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Assessments of premature deaths caused by PM2.5 exposure have important scientific
significance and provide valuable information for future human health–oriented air pollution
prevention. PM2.5 concentration data are particularly vital and may cause great uncertainty
in premature death assessments. This study constructed an index of deviation frequency
to compare differences in premature deaths assessed by five sets of extensively used
PM2.5 concentration remote sensing datasets. Then, a preferred combination project of
the PM2.5 dataset was proposed by selecting relatively high-accuracy PM2.5 concentration
datasets in areas with significant differences. Based on this project, an index of uncertainty
was constructed to quantify the effects of using different PM2.5 datasets on premature
death assessments. The results showed that there were significant differences in PM2.5

attributable to premature deaths assessed by different datasets from 2000 to 2016, and
the differences were most obvious in 2004. Spatially, differences were most significant in
Jilin, Fujian, Liaoning, Hebei, Shanxi, Hubei, Sichuan, and Yunnan. The differences were
caused by PM2.5 concentration; therefore, in order to reduce uncertainty in subsequent
premature death assessments because of using different PM2.5 concentration data, the
CGS3 dataset was recommended for Jilin, Sichuan, Yunnan, and Fujian, and the CHAP
dataset was recommended for Liaoning, Hebei, Shanxi, and Hubei, and for other regions,
CGS3, CHAP, or PHD datasets were more applicable. The CHAP dataset was the best
selection for premature death assessments in the whole area. Based on the preferred
combination project of the PM2.5 dataset, uncertainty in annual premature death
assessments could be reduced by 31 and 159% in the whole and local area,
respectively. The research results will provide a scientific basis for a reasonable
selection of PM2.5 concentration remote sensing datasets in air pollution premature
death assessments in China.
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1 INTRODUCTION

PM2.5 is the primary air pollutant in China, and long-term exposure to high PM2.5 pollution levels
will increase the risk of cardiovascular disease, respiratory disease, etc. (Laden et al., 2006; Cohen
et al., 2018; Maji et al., 2020; Shen M. et al., 2021). Accurate assessments of health risks caused by
PM2.5 pollution are important for the Chinese government to carry out environmental measures for
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improving people’s health. Air pollution concentration data are
critical for assessing the health risks of PM2.5 (Ma et al., 2022).

Traditionally, ground monitoring networks have been the basic
method to provide PM2.5 concentration, which were established in
late 2012 in China (Wang H. et al., 2021). Although ground
monitoring of PM2.5 data is accurate, it is difficult to reveal the
spatial distribution of regional-scale PM2.5 concentration due to
the limited spatial representation (Gupta et al., 2006; Van
Donkelaar et al., 2010). In addition, the lack of historical data
has limited the acquisition of longitudinal data on PM2.5

concentration. Health risk assessments deeply depend on large-
scale and long-term PM2.5 concentration data. However, the
limitation mentioned above has affected the development of the
studies on large-scale and long-term health risk assessments.

Fortunately, satellite remote sensing has the advantage of wide
spatial-temporal coverage, which can effectively fill the
spatial–temporal PM2.5 gaps left by ground monitoring networks
(Hu et al., 2014; Hoogh et al., 2018; Stafoggia et al., 2019; He et al.,
2021). Hence, it has been widely used to estimate PM2.5

spatial–temporal continuous data in recent years. Also it further
provides technical support for large-scale and long-term health risk
assessments (Liu et al., 2017;Wang L. et al., 2021). For example, Zou
et al. (2019) estimated premature deaths in China were 1.05million
based on PM2.5 concentration refined by a hybrid remote sensing-
geostatistical approach. Li et al. (2021) estimated that premature
deaths in China were 1.1 million based on PM2.5 concentration
simulated by the WRF-Chem. Liang et al. (2020) concluded that
premature deaths in China were 2.2 million assessed by PM2.5

concentration simulated by high-performance machine learning
models based on satellite data, meteorological conditions, land
cover information, and so on. Although the disadvantages of
spatial–temporal coverage were remedied by the satellite remote
sensing technique, there were differences in PM2.5 concentration and
premature death assessments due to differences in parameters and
model algorithm of PM2.5 estimation.

