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In recent years, the frequent fouling accidents have posed a serious threat to people’s life
and property safety. Owing to the wide distribution of pollution sources and variable
meteorological factors, it is a very time-consuming and labor-intensive task to map the
pollution distribution using traditional methods. In this work, a study on the mapping of
pollution distribution based on satellite remote sensing is carried out in Yunnan Province,
China, as an example. Several machine learning methods (e.g. K-nearest neighbor,
support vector machine) are used to analyze the effects of conditions such as multiple
air pollution and meteorological data on pollution distribution map levels. The results
indicate that the ensemble learning model has the highest accuracy of 72.32% in this
application. The new pollution distributionmap using this classifier has 5,506more pixels in
the most severe pollution level than the traditional map. Last, the remote sensing-based
map and the manual measurement-based map were combined with corresponding
experience weight to obtain a weighted pollution distribution map.

Keywords: remote sensing, pollution distribution map, machine learning, environmental pollution, electric power
system, fusion

1 INTRODUCTION

Along with the continuous development of industry, the frequency and severity of heavy polluted
weather are currently increasing in urban areas (Shen et al., 2017; Nakata et al., 2018; Ning et al.,
2018; Cheng et al., 2022). The occurrence of heavy polluted weather adversely affects the external
insulator performance of substation equipment (Nekahi et al., 2015). When fouling on the insulator
surface of electrical equipment accumulates to a certain level, the foul flashover phenomenon easily
occurs, thereby threatening people’s life and property safety (Zhang et al., 2011; Zhao et al., 2013).
“Fouling” here means anything that can be deposited on the surface of the insulator and interferes
with its performance (e.g., bird droppings). The ocean is also considered a source of significant
impact on the insulator, as sea salt dilutes over long distances in the water to form a conductive film.
The sources of pollution in inland cities are mainly from anthropogenic emissions (e.g., carbon
emissions and nitrogen emissions).

The traditional pollution distribution map (PDM) is based on the “Drawing method of pollution
distribution map for electric power system” (Administration, 2010), which is generally revised once
every 4 years. The specific drawing process is as follows: 1. Investigate the distribution of pollution
sources in the region and draw the distribution of pollution sources. 2. Investigate and collect the
relevant meteorological parameters in the region and draw the meteorological distribution map,
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which can also be illustrated using text and diagrams. 3. Draw the
salt density measurement map according to the salt density
measurement (An et al., 2002) and at the same time mark the
location of the foul flash fault point in the map. 4. Integrate the
above three types of map and combine the equipment operation
experience to draw the regional PDM. Although such a general
rule is helpful to help determine the level of pollution,
determining the actual level of pollution severity at the site is
a very complex task, as the local climate must be strongly
considered. Owing to the lack of detailed data, past experience
plays a decisive role. In addition, with the location of the pollution
sources, the intensity of pollution, weather, and other factors, the
levels of the PDM vary from year to year, making it very
cumbersome to draw, and the technicians are not informed of
changes in the PDM in a timely manner. The process is
influenced by subjective factors, which affects the objectivity
and accuracy of the map. An accurate PDM can help the
power supply company optimize the arrangement of
monitoring points and promptly clean the more seriously
fouled insulators to ensure stable equipment operation
(Volpov and Kishcha, 2017). In recent years, more and more
polymer insulators have been gradually replacing ceramic
insulators, greatly reducing the frequency of fouling and
flashing accidents (Verma and Chakraborty, 2018). This is
because of its hydrophobic surface, which is not conducive to
the formation of conductive films even in the presence of water
and contaminants. However, their actual performance, aging rate,
hydrophobic loss, and recovery time are closely related to the
local meteorological conditions. In any case, PDM is important
information for power utilities. Hong et al. (2012) similarly
pointed out the disadvantages of a traditional PDM and
initially developed a general framework for the standard
mapping of electronic pollution distribution.

