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The development of remote sensing technology largely reflects the scientific

research level of a country or region. Given that the quantity and quality of

research works are important indicators for scientific prowess evaluation,

exploratory spatial data analysis and scientometric analysis of remote

sensing work published from 2012 to 2021 were performed in this study,

utilizing the Web of Sciences database. This study probed the spatial

distribution and spatiotemporal evolution at the country/regional level to

reveal the spatiotemporal characteristics of knowledge spillover in remote

sensing. According to the results, the global spatial distribution of research

output in remote sensing presented a significant dispersion; the United States

and China were themost active countries. During the study period, Transferring

Deep Convolutional Neural Networks for the Scene Classification of High-

Resolution Remote Sensing Imagery was one of the most influential studies,

both in the field of remote sensing and in the whole scientific community. With

respect to the spatial evolution of research output in remote sensing, the gap

between continents and the regional imbalance showed a downward trend,

while Asia ranked first in the intracontinental disparity and Europe ranked last.

For relevant countries/regions and institutions trying to optimize the spatial

allocation of scientific and technological resources to narrow regional

disparities, this study provides fundamental data and decision-making

references.
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1 Introduction

Remote sensing is a technology used to observe and explore

target objectives and natural phenomena over long distances

(Weng, 2012; Han et al., 2014; Cheng et al., 2017). Remote

sensing technology can be used to objectively and accurately

obtain timely information about various targets. Over the past

few decades, remote sensing has been utilized to observe natural

resources and Earth’s environment frommultiple layers to collect

data from areas of Earth to space for application in diverse fields,

such as the atmosphere, ocean, resources, environment,

economy, agriculture, forestry, urban areas, disaster rescue,

and the military (Chen et al., 2006; Chang et al., 2011; Jewiss

et al., 2020). Moreover, remote sensing is a new interdisciplinary

subject that is integrated with surveying and mapping, space

science, electronic science, geosciences, and computer science

(Fuentes, 2006; Lary et al., 2016; Tapete, 2018). The development

level of remote sensing represents the level of scientific research

in a country/region (Soille and Pesaresi, 2002; Andrefouet and

Riegl, 2004). Therefore, an increasing number of countries are

investing increasing amounts of money and effort in remote

sensing research.

Over the past decades, some countries/regions have been in

leading positions in remote sensing-related research, and their

research results have influenced the development trend of the

industry (Kussul et al., 2017; Mikhaylov et al., 2021). Some

countries/regions have come to the forefront and have become

a new force in remote sensing-related research and are expanding

their field. Other countries have turned from field leaders to

followers for various reasons (Zhu et al., 2017; Goga et al., 2019).

These phenomena reflect the change in scientific research power

in remote sensing among countries and the changes in national

scientific and technological strength (Nogueira et al., 2016;

Zhang et al., 2016). An in-depth study of the phenomena is

required not only for researchers to get a quick overview of the

history and current situation of remote sensing research but also

for related countries/regions to better predict the trend of remote

sensing research development and then make remote sensing

development plans that really meet their national conditions

(Zou et al., 2015; Nogueira et al., 2016). However, the broadness

of remote sensing research fields, the diversity of subfields, the

differences in disciplinary backgrounds, and the limited personal

energy of scholars make it quite difficult to systematically and

comprehensively summarize the national/regional strength

changes in remote sensing research without high-quality data

sources and reliable quantitative analysis methods.

Fortunately, tens of thousands of remote sensing-related

research works have been published by researchers in the past

few decades. These research works are important carriers and the

main transmitters for research achievement, providing

information about the research history, current situation, and

development trends of the realm and sub-realms (Guarino, 1995;

Qiu and Shen, 2021). Previous studies show that the output and

quality of research are important indicators to measure the level

of national science and technology (Price, 1963; Bourdieu, 2004).

Research work data are characterized by easy accessibility and

massive volume. In addition, the existing academic databases

have collated the research data so that researchers can easily

access high-quality studies. On the other hand, quantitative

analysis is a mathematical method in scientometrics to

measure research results, describe the scientific system

structure and analyze the inner operating mechanism of the

scientific system. This method can be employed to reveal the

spatial and temporal characteristics of scientific development and

explore the quantitative regular characteristics of scientific

activities in human society. And in the field of spatial data

analysis, exploratory spatial data analysis methods have been

introduced into fields such as library intelligence and

scientometrics in recent years, demonstrating their

applicability in the exploration of the spatial differences and

evolution of research in related disciplines/fields. More

importantly, according to recent studies, research on the

spatial distribution of research output can not only help

discover the spatial distribution of professional knowledge but

also unearth the external causes of regional gaps in research

output (Ma et al., 2019a).

In summary, based on the Web of Science (WoS) database,

this study presents a study focusing on the output of research

works in remote sensing at different levels, such as the

distribution of, spatial differences in the aggregation of the

global level, differential evolution, and polarization and spatial

aggregation between different local areas. The results of this

study can not only provide an important basis for related

resource allocation and decisive references for scientific macro

arrangement in relevant countries/regions, which is conducive to

regional science development and thus reduce the regional gap in

remote sensing fields. The rest of this study is organized as follows.