In order to reduce differences in premature deaths assessed by
different PM2.5 concentration remote sensing data, a large number
of researchers focus on proposing a set of standard datasets with
large scale and long term assessment. At present, the extensively
used datasets in China include three sets of “Geophysical Satellite-
Based PM2.5 datasets” (1 km, 5 km, 10 km) with different spatial
resolutions released by the Atmospheric Composition Analysis
Group (VanDonkelaar et al., 2015; VanDonkelaar et al., 2016; Van
Donkelaar et al., 2019; Hammer et al., 2020). The “PM2.5 Hindcast
database” (10 km) was released by Xue et al. (2019) as well as the
“ChinaHighPM2.5” dataset (1 km) was published by Wei et al.
(2020), Wei et al. (2021). However, there are no relevant studies
that compare systematically the differences in health risks assessed
by these five sets of PM2.5 concentration remote sensing datasets.

In view of this, how to take full advantage of these five sets of
PM2.5 concentration remote sensing datasets and reduce the
uncertainty in health risk assessments in China is an urgent
problem in the cross-research field of remote sensing and health
risks. In this study, an index of deviation frequency was
constructed to evaluate the differences in PM2.5 attributable
premature deaths when choosing various PM2.5 data. Then, in
order to reduce uncertainty in premature death assessments

caused by various PM2.5 concentration data, the preferred
combination project of the PM2.5 dataset was proposed in the
areas with significant differences. The preferred combination
project of the PM2.5 dataset was proposed for different regions
to provide data support for accurately estimating the effects of air
pollution in health risk research. Also, it also put forward new
ideas for the focus of air quality data simulation in the future.
Findings from this study will provide new knowledge for policy-
making of “China’s 14th Five-Year Plan” air pollution
intervention and health risk prevention.

2 DATA AND METHODS

As an important east–west boundary, cities on each side of the Hu
line showed obvious differences both in PM2.5 concentration and
population density (Li et al., 2020). The Yangtze River Delta Urban
Agglomerations, the urban agglomeration in the middle reaches of
the Yangtze River, and other regions, which were located in the east
of the Hu Line, were agglomeration areas of cities with high levels of
PM2.5 pollution (Shen L. et al., 2021). As an important
agglomeration area of population and economy in China, the
population in this area reaches 1.2 billion, accounting for 94% of
the country (Wang et al., 2019). Therefore, the study area is defined
as the mainland of eastern China below the Hu line (excluding
Heilongjiang Province, Hong Kong, Macao, and including Ningxia
Hui Autonomous Region) and includes 19 provinces, four central
government–controlled municipalities, and two autonomous
regions, all referred to here as provinces (Figure 1).

The technical flowchart of this study is shown in Figure 2.
There were three main steps. The first step was to analyze
spatial–temporal differences of PM2.5 attributable to
premature deaths based on the index of deviation
frequency. The second step was to propose a preferred
combination project of the PM2.5 dataset based on the

FIGURE 1 | Location of the study area.
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accuracy assessment in the areas with significant differences.
The third step focuses on identifying uncertainty in health risk
assessments by comparing assessments of the preferred
combination project of the PM2.5 dataset with assessments
of five sets of initial datasets.

2.1 Data
2.1.1 PM2.5 Concentration Remote Sensing Datasets
PM2.5 concentration remote sensing datasets used in the study
mainly include 1) PM2.5 concentration retrieved by the
atmospheric chemical transport model, including three sets of
datasets: China Geophysical Satellite–Based PM2.5-V4.CH.03
(CGS3), Global Geophysical Satellite–Based PM2.5-V4.GL.03
(GGS3), and China Geophysical Satellite–Based PM2.5-
V4.GL.02 (CGS2), with R2 between 0.81–0.92. 2) Using the
STET machine learning method to retrieve the
ChinaHighPM2.5 (CHAP) dataset, R2 is 0.94. 3) Using the

HD-expansion machine learning method to retrieve the PM2.5

Hindcast Database (PHD) with R2 of 0.77. The details of the
datasets are shown in Table 1.

2.1.2 PM2.5 Ground Measurements
The station-based annually averaged PM2.5 concentration (μg/
m3) data were calculated. Hourly PM2.5 concentration from
January 2013 to December 2016 was obtained from the China
National Environmental Monitoring Center website (http://106.
37.208.233:20035/). According to the Chinese National
Ambient Air Quality Standards (CNAAQS), the following
preprocessing was performed on data: all missing or invalid
data were removed from original observations. Values of
observations at stations with fewer than 20 h in a day, fewer
than 27 days in a month (25 in February), or fewer than 324 days
in a year were eliminated when calculating the annually
averaged PM2.5 concentration.