With the launch of satellites and the continuous
improvements in retrieval technique (Xu et al., 2022; Xiang
et al., 2021; Pei et al., 2022; Shi et al., 2022), satellite remote
sensing has become a promising approach for the monitoring of
various atmospheric pollutant concentrations according to
certain spectral ranges. For example, the moderate resolution
imaging spectroradiometer (MODIS) and the cloud-aerosol lidar
and infrared pathfinder satellite observation can acquire the
distribution of aerosol optical depth (AOD) using passive
remote sensing and laser remote sensing, respectively. Some
past studies have used machine learning methods to estimate
PM2.5 concentrations using satellite-derived AOD. OMI and
TROPOMI can provide the distribution of pollutant gases
such as atmospheric nitrogen dioxide (NO2) concentrations
(Ogen, 2020; Cooper et al. 2022) and sulfur dioxide (SO2)
concentrations. The 7 × 5.5 km2 spatial resolution and short
revisit period of TROPOMI provide convenience for many air
pollution studies (Pei et al., 2020; Zhang et al. 2022).

Machine learning is widely used in the study of prediction and
classification. Common methods such as random forests, neural
networks, and support vector machines have been shown to have
good performance using remote sensing data (Lary et al., 2016;Maxwell
et al., 2018; Yang et al., 2020; Li et al., 2020a; Li et al., 2020b). Machine
learning (Jordan and Mitchell, 2015) is a data-driven approach, also

known as a “black box” model. The advantage of machine learning is
that it does not require knowledge of the mathematical equations
between individual natural factors and polluted levels, it can summarize
the intrinsic connections from the data and is highly adaptive and
resistant to interference. There is no standard or empirical formula for
the relationship between natural factors and fouling density (Ruan et al.,
2015). Meteorological data are more readily available than equivalent
salt deposit density (ESDD) measurements, and the inference of the
PDM level from meteorological data enables real-time monitoring of
insulator resistance to fouling, avoiding the economic losses anddangers
of energized measurements associated with power outages during
traditional monitoring.

In this study, first, we tried to predict the PDM level using
machine learning methods and compared the accuracy of several
common classifiers. Second, the method with the highest accuracy
was selected to map the machine learning–derived PDM in the
Yunnan Province, China, with an accuracy that meets the
engineering needs and can be used by relevant departments.
Compared with the traditional PDM, the machine
learning–derived PDM with high accuracy could update in time,
which can timely find the pollution sources in the areas where no
measurement points are deployed. At the same time, the traditional
PDM is based on the analysis and summary of a large number of
operational experiences. In particular, the pollution levels near
manual measurement sites are considered convincing, and the
training and test sets are randomly selected from among them.
The fusion method proposed in this study can provide a reasonable
integration of the two. Figure 1 presents the schematic of this study.

2 MATERIALS AND METHODS

2.1 Study Area
YunnanProvince is located in the southwest of China and is a highland
mountainous province. Its climate is basically of the subtropical plateau
monsoon type, with a distinct three-dimensional climate, small annual
temperature differences, large daily temperature differences, and
distinct dry and wet seasons. The average annual precipitation
across Yunnan Province is 560–2300mm, and the average annual
temperature is 6.9–27.1°C. Thewet season is fromMay toOctober, and
the precipitation is approximately 85% or more of the year. The
meteorological conditions of high humidity and low wind speed
increase the probability of pollution flashover accidents. For these
reasons, Yunnan Electric Power Company has taken several measures
to prevent the occurrence of foul flashes. A PDM for this province was
defined by evaluating the state of insulators in high-voltage test stations
and the contamination they experience. Figure 2 shows a manually
drawn PDM in 2018. Pollution level 1 indicates the most heavily
polluted area, which requires focused attention and timely cleaning of
insulators. Moreover, the number of pixels in level 1 is 1,297 in
Figure 2.