Section 2 describes the data collection and preparation. Then, the

research methodology and analysis of the experimental results are

introduced. The conclusion is summarized in the final section.

2 Data collection

On the basis of a web development platform, the WoS is a

large, comprehensive citation indexing database developed by

Thomson Reuters. Through this database, users can retrieve

information about literature in the natural sciences, social

sciences, arts, and humanities (Mongeon and Paul-Hus, 2016).

The WoS provides relatively complete bibliographic and citation

information, including the title, author, abstract, keywords, date,

author address, subject category, and reference list (Harzing and

Alakangas, 2016). Importantly, bibliographic and citation data in

the WoS can be downloaded to track the history and reveal the

characteristics of a research field. Given the above, the WoS has

been adopted as a data source for many scientometric studies.

Frontiers in Environmental Science frontiersin.org02

Liu et al. 10.3389/fenvs.2022.932753

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.932753


The data used in this study were collected from the WoS to

investigate the spatial distribution and evolution pattern of the

research work output in remote sensing. The data acquisition

process was as follows: First, the search function of the WoS

database was utilized, and “remote sensing” was selected as the

search term. Second, the publication time was set as 2012–2021

(download date: 2 November 2021), the literature type was set as

“article,” and the language category was set as English. Finally,

13,057 pieces of data were obtained after removing

duplicate data.

3 Method

In this study, the standard deviation and coefficient of

variation were used to measure the absolute and relative

differences between countries/regions and the Gini coefficient

was used to explore intra- and intercontinental differences.

Exploratory spatial data analysis (ESDA) was performed to

reveal the spatial and temporal characteristics of knowledge

spillover in remote sensing fields.

3.1 Coefficient of variation

The standard deviation is the arithmetic square root of the

variance, which is an absolute indicator of the degree of

dispersion of each observation (Lee et al., 2015). The

calculation formula is as follows:

S �
������������∑n

i�1
(xi − �x)2
n − 1

√
. (1)

The coefficient of variation (CV) is the ratio of the standard

deviation to the mean value, which is a relative index reflecting

the dispersion of observed values (Shechtman, 2013). The

mathematical expression is as follows:

CV � 1
�x

������������∑n

i�1
(xi − �x)2
n − 1

√
, (2)

where xi is the output of remote sensing research in country/

region i, �x is the average output of remote sensing research, and n

is the number of countries/regions.

3.2 Gini coefficient

The Gini coefficient is an index originally used in economics

that is mainly used for income gap measurement. The value of

the Gini coefficient is in the range of 0–1. The closer the value is

to 1, the larger the income gap is, while the closer it is to 0, the

smaller the gap is. The Gini coefficient has been widely used in

fields such as medicine, geography, and computing (Chen et al.,

1982). The Gini coefficient decomposition model was put

forward by Dagum C in 1997; this model can describe the

spatial differences of the remote sensing research output as a

whole and quantify differences within and between regions

compared with the ordinary Gini coefficient model (Dagum,

1997). The total Gini coefficient calculation formula is as follows:

G � ΣN
i�1∑N

j�1Σni
k�1Σ

nj
h�1

∣∣∣∣∣yik − yjh

∣∣∣∣∣
2n2 �y

, (3)

where N is the number of continents and n is the number of

countries/regions. ni, nj are the number of countries/regions in

continents i and j, respectively; yik and yjh are the output of

remote sensing research in country/region k and country/region

h in continents i and j, respectively; and �y is the average output of

remote sensing research.

According to the Gini coefficient decomposition model of

Dagum C, the total Gini (G) can be decomposed as follows:

G � Gw + Gnb + Gt, (4)

whereGw measures the contribution of differences in the number

of remote sensing research within continents to the total Gini;

Gnb measures the contribution of differences in the number of

remote sensing research between continents to the total Gini; and

Gt measures the contribution of the various intensity of the

number of remote sensing research between continents to the

total Gini. Among them, Gw, Gnb, and Gt are as follows:

Gw � ∑N

j�1Gjjpjsj , (5)

Gnb � ∑N

j�2∑j−1
h�1Gjh(pjsh + phsj)Djh, (6)

Gnb � ∑N

j�2∑j−1
h�1Gjh(pjsh + phsj)(1 −Djh), (7)

where Gjj is the Gini coefficient within the continent j; Gjh is the

Gini coefficient between continent j and continent h; Djh is the

relative influence of remote sensing research output between

continents j and h; pj � nj/n is the ratio of the number of

countries/regions in the continent j to the number of

countries/regions in all continents; Sj � nj �Yj/n�y,

j � 1, 2, . . . , N; �Yj is the average output of remote sensing

research in the continent j; and Djh is the relative influence

of the output of research in remote sensing between continent j

and continent h.