2.1.3 Populations and Baseline Mortality Rate Data
Populations and baseline mortality rates are fundamental
parameters for premature death assessments. Population data
at 1 km resolution across mainland China were downloaded from
Worldpop (https://www.worldpop.org/). The population of
adults (aged ≥25 years) was obtained by subtracting the
population aged under 25 years old from the total population
at 1 km resolution in China. Baseline mortality rate data were
derived from Global Burden of Disease (GBD) (http://ghdx.
healthdata.org/), including lower respiratory infection and
non-communicable diseases.

2.2 Methods
2.2.1 Premature Death Assessments
This study used the Global Exposure Mortality Model (GEMM)
to estimate PM2.5 attributable premature deaths. The GEMM is
an improved and optimized health risk estimation model based
on the Integrated Exposure Response (IER) (Burnett et al., 2014).
Compared with IER, the GEMM covers a large number of
population samples and PM2.5 concentration data and
optimizes the accuracy of PM2.5 health risk assessments at low
concentrations (Burnett et al., 2018; Li et al., 2021). Using the

FIGURE 2 | Technical flowchart of this study.

TABLE 1 | Five sets of PM2.5 datasets in China.

Dataset Short
name

Spatial
coverage

Spatial
resolution

Temporal
coverage

Temporal
resolution

Data source Method

AOD Model In situ

China Geophysical Satellite
Based PM2.5 -V4.CH.03

CGS3 China 0.01 ° ×
0.01 °

2000–2018 Annual MODIS,
MISR,
SeaWIFS

GEOS-
Chem

US
EPA AQS

Scale
factor& GWR

Global Geophysical
Satellite-Based PM2.5-

V4.GL.03

GGS3 Global 0.05 ° ×
0.05 °

1998–2018 Annual MODIS,
MISR,
SeaWIFS

GEOS-
Chem

US
EPA AQS

Scale
factor& GWR

China Geophysical
Satellite-Based PM2.5-

V4.GL.02

CGS2 China 0.1 ° × 0.1 ° 1998–2016 Annual MODIS,
MISR,
SeaWIFS

GEOS-
Chem

CNEMC Scale
factor& GWR

ChinaHighPM2.5 CHAP China 0.01 ° ×
0.01 °

2000–2020 Annual MODIS — CNEMC Machine learning
(STET)

PM2.5 Hindcast Database PHD China 0.1 ° × 0.1 ° 2000–2016 Annual MODIS MEIC-
CMAQ

CNEMC Machine learning
(HD-expansion)
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GEMM to estimate premature deaths in adults due to long-term
exposure to PM2.5, the equation is as follows:

Mortalityij �
HR(Cij) − 1

HR(Cij) × Popij × Iij, (1)

where Mortalityij is PM2.5 attributable premature deaths in the
grid i at year j.HR(Cij) is the estimated hazard ratio in the grid i
at year j. Popij is the adult population exposed to PM2.5 in the
grid i at year j. Iij is the baseline mortality rate of adults in the
grid i at year j.

The main difference between the IER and GEMMmodel is the
calculation of HR(Cij). Compared with IER, the GEMM was
estimated as a common hazard ratio model among the 41 cohorts
by pooling predictions of the hazard ratio among cohorts over
their range of exposure. HR(Cij) in the GEMM is calculated by
the following equation:

HR(Cij) � exp
⎧⎨
⎩

θ log(zα + 1)
1 + exp(−z−μ

] )
⎫⎬
⎭, z � max(0, C − 2.4μg/m3),

(2)
whereHR(C) is the hazard ratio of non-accident mortality under
PM2.5 concentration. In this model, 2.4 μg/m3 is used as a
counterfactual concentration, below which the hazard ratio of
mortality associated with PM2.5 exposure is assumed to be
constant 1. C is the annual PM2.5 concentration. θ, α, μ, and υ
are the modeled age-specific parameters.