2.2 Manual Drawing Method of Pollution
Distribution Map
The PDM is drawn by each local (municipal) power supply
company as the basic unit, and the PDM of the power system
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in the region is drawn according to the site pollution severity
class. In addition, if possible, measurement of ESDD and
nonsoluble deposit density (NSDD) on a selected as-is
insulator can provide direct information for determining the
required creepage distance to that insulator. Likewise, chemical
analysis for pollution is sometimes useful. The pollution severity
class is based on a combination of three factors: typical
environment, operating experience, and site pollution severity.
When the three do not agree, it is determined according to
operational experience. The mapping department needs to
briefly analyze the environmental and atmospheric pollution
status, geomorphological features, and pollution characteristics

of the region. Figure 3 shows the procedure of manually drawing
the PDM. Figure 2 shows a manually drawn PDM in 2018. The
main indicator for the current classification of pollution levels is
the ESDD.

Most of the ESDD measurement points are set according to
the distribution of lines, substations, and heavy pollution
sources, with uneven spatial distribution. In general, 110kV
and above transmission lines located in the suburban areas, in
principle, every 2.5 km 5 km need to set up a measurement
point. Away from the town of farmland areas, generally 5 km
10 km need to set up a measurement point. Measurement
points in mountainous and hilly areas without serious
environmental pollution can be selected as appropriate.
Lines through the local pollution sources should be set up
to monitor the point. For areas with significant pollution and
complex composition, more measurement points need to be
set up (Administration, 2010). In Yunnan Province, there are
354 salt density measurement points from 2017 to 2019, as
shown in Figure 4.

2.3 Pollution Measurements
The site pollution severity class can be determined by measuring
the ESDD and NSDD of reference insulators taken from existing
installations or field test station installations. The equivalent
amount of attached salt is the equivalent amount of NaCl on the
insulating surface. When it and the actual deposit on the
insulator surface are each dissolved in a certain amount of
water, they will have equal volumetric conductivity. The
equivalent amount of salt in milligrams per square
centimeters is used to express this. The polluted level is
divided into four classes with a salt density of 0.06, 0.01, and
0.25 mg per cm2.

FIGURE 1 | Workflow diagram of the proposed framework for estimating the pollution distribution map (PDM).

FIGURE 2 | Manually drawn map of the pollution distribution in Yunnan
Province by the electric power department in 2018.
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2.4 Data Sources and Preprocessing
The source of dirt is the root cause of the accumulation of dirt on
the surface of the equipment. The conductivity of the salts
contained in the equipment surface fouling after wetting is the
cause of fouling and flashing. The wind and precipitation in the
meteorological conditions have an important influence on the
amount and rate of the accumulation of fouling on the surface of
the equipment. Precipitation is an important condition for the
wetting of the equipment surface fouling and is the cause of
fouling accidents. Thus, the remote sensing data used in this
study include the following: tropospheric NO2 column
concentration (Zheng et al., 2019), SO2 column
concentration, PM2.5, PM10, Sentinel-2–derived NDVI
(D’Odorico et al., 2013), and nightlight (bands 1–6). In
addition to these few common pollutants, NDVI can
indirectly reflect the degree of vegetation cover and the
degree of influence by human activities (Qiu et al., 2022).
Nighttime light imagery (Liu et al., 2012; Li et al., 2013) has
been used as an indicator of the intensity of human activity in
many studies. Li et al., 2017 demonstrated the harshness of the
Syrian civil war using the dramatic reduction in the nighttime
lighting of Luojia-1. Oda et al. (2018) produced a high spatial
resolution global carbon emission inventory using nighttime
lights as a proxy. PM2.5 and PM10 were derived from the China
High Air Pollutants (CHAP) dataset (Wei et al., 2021), which
refers to the long-term, full-coverage, high-resolution, and high-

quality ground-level air pollutants in China. Next, emission
inventories of various pollutants (bands 7–17) were provided by
the Multi-Resolution Emission Inventory for China (MEIC)
project, as shown in Table 1. Emissions inventories (Han et al.,
2017; Shi et al., 2020; Shi et al., 2021) provide a good
representation of the distribution and intensity of
anthropogenic emissions. Table 1 shows these remote
sensing data as well as specific information on emission
inventories (e.g., provider and resolution). In addition, wind
speed and precipitation (bands 18 and 19) were provided by
meteorological stations. In conclusion, we obtained the
pollution source location of Yunnan Province using a web
crawler (https://wryjc.cnemc.cn/). The results of kernel
density analysis were used as the 20th band.

