analyze the
parameter usage of the RF model in mapping the forest cover in
the QTP region and to explore its parameterization and
sensitivities to changes in sampling combinations. Section 2
presents the study area and datasets of the Qinghai–Tibet
Plateau forest cover extraction experiment. In Section 3, the
method of training features and RF classifier generated in the
experiment is presented. The results and analysis of forest cover
extraction parameters and quantitative comparison in the QTP
region are shown in Section 4. Conclusions are presented in
Section 5.

2 STUDY AREA AND DATASETS

2.1 Study Area
The Qinghai–Tibet Plateau (QTP) is located in southwest China
and has the largest high altitude area on Earth. The extent of the
QTP region is from 73.48° to 105.63° east longitude and
24.65°–40.66° north latitude. As the “Third Pole of the Earth”
after the Antarctic and Arctic, the QTP has the greatest variety in
climate types, biological species, and ecological types in the world
(Fu et al., 2010; Gao et al., 2016). The main mountain range in the
QTP shows the tendency of extending from east to west, while the
terrain is high in the northwest and low in the southeast. Since the
winter season is affected by the high-altitude west wind, and the
summer season is affected by the south humid airflow, the QTP
has formed regional differences between the humid climate in the
southeast and the arid climate in the northwest. In addition, the
northwest is adjacent to the central Asian desert, and there is little
precipitation from the north. The abovementioned topographic
pattern and atmospheric circulation characteristics constitute the
difference in the geographical combination of temperature and
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moisture conditions on the plateau, showing a general trend of a
gradual change from a warm and humid climate in the southeast
region to the cold and arid climate in the northwest region. In the
distribution of the vegetation ecosystem, it is shown as the
incremental change of forest, meadow, grassland, and desert,
which distributes roughly from east to west in latitude. The study
area is shown in Figure 1. The forest examples in the eastern,
southern, and northern regions of the QTP are presented in
Figure 2.

2.2 Datasets and Multiple Features
2.2.1 Remote Sensing and Elevation Dataset
The Google Earth Engine platform provides the Sentinel series
dataset after terrain correction and radiometric correction. The
annual time-series dataset of Sentinel surface reflectance was used
to obtain the cloud-free pixels for the image mosaic. The Sentinel-
2 surface reflectance was acquired from the GEE platform
(Gorelick et al., 2017). The Sentinel-2 multi-spectral dataset in
the GEE platform provides wide swath and high-resolution

FIGURE 1 | Information on the elevation and main rivers in the QTP region.

FIGURE 2 | (A–C) Forest examples in the eastern, southern, and northern regions of QTP.
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imagery. Due to the flying regulation of the twin satellites in the
same orbit and opposite phase, Sentinel-2 has the advantage of
obtaining a revisit frequency of 5 days. The Sentinel-2 dataset has
13 spectral bands which include four bands at 10 m, six bands at
20 m, and three bands at 60 m spatial resolution. The Sentinel-2
dataset provides abundant imagery of high temporal and spatial
resolution, which ensures the most cloud-free mosaic and
appropriate selection for forest phenological time. The
Sentinel-1 synthetic radar datasets (SAR) and Sentinel-2
multispectral instrument (MSI) datasets were selected to
mosaic the remote sensing image for classifying training and
forest cover mapping. The Sentinel-1 SAR ground range-detected
(GRD) dataset in the GEE platform provides the ability of dual
polarization detection, high temporal resolution, and rapid
product delivery. The Synthetic radar dataset has the
advantage of operating at wavelengths detecting information
of clouds or shadow regions and the cloud acquires ground
data during day or nighttime under all weather conditions.
The Sentinel-1 dataset contains C-band imagery operating in
four exclusive imaging modes with three resolutions, four scene
polarization combinations, and three instrument modes.
Therefore, the Sentinel-1 dataset could extract trees under
clouds existing in the multispectral dataset.

The previous studies presented that the elevation and warmth
have a considerable influence on the distribution and growth of
trees (Acharya et al., 2011; Gao et al., 2017). For example,
population that declines in the low-elevation forest were more
impressionable than the high-elevation forest by the warming-
driven declines (Conlisk et al., 2017). Hence, a digital elevation
model (DEM) was applied to add the information on gorges,
mountains, and hills for forest classification in the plateau. In the
study, we chose the Shuttle Radar Topography Mission (SRTM)
dataset (Farr et al., 2007) as the DEM on the QTP. The SRTM
dataset is a global topographic dataset at a resolution of 30 m
provided by the NASA Jet Propulsion Laboratory.