2.2.2 Differences Quantitative Indicator Construction
Deviation frequency was constructed to evaluate the degree of
differences in PM2.5 concentration and premature deaths between
five sets of datasets. The index of deviation frequency refers to the
frequency of occurrence of high deviation between any two

datasets. The calculation processing was as follows: PM2.5

concentration data and premature death data were resampled
to a resolution of 1 × 1 km from 2000 to 2016 and then the
absolute value of relative differences between any two datasets
was taken as deviation. The third quartile of all deviation values
was the threshold, and values above the threshold were defined as
high deviation. The equation is as follows:

countij � I(Rij,a >Rt)TI(Rij,a >Rt), (3)
where countij is an index of deviation frequency of the dataset i, j.
Rij,a is the deviation of PM2.5 concentration or premature deaths
between dataset i and dataset j. Rt is the threshold. I(Rij,a >Rt) is
the indicator function, which is 1 when Rij,a >Rt, while is 0 when
Rij,a <Rt.

The deviation equation of PM2.5 concentration or premature
deaths between dataset i and dataset j at the year a is as follows:

Rij,a �
∣∣∣∣∣∣∣∣∣∣
(xi,a − xj,a)

xij,a

∣∣∣∣∣∣∣∣∣∣, (4)

where xi,a, xj,a, is PM2.5 concentration or premature deaths of
dataset i, j at year a.

2.2.3 Uncertainty Quantitative Indicator Construction
Uncertainty was used to estimate differences in premature
deaths between the preferred combination project of the
PM2.5 dataset and five sets of initial datasets. The
preferred combination project of the PM2.5 dataset was
obtained by assessing the PM2.5 concentration accuracy
and selecting the dataset with higher accuracies. Through
matching of ground monitoring stations and satellite data,
satellite data with the same spatial–temporal coverage as
station data were screened out. Then, statistical values (R2,

FIGURE 3 | Annual premature deaths were assessed by five sets of PM2.5 datasets from 2000 to 2016.
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RMSE, MAE, Slope, N, etc.) were selected as the quantitative
evaluation indicators to evaluate the accuracy of satellite
data. Taking the number of premature deaths assessed by
the preferred combination project of the PM2.5 dataset as a

benchmark, uncertainty was the percentage of differences
between the number of premature deaths assessed by five sets
of initial PM2.5 datasets and the benchmark data. The
equation is as follows:

FIGURE 4 | Spatial distribution of deviation frequency in premature deaths assessed by any two PM2.5 datasets.
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δi,j0 �
(xi − xj0)

xj0

× 100%, (5)

where δi,j0 is the uncertainty in premature deaths assessed by the
PM2.5 dataset i and dataset j0. xj0 denotes premature deaths
assessed by the preferred combination project of the PM2.5

dataset. xi denotes premature deaths assessed by five sets of
initial PM2.5 datasets.

3 RESULTS

3.1 Spatial–Temporal Differences of PM2.5

Attributable Premature Deaths
Figure 3 shows the temporal trend of annual premature deaths
based on five sets of PM2.5 concentration remote sensing
datasets. Generally, the temporal trend of premature deaths

assessed by five sets of datasets was consistent, and the number
of premature deaths first increased and then decreased. For the
number, premature deaths assessed by five sets of PM2.5

datasets were in order of CHAP > PHD > GGS3 > CGS3 >
CGS2. Premature death assessed by the CHAP dataset was the
largest, ranging from 1.38 million (in 2000) to 1.87 million (in
2013). Premature death assessed by the CGS2 dataset was the
lowest, ranging between 0.94 million (in 2000) and 1.51 million
(in 2015). On the aspect of growth rate, premature death
assessed by the CGS2 dataset was most pronounced at 47%,
whereas the CHAP was lowest at 13%. In terms of temporal
variation, premature deaths assessed by the CHAP, PHD,
GGS3, and CGS3 datasets showed an increasing trend from
2000 to 2011, fluctuated from 2011 to 2013, and decreased from
2013 to 2016. The peak value of premature deaths assessed by
the PHD, GGS3, and CGS3 datasets appeared in 2011, while the
peak value of CHAP appeared in 2013. However, premature

FIGURE 5 | Area ratio of deviation frequency in premature deaths was assessed by any two PM2.5 datasets.

FIGURE 6 | Annual PM2.5 concentration of five sets of PM2.5 datasets from 2000 to 2016.
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deaths assessed by the CGS2 dataset had decreased since 2011,
fluctuated from 2013 to 2015, and peaked in 2015. In addition,
differences in premature deaths assessed by five sets of PM2.5

datasets were obvious in 2000–2004 and 2011–2013 and sharply

decreased since 2013, which may be related to the improvement
in accuracy of PM2.5 concentration data after 2013.