In this study, the remote sensing images were preprocessed
using ENVI software. Each band was resampled to 0.1°. Using
AOD and NO2 as examples, Figure 5 shows the average results
for 2019 in Yunnan. AOD is used to describe the degree of
attenuation of light by aerosols (Xu et al., 2022; Liu et al., 2022),
also called atmospheric turbidity. Particles in the atmosphere
mainly originate from natural sources (e.g., ground dust and
volcanic ash) and anthropogenic emissions. The main
anthropogenic emissions are the burning of fossil fuels such as
oil and coal. High NO2 is located in densely populated cities
(Kunming, the capital city of Yunan), owing to the large amount
of nitrogen-containing exhaust emissions from cars.

FIGURE 3 | Procedure of manually mapping pollution distribution.

TABLE 1 | Datasets information used in this work.

Dataset Satelite Data Sources Spatial Resolution Time Resolution

SO2 TROPOMI Google Earth Engine 7 × 5.5 km2 Daily
NO2 TROPOMI Google Earth Engine 7 × 5.5 km2 Daily
NDVI Sentinel 2 Google Earth Engine 30 m 16 days
Nightlight NPP-VIIRS Google Earth Engine 400 m Monthly
EMISSIONa

— MEIC (He, 2012) 0.1° Yearly
CHAP MODIS Wei et al. (2021) 1 km Daily

a
“EMISSION” here contains OC, CO2, CO, NH3, NOx, SO2, VOC, PM2.5, EC, and PM10 emissions.
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2.5 Machine Learning
Machine learning (ML) has been widely used in remote sensing
fields recently (Li et al., 2021; Smith et al., 2021; Chen et al., 2022b;
Song et al., 2022; Chen et al., 2022a; Gui et al., 2020). The
K-nearest neighbor (KNN) algorithm (Zhang and Zhou, 2007;
Luo et al., 2022) is one of the most basic and simple ML
algorithms. It can be used for both classification and
regression. It performs classification by measuring the distance
between different feature values. The support vector machine
(SVM) (Joachims, 1998) is a binary classification model whose
basic model is a linear classifier defined by maximizing the
margin on the feature space. The naïve Bayes method (Lewis,
1998) is a classification method based on Bayes’ theorem and the
assumption of conditional independence of features. The decision
tree model is a simple and easy-to-use nonparametric classifier. It

does not require any a priori assumptions on the data, and it
computes fast. Moreover, the result of the decision tree model is
easy to interpret and is robust. The backpropagation neural
network (BPNN) (Karsoliya, 2012) is a multilayer feedforward
network trained by error backpropagation, and its basic idea is the
gradient descent method, which uses the gradient search
technique to continuously adjust the parameters in order to
minimize the mean square error between the actual and
desired output values of the network. BPNNs have extremely
strong nonlinear mapping capabilities and can be used to solve
classification and regression problems.

The ensemble learning model (ELM) (Dietterich et al., 2002)
solves a single prediction problem by building several models. It
works by generating several classifiers/models that each learn and
make predictions independently. These predictions are finally

FIGURE 4 | Distribution of AOD (A) and NO2 (B) after kriging interpolation.

FIGURE 5 | The relationship between the error and the distance for different L values.
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combined into a combined prediction and therefore outperform
any single classification to make a prediction.