To remove the opaque and cirrus clouds pixels in the dataset,
the QA60 band of Sentinel-2 multispectral surface reflectance was
used to mask most clouds and cloud shadows. In addition, the
cloud-like pixels, which are close to bright white in visible bands,
are removed to ensure that the dataset is cloud-free. Then, the
images of the dataset from April to September were selected to
ensure the growth state of the forest present in the mosaic map.
The mosaic QTP multispectral image was produced by the
median value of the filtered dataset. In the mosaic
multispectral image, there was some empty area lacking cloud-
free values in the filter condition. Thus, the median value of the
full-time annual multispectral dataset was filtered by the QA60
band to mask clouds and fill up the empty area. This method
finally produced a mosaic map, which chose the growth state of
the forest presented in the map.

2.2.2 Multiple Features
The accuracy of the classification model is influenced by the
reliability and diversity of training data in the samples. In the
classification process, the key to forest cover extraction research is
how to identify forests from the features which have similar
spectral information, such as shrubland, grassland, or farmland.

In addition, the extraction of forest cover in the mountain shadow
is an influencing factor of accuracy. To address the problems, 33
types of features were generated from the Sentinel-1 SAR,
Sentinel-2 MSI, and SRTM datasets. For multispectral indices,
we selected the normalized difference vegetation index (NDVI),
soil-adjusted vegetation index (SAVI), normalized difference
moisture index (NDMI), normalized difference water index
(NDWI), and global environmental monitoring index (GEMI).
For the synthetic aperture radar, we selected the origin value,
median value, mean value, and standard deviation of
interferometric wide (IW) swath different polarization
datasets. For the digital elevation model, we selected the
topographic slope and aspect of SRTM as the DEM indexes.
In addition, the 10 spectral bands of Sentinel-2 surface reflectance
are selected in this research. The spatial resolution of Sentinel-1 is
10 m, while spatial resolution of Sentinel-2 is 10 and 20 m, and
the spatial resolution of SRTM is 30 m. The different metrics of
the multisource datasets are interpolated to the spatial resolution
of 10 m. The revisit times of Sentinel satellites are six and
five days, respectively. The median value pixels of different
satellites were selected to mosaic the training feature dataset.
The major information of the multiple features selected in
Sentinel-1, Sentinel-2, and SRTM is listed in Table 1. The
flowchart of multiple features dataset generation is shown in
Figure 3.

2.2.2.1 Multi-Spectral Features.
1) NDVI

NDVI is a usable index showing the relation of photosynthetic
activity and growing season length at the high northern
latitude (Tucker et al., 2001). NDVI is calculated by Eq. 1.

NDVI � ρNIR − ρRed( )/ ρNIR + ρRed( ), (1)
where ρNIR and ρRed denote the surface reflectance of near-
infrared (NIR) and red bands, respectively.

2) SAVI

Aiming to reduce the influence of soil on canopy spectra, SAVI
was created by utilizing the soil adjustment factor L to adjust the
NDVI equation (Qi et al., 1994). SAVI is calculated by Eq. 2.

SAVI � ρNIR − ρRed( )/ ρNIR + ρRed + L( )( )p 1 + L( ), (2)
where L represents the amount of green vegetative cover and is
defined as 0.5 in the areas with the moderate green vegetation
cover.

3) NDMI

NDMI has stable performance in the accuracy of detecting
hardwood and softwood forest disturbance (Jin and Sader,
2005). NDMI is calculated by Eq. 3.

NDMI � ρNIR − ρSWIR1( )/ ρNIR + ρSWIR1( ), (3)
where ρSWIR1 is the shortwave infrared (SWIR) 1 band.
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4) NDWI

NDWI is an effective index for detecting plant phenology and
characterizing the vegetation type in the temperate region (Boles
et al., 2004; Delbart et al., 2005). The advantage of NDWI offers it
the ability to better obtain the phenological data assessment of
vegetation growth than NDVI. Hence, NDWI is selected to assist
the forest cover extraction and calculated by Eq. 4.

NDWI � ρGreen − ρSWIR1( )/ ρGreen + ρSWIR1( ), (4)
where ρGreen is the green band.