Figure 4 shows the spatial distribution of deviation frequency
in premature deaths assessed by different PM2.5 datasets. The

FIGURE 7 | Spatial distribution of deviation frequency in PM2.5 concentration between any two PM2.5 datasets.
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obvious differences were in western Sichuan, with deviation
frequency in premature deaths assessed by all datasets of 15–17.
There were great differences in premature deaths in western and
eastern Jilin, northern Hebei, and southwestern Yunnan, with
deviation frequency of 15–17 between CHAP and CGS2,
CHAP and CGS3, CHAP and GGS3, PHD and CGS2, and
PHD and CGS3 datasets. Regions with little differences
were mainly concentrated in Shandong, Henan, Anhui, and
Jiangsu.

Figure 5 shows the area ratio of the deviation frequency
index between different datasets. Differences in premature
deaths assessed by the CGS2 and CHAP datasets were the
largest, and the area ratio of deviation frequency of 15–17
was 26%. Differences in premature deaths assessed by the
CHAP and PHD datasets were minimal, and the area ratio
of deviation frequency of 15–17 was less than 1%,
while the area ratio of deviation frequency of 0–2 was as
high as 94%.

3.2 Spatial–Temporal Differences of PM2.5

Concentration
Figure 6 shows the temporal trend of annual PM2.5 concentration
of five sets of datasets from 2000 to 2016. In general, the temporal
trend of PM2.5 concentration of all datasets was the same except
for the CGS2 dataset, which first increased and then decreased.
For annual PM2.5 concentration, the order of five sets of datasets
was CHAP > PHD > GGS3>CGS3>CGS2. PM2.5 concentration
of the CGS2 dataset was the lowest, ranging from 25 μg/m3 (in
2000) to 40 μg/m3 (in 2007), with an average PM2.5 concentration
of 34 μg/m3. PM2.5 concentration of the CHAP dataset was the
highest, ranging from 40 μg/m3 (in 2016) to 60 μg/m3 (in 2013),
with an average of 54 μg/m3. From the perspective of temporal
variation, the PM2.5 concentration of the CHAP and PHD
datasets showed an upward trend from 2000 to 2007,
fluctuated from 2007 to 2013, and decreased from 2013 to
2016, and the peak values of PM2.5 concentration appeared in
the year of 2011 and 2013. Different from the CHAP and PHD
datasets, the PM2.5 concentration of the GGS3 and CGS3 datasets
showed a downward trend from 2000 to 2004, fluctuated upward
from 2004 to 2011, and then decreased rapidly, peaking in 2011.
There were significant differences in PM2.5 concentration
temporal variation between the CGS2 dataset and other
datasets as its PM2.5 concentration showed a downward trend
from 2010 to 2012, and the peak value appeared in 2007.

Figure 7 shows the spatial distribution of deviation frequency
in the PM2.5 concentration. Generally, differences in PM2.5

concentration of five sets of datasets were few. However, in
local areas, similar to the spatial distribution of differences in
premature deaths, the significant differences in PM2.5

concentration were found in western Sichuan, with a deviation
frequency of 15–17. Then, differences were followed by those in
western and eastern Jilin, northern Hebei, and southwestern
Yunnan, and few differences were found in Shandong, Henan,
Anhui, and Jiangsu.

Figure 8 shows the area ratio of deviation frequency in
different PM2.5 concentrations. PM2.5 concentration of the
CGS2 and CHAP datasets experienced the largest differences,
and the area ratio of deviation frequency of 15–17 accounted for
27%. The CHAP and PHD datasets had little differences in PM2.5

concentration, and the area ratio of deviation frequency of 0–2

FIGURE 8 | Area ratio of deviation frequency in PM2.5 concentration between any two PM2.5 datasets.

FIGURE 9 | Areas with significant differences both in PM2.5

concentration and premature deaths.
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accounted for as high as 93%. Comparing the differences in
premature deaths with differences in PM2.5 concentration, it
could be seen that these were highly consistent in spatial
distribution. This result indicated that differences in PM2.5

concentrations may be the important factor leading to
differences in premature deaths. Screening and using the
higher precision PM2.5 concentration remote sensing data are
the key to accurately assessing the PM2.5 attributable premature
deaths.