Gjj �
∑nj

i�1∑nj
r�1

∣∣∣∣∣yji − yjr

∣∣∣∣∣
2n2j �Yj

, (8)

Gjj �
∑nj

i�1∑nj
r�1

∣∣∣∣∣yji − yjr

∣∣∣∣∣
njnh(�Yj + �Yh) , (9)

Djh � djh − pjh

djh + pjh
, (10)

where yji is the output of remote sensing research from a country

i on the continent j; �Yj is the average output of remote sensing
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research for all countries on the continent j; and nj is the number

of countries on the continent j; pj � nj/n is the ratio of the

number of countries/regions in the continent j to the number of

countries/regions in all continents; djh is the mathematical

expectation of the sum of samples satisfying yjt − yhr > 0 in

continent j and continent h; pjh is the mathematical

expectation of the sum of samples satisfying yhr − yjt > 0 in

continent h and continent j.

3.3 ESDA

ESDA is the application of exploratory data analysis

(EDA) to spatial data analysis (SDA). It includes global

spatial autocorrelation analysis and local spatial

autocorrelation analysis. Different from global spatial

autocorrelation describing the spatial aggregation degree of

the research object in the whole research region (Griffith et al.,

2003), local spatial autocorrelation describes the similarity

between research objects, which can be used to measure the

degree of local units obeying the whole (Flahaut et al., 2003;

Jing et al., 2021). Generally, local spatial autocorrelation

analysis can reveal the location of the research object that

has local spatial autocorrelation when the global spatial

autocorrelation is not significant. When the global spatial

autocorrelation is significant, local spatial autocorrelation

analysis can reveal the spatial heterogeneity of the study

object.

3.3.1 Global spatial autocorrelation
In this study, the globalMoran′s Iwas used to measure the

global spatial autocorrelation of the remote sensing research

output. A global Moran′s I value above 0 indicates a positive

spatial correlation (i.e., spatial aggregation) in the research

output, while a value below 0 indicates a negative spatial

correlation (i.e., spatial dispersion). The research output in

remote sensing is considered to have no spatial relevance

when the global Moran′s I value is equal to 0. The global

spatial autocorrelation formula is as follows:

I � n∑n
i�1∑n

j�1wij(yi − �y)(yj − �y)∑n
i�1∑n

j�1wij∑n
i�1(yj − �y)2

� ∑n
i�1∑n

j�1wij(yi − �y)(yj − �y)
S2∑n

i�1∑n
j�1wij

, (11)

S2 � 1
n
∑n

i�1(yi − �y), (12)

where n indicates the number of countries/regions; yi, yj

represent the research output in remote sensing in a country/

region i and j, respectively; �y is the average number of research

in remote sensing and wij is the spatial weight between the ith

country/region and the jth country/region. The value range is as

follows:

wij � { 1, i ∩ j ≠∅
0, i ∩ j � ∅ . (13)

3.3.2 Local spatial autocorrelation
Taking i as the country/region in the study area, the formula

of the local Moran′s I index Ii of country/region i is as follows:

Ii � (xi − �x)
S2

∑n

j�1wij(xj − �x). (14)

The formula for the significance level of the local Moran′s I
index Ii of country/region i is

Z(Ii) � Ii − E(Ii)��������
VAR(Ii)

√ . (15)

Under a certain significance level, the local spatial correlation

can be classified into four types: High–High, Low–Low,

High–Low, and Low–High by calculating the values with I

and Z (I) (Table 1). Among them, both High–High and

Low–Low indicate positive spatial correlation, implying large

spatial similarity between neighboring countries/regions,

i.e., spatial aggregation, while High–Low and Low–High

indicate negative spatial correlation, implying large spatial

differences between neighboring countries/regions, i.e., spatial

dispersion.

4 Results

4.1 Overview

In this study, the national research production statistics are

based on the country/region where the institutions are located, in

which authors complete related research. In addition, many

articles are finished under the international collaboration. In

order to be consistent with existing related studies, we counted

the collaborative articles for each involved country once. For

example, if an article is completed by researchers from the

United States, China, and the United Kingdom, this article

will be counted for all three countries (Lin et al., 2016; Leung

et al., 2017).

A total of 153 countries/regions published remote sensing

studies during 2012–2021, 19 of which contributed only one

TABLE 1 Classification of local spatial correlation.

Category I Z(I)

High–High 0< I≤ 1 1.96<Z(I)< +∞
Low–Low 0< I≤ 1 −∞<Z(I)< − 1.96

High–Low −1≤ I< 0 −∞<Z(I)< − 1.96

Low–High −1≤ I< 0 1.96<Z(I)< +∞
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(Figure 1). Figure 1 shows that the top 30 cities with high

research output were those with large populations. The

10 most productive countries/regions contributed 68.78% of

the total studies, with the United States and China being the

two most active countries/regions in remote sensing research

(Figure 1). China and the United States had the largest

numbers of research publications, 5,389 and 2,649 research,

respectively. Developed countries such as the

United Kingdom, Italy, France, Canada, and Spain also had

high output. Large emerging countries, including India (947),

Brazil (331), Iran (310), and Egypt (260), have large

populations or are large energy consumers. Articles from

these countries mostly focused on society, the environment,

and energy. To some extent, this indicates that the economic

level plays a vital role in scientific input in remote sensing (Li

et al., 2016; Lukac et al., 2016; Mikhaylov et al., 2021).