2.2.2.2 Synthetic Aperture Radar Features
As dual-polarization SAR satellite data, Sentinel-1 GRD product
records backscattering coefficients (VV and VH) and is sensitive
to the coniferous and deciduous trees (Rüetschi et al., 2017).
Sentinel-1 GRD data have a better detecting ability for bare soils
and artificial surfaces due to its different reactions on the surface
of these two land cover classes. In addition, the features of SAR
data are relevant to vegetation during the leaf-off period, which is
attributed to the sensitivity of SAR sensors to the internal

structure of elements (Mercier et al., 2019). In the study, the
mean, median, and standard deviation values of the annual
Sentinel-1 GRD backscattering coefficient products were
generated to present the land cover features in the annual range.

2.2.2.3 Digital Elevation Model Features.
In the alpine regions, the richness of forest reaches the highest at
mid-elevations and declines at high elevations (Grime, 1973). As
far as the aspect is concerned, warmer soil temperatures and
deeper active layer in the south-facing slopes have more species
compared to the north-facing slopes, while the aspect of north-
facing slopes influences on the forest species (Dearborn and
Danby, 2017).

2.2.3 Gray Level Co-Occurrence Matrix Channel
The gray level co-occurrence matrix (GLCM) channel is an
appropriate and credible method for multispectral imagery to
extract the textures of spectral information (Clausi, 2001; Huang
et al., 2014). The GLCM is widely applied in the imagery texture
analyses and has obtained better results than other texture
discrimination methods (Rao et al., 2013; Wang et al., 2015).

TABLE 1 | Major information of multifeatures selected in Sentinel-1, Sentinel-2, and Shuttle Radar Topography Mission (SRTM).

Satellite Feature Spatial resolution (m) Revisit time (d) Reference

Sentinel-1 VV 10 6 —

— VH 10 6 —

— VVAscDescMediana 10 6 —

— VHAscDescMedian 10 6 —

— VHAscMedian 10 6 —

— VHDescMedian 10 6 —

— VVAscDescMean 10 6 —

— VHAscDescMean 10 6 —

— VHAscMean 10 6 —

— VHDescMean 10 6 —

— VVAscDescStdDevb 10 6 —

— VHAscDescStdDev 10 6 —

— VHAscStdDev 10 6 —

— VHDescStdDev 10 6 —

Sentinel-2 Blue 10 5 —

— Green 10 5 —

— Red 10 5 —

— Red Edge 1 20 5 —

— Red Edge 2 20 5 —

— Red Edge 3 20 5 —

— NIR 10 5 —

— Red Edge 4 20 5 —

— SWIR 1 10 5 —

— SWIR 2 10 5 —

— NDVI 10 5 Tucker et al. (2001)
— SAVI 10 5 Qi et al. (1994)
— NDMI 10 5 Jin and Sader (2005)
— NDWI 10 5 Delbart et al. (2005)
— EntropyNDV I 10 5 Zhang et al. (2017)
— CorrelationNDV I 10 5 Zhang et al. (2017)
— ContrastNDV I 10 5 Zhang et al. (2017)

SRTM Elevation 30 — Grime (1973)
— Aspect 30 — Dearborn and Danby (2017)
— Slope 30 — Dearborn and Danby (2017)

aAsc: ascending observation mode; Desc: descending observation mode.
bStdDev: standard deviation.
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In the GLCMmatrix, the element (i, j) locates in the (i, j) position
and expresses the probability of the distance and orientation for
the other pixels with gray levels i and j. It presents the quantitative
spatial connections of a pixel in an image with the neighbor pixels
and describes a square matrix whose scale is equal to the largest
grayscale in the image (Fu et al., 2010). Although GLCM can
reflect some indexes to an extent, there is still an obstacle to
utilizing directly the GLCM as a quantitative measurement of
texture (Wang et al., 2015). Instead, the second-order statistical
texture features, which are generated by the GLCM, could extract
various texture information of the image. The second-order
statistical texture features used in the article are entropy,
correlation, and contrast of NDVI index, and their respective
equations are determined by the GLCM images.

2.2.3.1 Entropy.
Entropy (ENT) is a measure of image indeterminacy and reflects
the degree of disorder in an image. The ENT value of an arable land
is larger than that of forest land, so the entropy index presents a
dependable ability to separate the forest and arable land (Zhang
et al., 2017). The entropy index is calculated by Eqs (5) and (6).