3.3 Accuracy Assessment of PM2.5

Concentration Remote Sensing Datasets
In order to evaluate the applicability of PM2.5 datasets in
assessments of premature deaths, this study compared the
accuracy of PM2.5 concentration remote sensing datasets in
the areas with significant differences. To overlay analysis of
high-frequency areas of PM2.5 concentration differences (i. e.
deviation frequency is 15–17) and high-frequency areas of
premature death differences, the areas with significant

FIGURE 10 | Scatterplots of fitting and cross-validating results in the areas with significant differences. P.S. (A–E) are areas with significant differences in Figure 9.
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differences were screened out (Figure 9). Among them, region
A mainly includes the northwestern and eastern parts of Jilin,
region B mainly includes southwestern Liaoning, northern
Hebei, and northern Shanxi, region C mainly includes
western Hubei, region D mainly includes Sichuan and
western Yunnan, and region E mainly includes Fujian.

The accuracy assessment results of different PM2.5

concentration remote sensing datasets are shown in Figure 10.
Five sets of PM2.5 concentration remote sensing datasets in the
northwest and eastern Jilin (region A) were inconsistent with
ground-based PM2.5 measurements, with the highest R2 of 0.13
(the CGS3 dataset), while the slope of the CHAP dataset was best.
In region B, the CHAP dataset worked well, and the cross-
validation result was 0.72, while the cross-validation result of
the CGS2 dataset was the worst. The CHAP dataset in region C
had the best cross-validation result, with an R2 of 0.74. In region
D, PM2.5 concentration of the CGS3, CHAP, and PHD datasets
agreed well with ground-based PM2.5 measurements, with R2 of
0.77, 0.71, and 0.70, respectively. The CGS3 dataset had the best
fitting result in region E, with an R2 of 0.61. In summary, among
currently representative PM2.5 concentration remote sensing
datasets in China, the model fitting results of the CHAP
datasets were better than those of the other datasets by
comparing the indicator of R2, MAE, slope, and so on.

3.4 Uncertainty Analysis of PM2.5

Attributable Premature Deaths
By comparing the accuracy assessment results in PM2.5

concentration of five sets of PM2.5 datasets, the selection
suggestions of the PM2.5 dataset for premature deaths were
obtained (Table 2). According to the selection suggestions, the
preferred combination project of the PM2.5 dataset is as follows: the
CGS3 dataset was recommended for Jilin, Sichuan, Yunnan, and
Fujian; the CHAP dataset was recommended for Liaoning, Hebei,
Shanxi, and Hubei; and for other regions, CGS3, CHAP, or PHD
datasets were more applicable. The results showed that, on the one
hand, five sets of PM2.5 concentration datasets in Jilin, Liaoning,
Fujian, and other regions need to be selected and used carefully due
to significant differences in accuracy, and the premature deaths
assessed by any single PM2.5 concentration remote sensing dataset
in the total area will enlarge the uncertainty of assessment results.
On the other hand, the CHAP dataset was the best selection for
premature death assessments in the whole area.

Based on the preferred combination project of the PM2.5

dataset, this study evaluated the spatial distribution of the
annual PM2.5 attributable premature deaths from 2000 to 2016
(Figure 11). Over the past 17 years, PM2.5 attributable premature
deaths in the mainland of eastern China below the Hu line
showed that the eastern coastal areas were higher in

TABLE 2 | Selection suggestion of the PM2.5 dataset for premature deaths.

Area CGS3 GGS3 CGS2 CHAP PHD

Jilin III NR NR NR NR
Liaoning NR NR NR III NR
Hebei NR NR NR III NR
Shanxi NR NR NR III NR
Hubei NR NR NR III NR
Sichuan III NR NR II I
Yunnan III NR NR II I
Fujian III NR NR NR NR
else III III III III III
Study area II NR NR III I

P.S. NR, means “Not Recommended”. I mean “Carefully Used”. II, means “Moderate
Recommended”. III, means “Most Recommended”.

FIGURE 11 | Spatial distribution of premature deaths assessed by the
preferred combination project of PM2.5 dataset.

TABLE 3 | Uncertainty of the average premature deaths in 17 years in different areas.