2.6 Data Fusion
Traditional manually drawn PDMs are decisions based on
extensive operational experience. This is usually considered
plausible; however, this is limited to the vicinity of the
measurement point. We believe that the error of the manually
drawn PDM increases with the distance to the nearest
measurement point. Meanwhile, the PDM obtained by ML is
considered to have the same error. In conclusion, we propose a
reliable method to fuse these two PDMs. This can ensure the
accuracy of the area near the measurement point and also take
advantage of the ML-based pollution area distribution map. The
pollution severity class errors of the ELM-derived PDM were set
to 0.5, 1, 2, and 3 when the polluted levels were 1, 2, 3, and 4,
respectively. Likewise, the ELM-derived PDM judged to be of
high polluted level is considered to have high accuracy. The
pollution severity class error of the manual PDM can be expressed
by Eq. 1.

σmanual � 1 − e−
D
L , (1)

where D represents the distance to the nearest measurement
point and L needs to be set based on our running experience. It is
often called the correlation length in some exponential variance
models. The relationship between the error and the distance is
shown in Figure 6 for different L values. Here, L is an empirical
value. The distribution of pollution is regular, and the pollution
level decreases as the distance from the source increases. A
measurement point can only reflect the situation in its
vicinity. A smaller L means that the manual measurement
points only reflect the level of pollution in the closer area and
vice versa. The appropriate magnitude of L is important for the
fusion results. L was set to 5 km in this study. Note that the units
of D and L need to be consistent.

For two measurements of the same parameter, we can get a fused
result based on the error and uncertainty of themeasurement. In this
work, this is a weighted PDM. The specific fusion method is shown
in Eqs 2 and 3. This method not only takes advantage of ML
prediction (timely prediction and low cost) but also takes into
account the high confidence of the traditional PDM near manual
measurement points. In addition, the attached weighted error
distribution map can help the power system determine whether
the pollution levels at different locations are credible.

Weighted_Class � Class1
σ2( )2

σ1( )2 + σ2( )2 + Class2
σ1( )2

σ1( )2 + σ2( )2,
(2)

Weighted_Error �
�����������
σ1( )2 + σ2( )2

√
, (3)

where Class1 and Class2 are the pollution severity classes of the
ELM-derived PDM and manual PDM, respectively. σ1 and σ2 are
the pollution severity class errors of the ELM-derived PDM and
manual PDM, respectively.

3 RESULT

In this study, a total of six common classifiers in ML were used,
namely, the ELM, the KNN classifier, the SVM classifier, the naïve
Bayes model (NBM) classifier, the decision tree model (DTM)
classifier, and the backpropagation neural network (BPNN). The
training and test sets were randomly selected from the
354 manual measurement points. In addition, 20 input bands
from these 354 locations are the independent variables, and the
pollution level is the dependent variable. The independent
variables should be normalized. Overall accuracy is evaluated
using 10-fold cross-validation, and the time cost, macroprecision,
and F1 score of the six classifiers are shown in Table 2. The
comparison of PDMs derived from the six models is shown in
Figure 7.

As can be seen from the results, the ELM performs best and
can achieve an accuracy of 72.32%, although the training time is
not short (75 s). The SVM classifier performs well in this
application, with the longest training time. The KNN and
DTM achieved over 60% accuracy. The BPNN has the shortest
training time, but its accuracy is low, and it is not suitable for this
application. The ELM predicted the polluted levels in all regions
of Yunnan Province, and the results are shown in Figure 7A. The
polluted area map based on the ELM model is regarded as a
satellite-based result owing to its highest performance. Figure 8

FIGURE 6 | Location of manual measurement points.

TABLE 2 | Comparison of method performance.

Time (s) Accuracy (%) Precision (%) F1 Score

ELM 75 72.32 71.96 0.71
KNN 38 69.49 70.39 0.70
SVM 190 59.9 57.79 0.58
NBM 58 50.8 56.62 0.54
DTM 16 63.3 61.59 0.61
BPNN 4 31.9 / /
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illustrates the percentage of each level of manual PDM and
satellite-based PDM. The number of pixels in the newly added
polluted level 1 map is 6,803, which is 5,506 more than that of the
previous manual drawing. This demonstrates that proxy data
such as remote sensing data and emission inventories can help us
identify some undetected sources of emissions. However, if a
manual measurement point originally existed at a location, then
we should still focus on the manually determined level.