Furthermore, for countries/regions with large populations,

especially emerging developing countries/regions, new

methods based on remote sensing technologies have been

sought to solve social problems (such as traffic congestion,

environmental pollution, etc.) caused by population growth or

develop new technologies for energy surveys (for mineral

exploration, etc.) to reduce costs and improve the efficiency

of energy exploration (Duane et al., 2021; Chen et al., 2022;

Wu et al., 2022).

4.2 Annual publication

Figure 2 describes the annual output of remote sensing

research. In Figure 2, the total global citation score (TGCS)

indicates the total citations of a remote sensing research by

study in the whole database, representing the influence of

that research on the academic community, while the total

local citation score (TLCS) indicates the citations in the field

of this study, which showcases its influence within the field. It

can also be seen that 12,549 studies were produced in the field

during 2012–2021. 2012 was the year with the lowest yield,

with 709 published research, while 2021 had the highest

yield, with the publication of 2,576 research. An average

of 1,331.8 research was published per year, with an average of

2,105 citations per year (21,050 citations in total in research

in the field). The total number of citations in the whole

database reached 181,944, an average of 18,194.4 citations

per year.

During 2012–2021, the first peaks of the TLCS and TGCS

emerged in 2013. In 2013, the study The detection of “hot

regions” in the geography of science—A visualization

approach by using density maps and Automatic landslide

detection from remote-sensing imagery using a scene

classification method based on BoVW and pLSA had the

highest TGCS and TLCS, respectively (Bornmann and

FIGURE 1
Geographic distribution of the global remote sensing research paper output.
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Waltman, 2011; Cheng et al., 2013). After a temporary rebound

in 2014, the TGCS and TLCS reached the peak of their research

duration in 2015 simultaneously, demonstrating that the

academic achievements of this year attracted high attention

from both the respective fields and the whole academic

community (Figure 2). Transferring deep convolutional

neural networks for the scene classification of high-resolution

remote sensing imagery was the research with the highest TGCS

and TLCS during 2012–2021 (Hu et al., 2015). After 2016, the

TLCS and TGCS continuously declined; however, remote

sensing research output displayed an upward trend. This

result does not suggest that the research conducted after

2016 is not important or that the academic community has

lost interest in remote sensing. It is more like a reflection of the

delayed citation window effect (O’Leary et al., 2015; Chi, 2016;

Gonzalez and Gonzalez, 2016; Hu et al., 2019), which means

that it takes time from publication to citation (Campanario,

2011; Chi, 2016). In general, the citation of research is directly

related to its publication time. The earlier the article is

published, the more times it will be cited (Leung et al., 2017;

Hu et al., 2019). Conversely, the research output in remote

sensing has been increasing since 2016, which indicates that

research in remote sensing has attracted ongoing attention from

both its own field and the global community (Figure 2) (Weng,

2009; Zhuang et al., 2013).

FIGURE 2
Temporal distribution of the output of remote sensing research from 2012 to 2021.

FIGURE 3
Line graph of the annual index change of remote sensing
research output.

TABLE 2 Annual index of remote sensing research output.

Year STDEV CV Moran

2012 24.1585 3.5976 0.071

2013 29.0000 3.7332 0.066

2014 31.1722 3.7716 0.090

2015 34.5797 3.4741 0.074

2016 37.1906 3.5033 0.061

2017 43.7571 3.7930 0.048

2018 57.4446 4.1129 0.051

2019 79.0978 4.3638 0.017

2020 91.7205 4.2680 0.022

2021 82.1665 4.6503 0.016
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TABLE 3 Gini coefficient and decomposition results of the output of remote sensing research.

Year

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Gini 0.8741 0.8733 0.8741 0.8503 0.8417 0.8495 0.8634 0.8588 0.8469 0.8519

Gini coefficient of intra-continental(Gw) SA 0.8444 0.8000 0.8222 0.7667 0.7863 0.7846 0.8024 0.7152 0.7839 0.7969

Oc 0.7467 0.7500 0.7070 0.7758 0.7524 0.7314 0.7536 0.7481 0.7297 0.7463

NA 0.8587 0.8490 0.8366 0.8433 0.8440 0.8347 0.8402 0.8321 0.8263 0.8328

Eur 0.6962 0.7150 0.7433 0.6815 0.6603 0.6805 0.6684 0.6875 0.6571 0.6588

As 0.8796 0.8926 0.8812 0.8647 0.8623 0.8669 0.8972 0.8933 0.8809 0.8762

Af 0.8865 0.8010 0.7615 0.7967 0.7273 0.7805 0.7093 0.7378 0.6946 0.7234

Gini coefficient of inter-continental (Gnb) SA–Oc 0.8737 0.8581 0.8260 0.8504 0.8521 0.8038 0.8672 0.8144 0.8308 0.8196