ENT � −∑
N

i

∑
N

j

P i, j( )lgP i, j( ), (5)

P i, j( ) � # i1, j1( ), i2, j2( )[ ] ∈ S|f i1, j1( )( ) � g1 & f i2, j2( )( ) � g2{ }
#S

, (6)

where f(i,j) represents a 2D gray-scale image, g1 and g2 denote the two
gray values in the image, while #S is the total amount of two pixels
containing a certain spatial relationshipwithin a specified distance.P is
defined as the squarematrix, and its value shows the probability of the
spatial location relationship of the set of pixels (Zhang et al., 2017).

2.2.3.2 Correlation.
Correlation (COR) presents the horizontal or vertical texture
similarity of two pixels in the image, and the value of correlation
enlarges as the texture distribution exists in a certain direction. In
forest land, the COR value is a bit larger than that of farmland
(Zhang et al., 2017). The correlation is calculated by Eqs 7–11.

COR � ∑N
i ∑N

j i − �x( ) i − �y( )P i, j( )
σxσy

, (7)

�x � ∑
N

i

i∑
N

j

P i, j( ), (8)

�y � ∑
N

j

j∑
N

i

P i, j( ), (9)

σ2x � ∑
N

i

i − �x( )2 ∑
N

j

P i, j( ), (10)

σ2y � ∑
N

j

j − �y( )2 ∑
N

i

P i, j( ), (11)

FIGURE 3 | Flowchart of multiple feature dataset generation.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9391516

Guo et al. Forest Cover Map of QTP

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


2.2.3.3 Contrast.
Contrast (CON) denotes the depth and the smoothness of an
image within a certain range, and the stripe pattern makes the
contrast value of farmland greater than that of the forest land. The
contrast is calculated by Eq. 12.

CON � ∑
N

i

∑
N

j

i − j( )2P i, j( ). (12)

3 METHODS

Amultiple features method based on RF classification was used to
extract the forest cover for the QTP. The technical flowchart of
the extraction method and validation process is shown in
Figure 4.

3.1 Sample Selection
In the region of the Qinghai–Tibet Plateau, 14,919 sample points
were generated randomly with a distance larger than 1 km. To
label the samples by the forest and nonforest types, the sample
points are labeled based on the high-resolution satellite image on
the Google Map and expert knowledge. In the sample dataset,
there are 1,716 forest samples and 13,203 nonforest samples. To
ensure uniform distribution of samples, the forest and non-forest

samples are randomly divided into training and validation
datasets, respectively. Facing the imbalance class dataset, the
RF classifier has a stable capacity to control the classification
error and sample quantity imbalance (O’Brien and Ishwaran,
2019). The location of samples in the QTP is shown in Figure 5,
and the amount of samples is shown in Table 2.

3.2 Model Optimization and Validation
In the previous studies, the parameter setting of models to map
land cover over large areas was a critical work for the algorithm.
When the mapping of forest cover over large areas is discussed,
there are three challenges to the accuracy of models required to
address: 1) to evaluate the parameters with the highest accuracy;
2) to select the best features set used as the input data; and 3) to
establish the classifier accuracy over large areas (Belgiu and
Drăguţ, 2016). As proposed by Breiman (Breiman, 2001), RF
has demonstrated its ability to yield accurate land cover maps
with abundant input features (Belgiu and Drăguţ, 2016). RF
classifier is an ensemble model created by multiple decision
trees and trained by the subset of training sample and
variables selected randomly by the trees of RF.

In the theory of the RF model, the maximum depth of trees
(MDT), minimum number of samples to split an internal node
(MSP), and minimum number of samples to be a leaf node (MSL)
mainly determine the classification result. Among the three
parameters, the MSL is less correlated with the MSP;

FIGURE 4 | Technical flowchart of the classification and validation process.
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therefore, we only adjusted the number of MDT and MSP while
keeping MSL as 1 (without any constraint). To obtain the stable
results of RF in different parameters, the 5-folded cross-validation
technique is applied. In the process of 5-folded cross-validation,
the four-fifths of samples dataset were selected randomly and
nonrepeatedly to train the RF model, and the remaining fifth
validate the overall accuracy of the model. During the test of every
set parameter, 10 times 5-folded cross-validation was
implemented to get the average value of overall accuracy and
standard deviation. In addition, the feature importance of the
whole sample dataset was computed to present the reduction
created by the feature for the model. In the training process, all
the features were selected randomly and nonrepeatedly to act as
the split feature combination, and the feature importance was
evaluated by the out-of-bag error (OOB) to compute the
contribution of the feature to every tree in the RF. The feature
importance presents the average impurity decreased by each
feature over all the trees in the random forest model, when

the features for internal nodes of trees are selected with gini
impurity or information gain.