Thus, we fused the PDM obtained by the ELM with the
manually drawn PDM according to the PDM fusion method
described in Section 2.6. The result is shown in Figure 9.

The final PDM comprehensively considers the error of the
manually drawn PDM and machine learning–derived PDM.
Figure 9 indicates that the PDM after fusion is more
practical. The highest polluted level (level 1) of the fused
PDM is found in more locations than that of the manual
PDM, especially near Dali (25.667°N,100.551°E), which has a
large population and much industry. Although the fused
PDM shows great potential, it still has obvious drawbacks.
For example, the machine learning–derived PDM does not
have high enough accuracy, as shown by the squares in
Figure 9.

4 DISCUSSION

Compared to prior techniques, the method of satellite-based
mapping of pollution distribution proposed in this study
enables automatic generation and real-time updating of the
PDM, and the PDM levels of the whole region are derived
from the credible PDM levels obtained using the actual ESDD
measurements through an integrated learner. The method no
longer relies on experience and guesswork but has an objective
theoretical basis, reducing the impact of human subjectivity on
the mapping of the grid. The resulting distribution map reflects
more objectively the distribution of pollution in the whole
Yunnan Province, which is conducive to better grid
dispatching by power dispatchers.

FIGURE 7 | The pollution distribution map by ELM (A), KNN (B), SVM (C), NBM (D), DTM (E), and BPNN (F).

FIGURE 8 | Percentage of each level. The inner and outer circles
represent the manually drawn and predicted pollution distribution maps in this
study, respectively. The numbers (1–4) represent the polluted levels.
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In addition, the fusion method adopted in this study is based
on the weight of experience. In the past, some studies have used
other fusion methods (Wang et al., 2021), such as using a manual
PDM class as the final PDM class in the training data and using a
ML class in other places. The method of reasonable error
configuration proposed in this study helps to weigh manually
measured and ELM-derived PDM. The error map that
accompanies the PDM can also provide additional reference to
the power system.

However, the method of using ML to obtain the pollution map
proposed in this study relies heavily on the training dataset, which
comes from some artificial measurement highlights. In order to
create a more accurate map, additional salinity measurement
points are required, especially around the emission sources. In
order to accurately reflect the influence of the pollution sources,
measurement points need to be set according to the location of
the pollution sources and meteorological factors such as wind
direction. In addition, , we can see that in both the machine
learning–derived PDM and the fused PDM from Figures 7, 9,
there are obvious unexcepted rectangles in them. This is mainly
because of the limitation of the resolution and accuracy of the
input data (mainly the emission inventory ofMEIC).We insist on
using these emission inventories because the PDM is largely
influenced by them. With the launch of more high-resolution
satellites and the improvement of retrieval techniques in the
future, these remote sensing data and inventory affecting air
pollution will be more refined and reliable. By that time, the
method proposed in this work will have greater application.

5 CONCLUSION

In this study, we proposed a new method to map the electric
pollution distribution. On the one hand, we used advanced ML
techniques and remote sensing data to train models for predicting

the PDM. On the other hand, we proposed to fuse the machine
learning–derived PDM and the manually drawn PDM according
to different weights. Using this approach, we generated a fused
PDM in Yunnan Province, China. Compared with the previous
manually drawn PDM, the newly obtained PDM has more places
with the highest pollution level (level 1). This means that the
input proxy data such as remote sensing data helped us identify
more areas with potentially serious pollution, and these locations
need to be measured and cleaned in time for electrical equipment.

With the continuous advancement of satellite remote sensing
technology, the increase in the types of pollutant gases that can be
measured, the increase in detection accuracy, temporal resolution
and spatial resolution, and the mapping of pollution areas based
on satellite remote sensing will have very great potential and
application in the power sector. In addition to the remote sensing
data and meteorological data used in this article, if more data are
added in the future, such as ground temperature, static wind
frequency, and humidity, the PDMobtained usingML is expected
to become more convincing.
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