SA–NA 0.9677 0.9632 0.9396 0.9538 0.9551 0.9444 0.9534 0.9239 0.9298 0.9265

SA–Eur 0.8597 0.8468 0.8378 0.8199 0.8215 0.8237 0.8264 0.7884 0.7956 0.7858

SA–As 0.9112 0.9090 0.8924 0.8796 0.8884 0.8903 0.9122 0.8860 0.9023 0.9010

SA–Af 0.8956 0.8250 0.8708 0.8129 0.7884 0.8143 0.8062 0.7635 0.7799 0.8049

Oc–NA 0.9118 0.9041 0.8755 0.9122 0.8937 0.9070 0.8768 0.8696 0.8553 0.8659

Oc–Eur 0.7480 0.7660 0.7432 0.7749 0.7448 0.7499 0.7367 0.7518 0.7205 0.7330

Oc–As 0.8554 0.8724 0.8480 0.8695 0.8519 0.8532 0.8743 0.8758 0.8568 0.8693

Oc–Af 0.9438 0.9110 0.9320 0.9049 0.8797 0.8608 0.9091 0.8818 0.8688 0.8762

NA–Eur 0.8915 0.8825 0.8741 0.8600 0.8598 0.8574 0.8632 0.8554 0.8383 0.8478

NA–As 0.9198 0.9132 0.9052 0.9042 0.8993 0.8991 0.9125 0.9029 0.8892 0.8989

NA–Af 0.9871 0.9802 0.9798 0.9760 0.9725 0.9688 0.9743 0.9567 0.9522 0.9615

Eur–As 0.8194 0.8390 0.8442 0.8085 0.7985 0.8098 0.8344 0.8412 0.8192 0.8243

Eur–Af 0.9341 0.8994 0.9297 0.8927 0.8641 0.8724 0.8776 0.8616 0.8365 0.8369

As–Af 0.9541 0.9376 0.9414 0.9214 0.9095 0.9183 0.9339 0.9250 0.9223 0.9249

Notes: SA: South America; Oc: Oceania; NA: North America; Eur: Europe; As: Asian; Af: Africa.
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4.3 Spatial characteristics

The standard deviation of the research output in remote

sensing has been on the rise from 2012 to 2021, and that in

2021 was 82.1665, which was 240.11% higher than that in 2012.

In addition, its coefficient variation has been increasing

significantly since 2012 (Figure 3), and it was 4.6503, 29.26%

higher than that of 2012 (Table 2). This indicates a significant

dispersion of research output in remote sensing during the time

period, especially after 2017. One major reason is that the

number of countries/regions involved in remote sensing

increased yearly, and the annual research output of the

original high-producing countries/regions increased quickly.

In the initial stage, the publication of newly involved

countries/regions is usually less than that of developed

countries/regions, thus leading to an increase in the values of

the standard deviation and coefficient of variation year by year.

To a certain extent, this result reflects that remote sensing has

attracted the attention of scholars in an increasing number of

countries/regions (Zhuang et al., 2013; Schmitt et al., 2017;

Morales-Barquero et al., 2019). However, it is worth noting

that this phenomenon may lead to a decrease in the spatial

aggregation of remote sensing studies (Zhuang et al., 2013; Ma

et al., 2019b; Jin and Li, 2019; Xu and Yang, 2020).

During 2012–2021, the Moran index was above 0. There was

a positive spatial correlation in the remote sensing research

output, indicating spatial clustering in the sensing field, which

is consistent with the conclusion of Figure 1. In addition, from

2012 to 2014, the Moran index increased and then decreased,

which suggests the same trend of remote sensing research output

agglomeration (Figure 3). After 2015, theMoran index continued

to decline and fell to 0.016 in 2021, meaning that the research

output was still spatially aggregated to a significantly lower

degree than in the last 3 years. One important reason is that

collaborative research before 2018 was mostly among countries/

regions that are geographically close to each other or among

institutions within countries/regions (Fuentes, 2006; Weng,

2012; Zhuang et al., 2013). After 2019, it became more

international, involving more countries/regions and regions

(Ma et al., 2019b; Morales-Barquero et al., 2019; Wu et al., 2022).

4.4 Spatial evolution

4.4.1 Regional differences
Based on the continental division of geography (Asia,

Europe, Oceania, Africa, North America, and South America)

and the Dagum C algorithm, this study calculated the Gini

coefficients of six continents to analyze the intra and

intercontinental differences in research output in remote sensing.