In this article, the RF algorithm provided by the GEE platform
was applied to train the classifier and extract the forest cover. The
sample dataset is separated randomly from the training dataset
with 7,021 samples and the validation dataset with 7,898 samples.
The training dataset with 33 features for the mosaic remote
sensing imagery is chosen to train the RF model in the GEE
platform. In addition, the optimal parameters for the RF model
were set by the combination of the best accuracy and standard
deviation. In order to validate the accuracy of the forest cover
map, the forest cover extraction generated by RF was validated by
the validation samples and compared with European Space
Agency (ESA) WorldCover map by the validation samples.
The results are compared quantitatively by overall accuracy
(OA), Kappa coefficient Khat, user accuracy (UA), and
producer accuracy (PA), and their equations are listed in Eqs
13)–(16.

OA � ∑
r

i�1
xii/N, (13)

Khat � N∑r
i�1xii −∑r

i�1 xi+x+i( )
N2 − ∑r

i�1 xi+x+i( ) , (14)
UA � xii/xi+, (15)
PA � xii/x+i, (16)

FIGURE 5 | Location of samples in the QTP.

TABLE 2 | Amount and class of samples selected in the QTP region.

Class Amount Training Validation

Forest 1,716 802 914
Nonforest 13,203 6,219 6,984
Total amount 14,919 7,021 7,898
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where r represents the class types, N represents the number of
whole samples, xii represents the number of correctly classified
samples, and xi+ and x+i represent the numbers of samples in row
i and column i of the confusion matrix, respectively. In this
experiment, xii contains the number of forest and nonforest
samples classified correctly as their corresponding class. PA is
the probability that forest or nonforest samples on the ground are
classified as such; UA is the probability that the classified forest or
nonforest samples are present on the ground.

4 RESULTS AND ANALYSIS

4.1 Classifier Model Parameter Selection
In the process of forest cover mapping over large areas, the overall
accuracy of the RF model is affected by parameters, such as the
MDT, MSP, and MSL. As far as the RF is concerned, the
maximum depth determines the maximum depth of the tree
in the RF and it is necessary to limit the number of maximum
depth when the samples amount and feature number are
abundant. The minimum samples split demonstrates the
minimum sample number to split an internal node, and the
minimum samples leaf decides the minimum samples number to
be a leaf node. Through the 10 times 5-folded cross-validation of
14,919 samples with 33 features, the RF was composed of various
combinations of maximum depth and minimum samples split,
and their average value of overall accuracy and standard deviation
are presented in Figure 6.

The number of minimum samples to be a leaf (MSL) is less
than the number of minimum samples to split an internal node
(MSP), so the MSL set to 1 means that there is no limitation for
the MSP. When controlling the variable of MSL to one, the two
variables of the maximum depth of trees (MDT) and MSL are
tested according to the accuracy and standard deviation of the RF.
As the MDT increases from three to 20 and MSP increases from
three to 25, the accuracy has experienced a gradual steady trend
after rising and the standard deviation has experienced a gradual

steady trend after decreasing, when the MDT arrived at the value
of 10. After the value, the accuracy and standard deviation had
dynamic stability between the interval section. When the
maximum depth and minimum samples split were selected to
be 13 and 4, respectively, the average accuracy is achieved at
96.698% and the standard deviation achieved at 0.00319, which
was the best result of the whole results. Therefore, the three
variables of maximum depth 13, minimum samples split 4, and
minimum samples leaf 1 were set as the final parameters of RF in
the forest cover mapping process.

4.2 Feature Importance Analysis
After the parameter testing process, the feature importance was
computed as the total reduction of the criterion brought by that
feature. The feature importance demonstrated the total decrease
in the node of tree impurity and was averaged over all trees of the
ensemble (Menze et al., 2009). In the features importance
ranking, the red edge 1 band, red band, short-wave infrared
red band, NDVI, elevation, green band, and SAVI demonstrated
significant importance in the rank, which have relevant to spectral
and growth characteristics of the forest. When 11 features were
removed in the RF, the standard deviation of the classification
result increased evidently to 0.004. When 28 features were
removed from the classifier, the average precision of the
classification result decreased evidently below 96%. The 30
features of the importance rank were selected for the
classification. The relation between the features and feature
importance is shown in Figure 7, and the accuracy and
standard deviation curve after feature removal are shown in
Figure 8.