Area Premature deaths assessed by PM2.5 datasets (1*103) Uncertainty (%)

Preferred combination
project

CGS3 GGS3 CGS2 CHAP PHD

Study area 1,641 1,479 1,486 1,332 1,674 1,585 (−19, 2)
A 4.268 4.268 4.291 3.980 5.903 5.409 (−7, 38)
B 36.562 30.261 30.781 27.849 36.562 37.156 (−24, 2)
C 13.527 12.123 11.925 9.541 13.527 13.228 (−29, −2)
D 63.997 63.997 68.076 50.271 82.401 73.695 (−21, 29)
E 51.536 51.536 50.888 42.264 65.609 56.013 (−18, 27)
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concentration than the other areas of China, and provincial
capital cities were high-risk centers, with spreading to the
surrounding cities. High-risk areas were mainly concentrated
in Beijing–Tianjin–Hebei, Yangtze River Delta, Pearl River Delta,
and Chengdu–Chongqing urban agglomerations. These areas
were densely populated and had high levels of urbanization
and industrialization (Ye et al., 2018), which has led to severe
health risks of air pollution.

Table 3 showed the 17-year average of premature deaths and
uncertainty in the study area based on the preferred combination
project of the PM2.5 dataset and five sets of initial PM2.5 datasets.
In general, compared with the 17-year average premature deaths
(1.64 million) assessed by the preferred combination project of
the PM2.5 dataset, the assessment result of other arbitrary datasets
had a bias, ranging between 1.33 and 1.67 million, with the
uncertainty of 19%. For local areas, the uncertainty in
premature death assessments was more pronounced. In region
A, the degree of overestimation of premature deaths was the
largest, with an uncertainty of 38%, while in region C, the degree
of underestimation of premature deaths was the largest, with an
uncertainty of 29%. There was also more or less uncertainty of
premature deaths in regions B, D, and E, ranging from 24 to 29%.

Figure 12 showed the uncertainty in annual premature deaths
assessed by different PM2.5 datasets. It can be seen that in the whole
study area, annual premature death assessments based on five sets of
initial PM2.5 datasets were significantly underestimated, with an
uncertainty of 31% in 2000. For local areas, the uncertainty in the
annual premature deaths based on initial PM2.5 datasets was larger
than the uncertainty of 17-year average premature deaths. For
region A, the 17-year average uncertainty ranged from -7 to 38%,
while the annual uncertainty was as high as 159% in 2001. The

uncertainty in annual premature deaths ranged from -42 to 52%
and reached the highest in 2004 in region D. The uncertainty
interval in regions B, C, and E was (−41% and 40%), reaching the
highest in 2000, 2003, and 2004, respectively. Therefore, the
selection of PM2.5 datasets should be carried out cautiously
when assessing premature deaths in local areas during these periods.

4 DISCUSSION AND CONCLUSION

This study estimated spatial–temporal differences in health risk
assessments and PM2.5 concentration from 2000 to 2016 in
eastern China with five sets of PM2.5 datasets. The preferred
combination project of the PM2.5 dataset was proposed to
quantitatively analyze spatial–temporal uncertainty in health
risk assessments caused by selecting different PM2.5 datasets.
To the best of our knowledge, this is the first effort to quantify the
effects of concentration data on health risk assessments due to
PM2.5 selection in China by using five PM2.5 concentration
remote sensing datasets. These results contribute to accurately
assessing health risks of air pollution which may be a benefit to
formulate policies for preventing and controlling regional-scale
health risks by governments.

The results of this study are comparable to those of previous
studies. The results show that there were significant differences in
premature death assessments using different PM2.5 concentration
remote sensing datasets from 2000–2016. PM2.5 attributable
premature deaths varied from 0.94 to 1.38 million in 2000
among the five sets of datasets in eastern China and varied
from 1.39 to 1.56 million in 2016. A similar finding is
observed when comparing those previously reported research

FIGURE 12 | Uncertainty of annual premature deaths in different areas. Areas with significant differences both in PM2.5 concentration and premature deaths.
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studies on premature deaths in China (Rohde and Muller, 2015;
Fang et al., 2016). For example, the premature deaths reported
were estimated to be 1.38 to 1.47 million in 2014 using the
different concentration data in China (Wang C. et al., 2021).