The Gini coefficient of the remote sensing research output

decreased, and the smaller indicator shows the research

convergence. In addition, the regional imbalance decreased

(Table 3). As shown in Figure 4, the largest

intracontinental disparity in remote sensing research

output during 2012–2021 was observed in Asia (Gw was

the largest), while Europe showed the smallest

intracontinental disparity (Gw was the smallest), and North

FIGURE 4
Evolution of the intracontinental variation in the output of remote sensing research. (Notes.: SA: South America; Oc: Oceania; NA: North
America; Eur: Europe; As: Asian; Af: Africa).
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America was relatively stable, fluctuating at approximately

0.83. In Africa, the Gini coefficient of intracontinental

differences decreased dramatically, indicating that the

intracontinental differences in the research output on the

continent have significantly declined.

Asia, the continent with the largest intracontinental

disparity of research output in remote sensing fields, had the

largest intercontinental Gini coefficient with Africa and the

smallest with Europe (Figure 5A); Europe, the continent with

the smallest intracontinental disparity, also had the largest with

Africa and the smallest with Oceania (Figure 5B). In the

Americas, South America had the largest intercontinental

Gini coefficient with North America and the smallest with

Africa (Figure 5C); North America had the largest with

Africa and the smallest with Europe (Figure 5D). Overall,

the intercontinental disparity is dropping. Taking 2012 as

the base period, most of the six intercontinental Gini

coefficients declined, with Europe-Africa decreasing the most

(by 10.4%) and South America-Asia the least (by 1.11%). The

regional differences in research output decreased.

4.4.2 Spatial patterns
Figure 6 shows the 30 countries/regions with the most

active research output in remote sensing during 2012–2021.

As shown in Figure 6, the number of involved Asian

countries/regions increased from 6 to 10 in 2012, while

the number of involved European countries/regions

decreased from 16 to 12. In 2012, the United States was

the largest country/region in terms of research output, with

China, India, Germany, and the United Kingdom ranking

2–5. China became the country/region with the largest

scientific research work output during 2013–2021, and

India moved up to the top three after 2018.

The changes in quadrants in Figure 7 reflect the local spatial

evolutionary characteristics of the output of research work related to

remote sensing. Table 4 presents the countries/regions included in

FIGURE 5
(A–D) respectively show the evolution of intercontinental differences in remote sensing research output between Asia, Europe, South America,
and North America and other continents. (Notes.: SA: South America; Oc: Oceania; NA: North America; Eur: Europe; As: Asian; Af: Africa).
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FIGURE 6
Top 30 countries with the most active output of remote sensing research.

Frontiers in Environmental Science frontiersin.org10

Liu et al. 10.3389/fenvs.2022.932753

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.932753


FIGURE 7
Scatterplot of the Moran index of the output of remote sensing research.
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TABLE 4 Corresponding countries/regions of the Moran scatterplot for the output of remote sensing research.

Year

2012 2013 2014 2015 2016

High–High Canada Canada Canada Canada, India, Netherlands,
and Russian

Canada, India, Russian, and
SpainNetherlands India India

Russian Russian Netherlands

Spain Russian

Spain

Low–High Afghanistan, Bangladesh,
Denmark, Ireland, Kazakhstan,
Kyrgyzstan, Luxembourg,
Mexico, Mongolia, Myanmar,
Nepal, Pakistan, and Viet Nam

Afghanistan, Bangladesh,
Ireland, Kazakhstan,
Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar, Nepal,
Pakistan, and Viet Nam

Afghanistan, Denmark,
French Guiana Ireland,
Kazakhstan, Kyrgyzstan,
Laos, Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Afghanistan, Denmark,
Ireland, Kazakhstan,
Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Afghanistan, Bangladesh,
Denmark, Ireland,
Kazakhstan, Kyrgyzstan,
Laos, Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Low–Low Guinea, Mali, Democratic
Republic of the Congo, and
Zambia

Burkina Faso Cote D’ivoire,
Guinea, and Tanzania

Burkina Faso Cote D’ivoire,
Guinea, Mali, Tanzania,
and Democratic Republic of
the Congo

Angola Congo Cote
D’ivoire, Guinea, Nigeria,
Tanzania, Democratic
Republic of the Congo, and
Zambia

Angola Burkina Faso Cote
D’ivoire, Ghana, Guinea,
Liberia Mali, Tanzania,
Democratic Republic of the
Congo, and Zambia

High–Low United Kingdom and South
Africa

United Kingdom

Year

2017 2018 2019 2020 2021

High–High Canada, India, Netherlands,
and Russian

Canada, India, Netherlands,
and Russian

Canada, India, Netherlands,
and Russian

Canada, India, Pakistan,
and Russian

Canada, India, Pakistan,
and Russian

Low–High Afghanistan Afghanistan, Bangladesh,
Denmark, Ireland,
Kazakhstan, Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar, Nepal,
Pakistan, and Viet Nam

Afghanistan, Denmark,
Ireland, Kazakhstan,
Kyrgyzstan, Laos,
Luxembourg, Mexico,
Mongolia, Myanmar,
Nepal, Pakistan, and
Viet Nam

Afghanistan, Bangladesh,
Denmark, Ireland,
Kazakhstan, Kyrgyzstan,
Laos, Mexico, Mongolia,
Myanmar, Nepal,
Luxembourg, and Viet Nam