4.3 Training Accuracy of the Extracted
Forest Cover
According to the parameters and features selected by the
accuracy evaluation and features importance analysis, the
forest cover classification result for the year 2021 in the

FIGURE 6 | Average accuracy and standard deviation for the variable range of maximum depth and minimum sample split. The range of MDT, MSP, and MSL are
set from 3 to 20, 3 to 25, and 1, respectively.
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QTP region was generated by the optimal RF model in the
GEE platform. Limited by the computation ability in the GEE
platform, the training dataset of 7,021 samples was selected
randomly to adapt to the computing power. The out-of-bag
error (OOB) estimate index of the classification is 0.033, and
the Kappa coefficient is 0.99936.

4.4 Accuracy Validation and Comparison
With ESA WorldCover
As the famous land cover mapping result generated by Sentinel
series satellites, the European Space Agency (ESA) WorldCover
2020 product (Zanaga et al., 2021) is based on the Sentinel-1
C-band SAR GRD data and Sentinel-2 multi-spectral L2A surface

FIGURE 7 | Relation between features and feature importance. The feature importance is listed by the Red Edge 1 set as 100%.

FIGURE 8 | Accuracy and standard deviation curve after feature removal. The features are removed by the importance from low to high.
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reflectance image data. The classifier of the ESA WorldCover
product was trained by different models of scenarios with a
gradient boosting decision tree algorithm (CatBoost)

(Prokhorenkova et al., 2018). In this study, the forest cover
layer of the ESA WorldCover 2020 product was selected as the
comparison map to evaluate the accuracy of the RF forest cover

TABLE 3 | Confusion matrix of the RF forest cover map.

Classification result

Forest Nonforest Total amount User accuracy (%)

Forest 887 27 914 97.1
Nonforest 108 6,876 6,984 98.5
Total amount 995 6,903 7,898 —

Producer accuracy 89.1% 99.6% — —

Overall accuracy 98.3%
Kappa coefficient 0.950

TABLE 4 | Confusion matrix of the ESA WorldCover 2020 Forest layer.

Classification result —

— Forest Nonforest Total amount User accuracy (%)

Forest 781 133 914 85.4
Nonforest 259 6,725 6,984 96.3
Total amount 1,040 6,858 7,898 —

Producer accuracy 75.1% 98.1% — —

Overall accuracy 95.0%
Kappa coefficient 0.771

FIGURE 9 | Forest cover map for the QTP year 2021.
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map. As there is a low-frequency forest cover change, the time
difference between the ESAWorldCover 2020 forest layer and the
RF forest cover map is ignored in the section.

Since the ESA WorldCover 2020 product contains other types
of layers which are nonforest, these layers are classified as the
nonforest type in the comparison section to facilitate the
calculation of forest extraction in the overall accuracy and
Kappa coefficient. In the quantitative evaluation, the RF forest
cover map has less forest and nonforest commission and
omission error in the validation samples than the ESA forest
cover layer. For the forest class extraction, the forest cover map
generated by RF has a user accuracy of 97.0%, which is better than
that of the ESA WorldCover 2020 forest layer at 85.4%. The
confusion matrix of those classifications is shown in Table 3 and
Table 4. The forest cover map for the QTP year 2021 is shown in
Figure 9, and the forest cover map for the ESA year 2020 is shown
in Figure 10.

4.4.1 Partial Region Comparison
In the forest cover extraction of the Qinghai–Tibet Plateau, the
background context of the forest is complex, and the phenology
phase of the forest is different. This situationmakes it necessary to
compare the forest cover extraction in different regions of the
Qinghai–Tibet Plateau. In the section, the ground truth, ESA
WorldCover, and RF forest cover of the eastern, southern, and
northern regions in the QTP are presented in Figure 11.

In the eastern region of the QTP (a-c), the nonforest cover is
well-extracted in the RF WorldCover forest layer, while the ESA
forest cover identified some roads and shrubland as forest. In the
southern region of the QTP (d-f), the forest cover in the mountain
sunny side is better extracted in the RF forest cover result than the
ESA WorldCover Forest layer. When the forest type on the dark
side and sunny side of the mountain is the same, the ESA
WorldCover forest layer loses the forest extraction on the
sunny side and the RF model performs the whole forest
extraction on the sunny side. This difference is related to the
aspect and slope features of the digital elevation model in the RF
model. In the northern region of the QTP (g-i), the forest cover
near the striped fields of farmland is extracted failed in the ESA
WorldCover Forest layer, while the RF forest cover result
performs better. The performance has relation to the gray-
level correlation matrix features of the RF model, such as
entropy and correlation.