The study shows that differences both in the number and trends
of PM2.5 concentration and premature deaths and were significant.
The five sets of datasets adopted various algorithms, data sources,
and input parameters (Table 1); therefore, there were differences in
concentration values and trends. For example, the CGS3 dataset
was estimated using advances in satellite observations, chemical
transportmodeling, and ground-basedmonitoring (Hammer et al.,
2020), while the CHAP dataset was stimulated by the STET model
which was improved by using corrected AODs, adding pollutant
emissions, updating the feature selection, and improving the
determination of spatiotemporal information (Wei et al., 2021).
For the difference in premature deaths, because input parameters,
methods, and data sources except for PM2.5 concentration data
were the same in the process of premature death assessments, the
reason causing it was differences in the concentration of five sets of
PM2.5 datasets.

The study shows that differences in premature deaths and
PM2.5 concentration have decreased rapidly since 2013. The
PM2.5 concentration retrieved by satellite remote sensing data
takes ground monitoring data as a truth value. To pollution
control, the government of China established its PM2.5 ground
monitoring networks in late 2012, and data before 2013 have been
lacking (Ma et al., 2016; Ma et al., 2019). Therefore, differences in
premature deaths and PM2.5 concentration were significant
before 2013, which indicated that cities should continue to
densify ground measurement networks to enhance accuracy
and reduce uncertainty in data.

Spatially, differences in premature deaths and PM2.5

concentration were most obvious in Jilin, Fujian, Liaoning,
Hebei, Shanxi, Hubei, Sichuan, and Yunnan. The reason why
differences were significant in these areas may lie in the
missingness of AOD. The satellite AOD has been used to
retrieve air pollution data in five sets of PM2.5 concentration
remote sensing datasets. Previous studies indicated that due to
cloud/snow cover, high surface reflectance, and extremely high
aerosol loading, satellite AOD can be misclassified as a cloud (Van
Donkelaar et al., 2011; Tao et al., 2012). The non-random
missingness in AOD retrievals may lead to bias in exposure
assessment due to potential systematic differences in PM2.5

concentrations when AOD is missing or retrieved (Xiao et al.,
2017; He et al., 2019; Liu et al., 2019). Therefore, the selection of
PM2.5 concentration data must be carried out cautiously when
conducting PM2.5 health risks studies, especially in regions such as
Jilin, Liaoning, Hebei, Shanxi, Hubei, Sichuan, Yunnan, and Fujian,
with significant differences in premature death assessments.

Many studies have been focused on the impact of resolution in
concentration and health risk assessments in recent years (Pugh
et al., 2013; Pepe et al., 2016; Korhonen et al., 2019; Liu et al.,
2020). Zou et al. found that compared to those research studies at
resolutions of approximately 110 km, 45, and 10 km (Lelieveld
et al., 2015; Liu et al., 2017; Wang et al., 2018), the accuracy of
premature deaths estimated could be theoretically enhanced by
combining the air quality data and population data at 1 km

resolution (Zou et al., 2019). This study confirmed this theory
to some extent, in which the CHAP and CGS3 datasets at 1 km
resolution worked well than the GGS3 dataset at 5 km resolution
and CGS2 and PHD datasets at 10 km resolution. The high
resolution with 1 km could better reflect the spatial–temporal
distributions of PM2.5 concentration and health risks. In addition,
the CHAP and CGS2 datasets were estimated by two categories of
approaches, that is, the statistical approach and scaling approach,
which performed well in different areas, so they can be
complementary in assessing concentration and health risks.

While this study reduced the uncertainty in health risk
assessments by the preferred combination project of the
PM2.5 dataset, several limitations remain. First, the baseline
mortality rates of different age and sex population are various.
The negative health effects of air pollution increase with age as
the reduction in physiological processes leads to more age-
related diseases (Pope, 2007; Yin et al., 2021). Thus, there
was uncertainty in health risk assessments due to the
consideration of only baseline mortality rates of adults (aged
≥25 years). To enhance accuracy and reduce uncertainty in
health risk assessments because of age and sex structure,
future studies should pay attention to assessing premature
deaths of different age and sex structure population. Second,
health risks of air pollution are not only correlated to air quality
and concentration–response relationship considered in the
GEMM functions (Xie et al., 2018; Ding et al., 2019; Wang
et al., 2020; Li et al., 2021), but it is also a process related to
human activity pattern. Spatially different human activity
patterns may trigger various exposure scenarios (e.g.,
respiratory rates) (Zou et al., 2019), and it will theoretically
bias the air quality and the GEMM-based premature death
assessments. Therefore, the effects of human activity patterns
on health risks should be considered in future studies.
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