Afghanistan, Denmark,
Ireland, Kazakhstan,
Bangladesh, Kyrgyzstan,
Laos, Mexico, Mongolia,
Myanmar, Nepal, and
Viet Nam

Denmark

Ireland

Kazakhstan

Kyrgyzstan

Laos

Luxembourg

Mexico

Mongolia

Myanmar

Nepal

Pakistan

Viet Nam

Low–Low Angola, Burkina Faso, Guinea,
Liberia Mali, Tanzania,
Democratic Republic of the
Congo, and Zambia

Angola, Congo, Guinea,
Nigeria Tanzania, Democratic
Republic of the Congo, and
Zambia

Angola, Tanzania,
Democratic Republic of the
Congo, and Zambia

Angola, Burkina Faso,
Congo, Cote D’ivoire,
Guinea, Senegal Nigeria
Tanzania, Democratic
Republic of the Congo, and
Zambia

Angola, Burkina Faso, Cote
D’ivoire, Ghana, Guinea,
Liberia Mali, Senegal,
Tanzania, and Democratic
Republic of the Congo

High–Low
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each quadrant in Figure 5. As seen from Table 4, a total of

6 countries/regions entered the high–high cluster from 2012 to

2021, with low–high, low–low, and high–low comprising 16, 12, and

2 countries, respectively. Moreover, two countries/regions (Canada

and Russia) are in theHigh–High cluster, indicating that the outputs

of research work related to remote sensing in these countries/

regions and their neighboring countries/regions were at a

relatively high level and stable. In addition, 9 countries/

regions are in the low–high category. In general, the

countries/regions located in each quadrant were relatively

stable in the research period, and only a few countries/

regions underwent quadrant location changes. For example,

Pakistan moved from the second quadrant (low–high) to the

first quadrant (high–high), which demonstrates the output of

scientific research work in Pakistan and its neighboring

countries/regions or regions improved.

5 Discussion

According to the previous analysis, the gap in the research

work output regarding global remote sensing between the different

continents decreased, and the spatial aggregation was obviously

reduced. The top 10 countries/regions with the largest amount of

published research were not the top 10 countries/regions with the

largest gross domestic product (GDP). Similarly, the ranking of

GDP was not consistent with the research output of the

country/region. Meanwhile, almost all the top 30 cities with

the largest research work output were among the top 30 in

terms of urban populations; however, some cities with large

populations like Tokyo and So Paulo fail to make top -30 listed

countries with their research output. To some extent, although

not decisively, regional economic development and the

population have significant impacts on the output of

research work in relevant fields of remote sensing (Li et al.,

2016; Lukac et al., 2016; Ma et al., 2019a; Ma et al., 2019b).

During the past decade, the output of research work on remote

sensing has increased sharply. With more countries/regions

concerned about remote sensing and the wider geographic

distribution of the nations, the most active countries/regions in

the remote sensing research involved the main developed

countries/regions as well as emerging developing countries/

regions. Tables 5 and 6 show remote sensing research

published from 2012 to 2021 with the top 10 TLCS and TGCS

values. Most of the study with high TLCS and TGCSwas published

after 2016, representing the most cutting-edge studies on remote

sensing. During this period, studies with a higher TGCS were

published in 2013. Interestingly, the ranking of TLCS in Table 6

was not identical to that of TGCS. Generally, published research

will be cited by work in this field first, and then cited by studies in

other fields after a period of time. During this period, two

situations may occur: first, the method or idea proposed in this

study may be refuted or optimized by other research in this fieldT
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but is being borrowed and used by other fields; therefore, this study

gets a low TLCS ranking and a high TGCS ranking; second, the

method or idea proposed in this study is only applicable to this

field, so it is ranked high in TLCS but low in TGCS (Hu et al., 2019;

Jin and Li, 2019).

As shown in Tables 5 and 6, there were five study associated

with deep learning and focused on target detection, scene

understanding, and autonomous exploration. Meanwhile, the

number of remote sensing research related to in-depth

learning increased from 3 in 2015 (accounting for 0.3% of the

total number of research) to 98 in 2021 (5.43%), showing a

significant upward trend (Figure 8). In recent years, with the

soaring development of computer vision, such as image

classification, target identification, and semantic segmentation,

deep learning has been widely applied to remote sensing and has

become an important innovation driver for remote sensing

research (Zhang et al., 2016; Leung et al., 2017; Kozlowski

et al., 2020).

The continental imbalance in the output of remote sensing

research work decreased. The continental gap in output in Asia

was the largest, while the gap in Europe was the smallest (Table 3;

Figure 4). In Asia, there were nations with advanced academic

institutions, talented scientific researchers, and large research

work output as well as nations with unfavorable research

conditions, few scientific researchers, and small study output

(Klein et al., 2014; de Beurs et al., 2015; Vadrevu et al., 2019).