5 DISCUSSION

5.1 Image Selection and Cloud Masking
The image mosaic in the plateau region is challenging for large-
scale forest extraction because of the dense cloud cover and
appropriate growing time phase filter. To avoid the cloud
cover in the southern Tibet region during the growing time

FIGURE 10 | Forest layer of ESA WorldCover 2020.
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phase, this research selected the nongrowing time phase cloud-
free images to fill the map generated primarily from cloud-free
images. In the southern Tibet region, the nongrowing season
from October to March is characterized by dryness and little
rainfall, and the forest during this period remains evergreen.
Hence, the forest of the southern Tibetan valley is presented in the
images during the rainy growing time phase.

5.2 Classifier Model Parameter
Optimization
The parameters of the classifier model influence the accuracy
and error of multifeature forest extraction in large-scale

complex geomorphic areas. The values of maximum depth
of trees, minimum samples to split an internal node, and
minimum samples to be a leaf are the major parameters of
the random forest classifier. As the MDT increased, the
accuracy of random forest achieved stability increased. As
the MSP increased in the invariant section of MDT,
the accuracy of the classifier achieved a trend of first
increasing and then decreasing. Because the value of MSL
is less than that of MSP, the MSL has a relation to MSP and
does not need to be tested. In the test process of MDT and
MSP, the accuracy and error have the best results of 96.698%
and 0.00319, when the MDT and MSP are selected as 13 and 4,
respectively.

FIGURE 11 | Comparison of the ground truth (Google Earth), (B,E,H) ESA WorldCover forest layer, and RF forest layer in the eastern (A,C), southern (D,F), and
northern (G,I) regions of the QTP.
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5.3 Feature Analysis and Combination Filter
As the multisource datasets in the multispectral, synthetic
aperture radar, and digital elevation model are imported, the
extraction result of the classifier depends on the combination of
multifeatures. According to the 5-folded cross-validation, the red
edge 1 band, red band, short-wave infrared red band, NDVI,
elevation, green band, and SAVI demonstrated importance
exceeding 50% of the paramount importance. In addition, 30
features in the importance rank are composed of the best
combination of random forest classifiers in the forest cover
extraction, when the accuracy and error would not be affected
by the combination.

5.4 Topography Influence for Forest
Extraction
The spectral signature of forest in the mountainous regions
depends on the orientation of the surface slope (Proy et al.,
1989), and the canopy structural parameters influence the
reflectance distribution function of the flat and sloped forest
(Wen et al., 2018). The spectral reflectance of the forest cover in
the sunny side of the composite slope has a relation with the slope
and aspect. The forest cover map of the RF model has the ability
of extracting the forest in the sunny side of the mountain with the
assistance of the slope and aspect, while the ESA WorldCover
Forest layer missed the forest in the sunny side with the absence
of aspect. In addition, the training samples in the different aspects
of the rugged terrain are included in the classification training
dataset.

The current method in this research has a contribution of
the forest cover extraction in the different types of terrain but
do not extract forest types and attributes, which will be our
further study.

6 CONCLUSION

In this article, an automated pipeline for generating an annual
forest cover map of the Qinghai–Tibet Plateau (QTP) based on
a random forest (RF) algorithm on the Google Earth Engine
(GEE) platform was proposed. This method took advantage of
all the available Sentinel series images to create a cloud-free
mosaic image in the QTP region and produced a novel 10-m
resolution annual forest cover map for 2021. A method to
optimize the parameters and training features of the RF model
was created in the study. This method would refine the
application of parameters and multifeatures in the RF
model. Through the experiment, the optimal parameters for
the RF model in forest cover extraction of the QTP region were

selected, while the maximum depth of the tree, the minimum
sample number to split an internal node, and the minimum
sample number to be a leaf were selected as 13, 4, and 1,
respectively. For the features trained in the model, there were
seven features with the importance exceeding 50%, and they
were red edge 1, red, short wavelength infrared band 2, the
normalized difference vegetation index, elevation, and green
and soil-adjusted vegetation index. The overall accuracy and
Kappa coefficient of the forest cover mapping generated by the
optimal random forest in the GEE platform were 98.291 and
0.94958, respectively.
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