Thus, the gap in research work output in Asia was larger than

that in Europe (Goga et al., 2019; Chen et al., 2020; Mikhaylov

et al., 2021). Moreover, the continental gap in Africa has

obviously narrowed due to the increasing investment in

scientific research in the current decade (Khechba et al., 2021;

Mngadi et al., 2022; Sebola, 2022). Regarding the continental gap

between Asia and other continents, the gap between Asia and

Africa was the largest, and the gap between Asia and Europe was

the smallest (Figure 5A), showing that the gap between the two

continents with high research output was not large. The gaps

between Europe and other continents were all smaller than those

between Asia and other continents. In contrast, the gap between

Europe and Africa was the largest (Figure 5B), suggesting a large

imbalance between Africa and other continents with high

research output, such as Asia and Europe.

With the development of communication technology, the

cost of cross-regional cooperation decreased, thus promoting

international cooperation (Figure 5). Recently, with the help of

artificial intelligence, deep learning, and blockchain technologies,

remote sensing has been widely and deeply applied to national

defense, the economy, and people’s daily lives (Zhu et al., 2017;

Kocaman and Ozdemir, 2020; Jung et al., 2021). With an

increasing number of countries/regions paying attention to

remote sensing, some with lower output will become high-

output countries/regions, and some less developed countries/

regions will no longer have low output, so the spatial aggregation

TABLE 6 Top 10 articles of remote sensing with the highest TGCS.

No. Article TLCS TGCS References

1. Hyperspectral Remote Sensing Data Analysis and Future Challenges 40 908 Bioucas-Dias et al.
(2013)

2. Deep Learning for Remote Sensing Data A technical tutorial on the state of the art 143 863 Zhang et al. (2016)

3. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources 139 816 Zhu et al. (2017)

4. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing
Images

226 775 Cheng et al. (2016)

5. Twenty 5 years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps 50 705 Mulla, (2013)

6. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing
Imagery

198 632 Hu et al. (2015)

7. Remote Sensing Image Scene Classification: Benchmark and State of the Art 258 616 Cheng et al. (2017)

8. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends 62 601 Weng, (2012)

9. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data 58 493 Kussul et al. (2017)

10. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification 90 465 Maggiori et al. (2017)

FIGURE 8
Annual yield of remote sensing research to deep learning.
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of the professional research work on remote sensing will

decrease.

Despite the above discoveries, due to the limitations of the

data, there is an inevitable deficiency in the methodological

universality of this exploratory research. Initially, because of

data availability and the heterogeneity of the different

databases, data from the WoS core database were used in this

study. Although the data have high authority, its lack of

comprehensiveness cannot be ignored. During the over 10-

year research, the name of some institutions may have

changed or even become defunct. Secondly, the same

university, organization, and institution might be in different

cities, so we decided to analyze the research output at the national

level. Lastly, the weight impacts and author priority in the

cooperation were not taken into account in the research output

analyses. In future studies, we will improve the availability and

scientific rigor of the results by considering the above limitations.

6 Conclusion

Based on 13,057 research articles included in the WoS from

2012–2021, this study probed the spatiotemporal distribution and

evolutionary characteristics of research work output in remote

sensing by utilizing scientometric and exploratory spatial analysis.

The conclusions are as follows:

Over the last decade, the output of remote sensing research has

increased significantly, and its spatial distribution presents a

significant dispersion trend. Countries/regions actively

participating in remote sensing research included both developed

and emerging developing countries/regions, among which the

United States and China were the most active. Although the

regional economic level and population size play important roles

in the remote sensing research work output, neither factor is a

determinant. Nearly half of the top ten studies with the highest TGCS

and TLCS values were related to deep learning, suggesting that deep

learning technology will be one of the most important drivers of

innovation in future remote sensing applicationmodels. The regional

imbalance of the research work output in remote sensing generally

dwindled. Although both Asia and Europe had the largest remote

sensing research work output, the intracontinental disparity in Asia

was the largest, and that in Europewas the smallest, which is related to

uneven regional development. The continuous development of

telecommunication and other technologies reduces the cost of

cross-regional cooperation, and international cooperation in

remote sensing has become more frequent. As a result, massive

incorporation can bring new technologies and methods. Moreover,

remote sensing technology has been widely applied to various fields,

such as national defense and economics. More national attention has

been given to remote sensing, resulting in mitigation of the clustering

of research work output in remote sensing fields.

The results of this study can help countries/regions and

institutions understand the overall situation of research output

and the continental research gaps in remote sensing as well as

improve understanding of the evolution trend of research output.

By exploring the essential features of national/regional gaps, the

results also serve as important sources of fundamental data and

decision-making references for the spatial allocation optimization

of scientific and technological resources and regional gap

reduction. However, a few limitations and shortcomings should

be noted, and future efforts are needed. 1) Although the adopted

data source is sufficiently authoritative, it is relatively simplistic and

not comprehensive. 2) Due to various reasons, the research work

output in remote sensing fields was only analyzed at the national/

regional scale, leading to a lack of universality of the conclusions. 3)

The absence of weight calculation and priority analysis of

institutional importance also affects the rigor of the results.
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