
Exploring the Role of Shared Mobility
in Alleviating Private Car Dependence
and On-Road Carbon Emissions in the
Context of COVID-19
Xiaoyu Zhang1, Chunfu Shao1*, Bobin Wang2, Shichen Huang1, Xueyu Mi1,3 and
Yan Zhuang1

1Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong
University, Beijing, China, 2Department of Mechanical Engineering, Laval University, Québec, QC, Canada, 3Tangshan Key
Laboratory of Air and Ground Smart Transportation, North China University of Science and Technology, Qinhuangdao, China

Shared mobility is becoming increasingly popular worldwide, and travelers show more
complex choice preferences during the post-pandemic era. This study explored the role
of shared mobility in the context of coronavirus disease (COVID-19) by comparing the
travel mode choice behavior with and without shared mobility. Considering the shared
mobility services of ride-hailing, ride-sharing, car-sharing, and bike-sharing, the stated
preference survey was designed, and the mixed logit model with panel data was applied.
The results show that if shared mobility is absent, approximately 50% of motorized
mobility users and 84.62% of bike-sharing adopters will switch to using private car and
public transport, respectively. The perceived pandemic severity positively affects the
usage of car-sharing and bike-sharing, while it negatively affects the ride-sharing usage.
Under different pandemic severity levels, the average probabilities of private car choice
with and without shared mobility are 38.70 and 57.77%, respectively; thus, shared
mobility would alleviate the dependence on private car in post-pandemic future. It also
helps to decrease the on-road carbon emissions when the pandemic severity is lower
than 53. These findings suggest policymakers to maintain the shared mobility ridership
and simultaneously contain the pandemic. Additionally, pricing discount and safety
enhancement are more effective than reducing detour time to protect ride-sharing
against COVID-19.

Keywords: shared mobility, COVID-19, mode choice, stated preference survey, mixed logit model, private car
dependence, on-road carbon emissions, Beijing

INTRODUCTION

The development of the global positioning system and smartphone applications has promoted a
rapid expansion of digital technology-enabled shared mobility services (Alemi et al., 2019). Due to
the advantages of on-demand response, door-to-door access, and great comfort, the newmobility has
operated in over 760 cities worldwide (Li et al., 2019). According to the China State Information
Center (2020), its trading volume in China reached 270 billion CNY (equal to 43 billion USD) by
2019, with a growth rate of 34.4% within 2 years. At present, different forms of shared mobility
services have blossomed and can be roughly categorized into ride-hailing, ride-sharing, car-sharing,
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and bike-sharing (Khazbak et al., 2020). The introduction and
extensive deployment of these services have transformed the
travel demand and supply, and have thus complicated people’s
travel mode choice behavior.

Since December 2019, the coronavirus disease (COVID-19)
has spread globally and has become the most serious health
emergency. The World Health Organization (2022) declared that
the number of confirmed cases exceeded 481 million, with a total
of 6 million deaths by March 2022. The urban human mobility is
changing due to the perception of pandemic severity and the rise
of telecommuting. Public transport faces an unprecedented
decline of passenger demand during the pandemic (Hu and
Chen, 2021). Li and Zhang (2020) pointed out that the transit
ridership in Beijing, China, in March 2020 was 70% lower than
that the year before. In comparison, the usage of private car is
surging. Luan et al. (2021) proved that the mode split of private
car occupied 58.11% and 82.55% for trips under 6 km and
between 6 and 12 km, respectively. Das et al. (2021) found
that 80% of car commuters would retain their car-using behavior.

For shared mobility—an emerging travel mode category between
public and personal transport—travelers could show more complex
choice preferences in the post-pandemic era. The usage of shared
mobility was negatively affected by concerns regarding the contagion
risk and the apprehension toward contact with shared surfaces
(Morshed et al., 2021; Loa et al., 2022). While on the other hand,
shared mobility could provide non-car owners with more protective
spaces while traveling due to its in-vehicle crowding avoidance and
lower close contact. Therefore, it could play an important role in the
post-pandemic era (Song et al., 2022; WangW. et al., 2022; Yu et al.,
2022).

Previous studies explored the role of shared mobility from
various aspects. For example, Shen et al. (2020) proved that ride-
hailing could increase vehicle kilometers traveled and on-road
vehicular emissions. Qian et al. (2020) reported that the rise of
ride-hailing would decrease the average citywide speed by 22.5%
and would be one of the main contributing factors to traffic
congestion. Liu et al. (2019) found that the fuel savings of each
ride-sharing trip could occupy 47% of fuel consumed when
driving alone. Ikezoe et al. (2020) confirmed that car-sharing
could not stop travelers from owning a car. However, the
evidence on this issue is limited for the COVID-19 context. In
addition, these studies mainly focus on certain travel mode of
shared mobility. The comprehensive analysis of diverse mobility
services is beneficial in excavating more detailed and personalized
travel demand.

Considering the shared mobility services of ride-hailing, ride-
sharing, car-sharing, and bike-sharing, this study applied the
mixed logit model to examine the stated preference (SP) survey
data collected from Beijing, China. Mixed logit model, also called
random parameters logit model, is a prominent technique for
modeling discrete outcome problems (McFadden and Train,
2000; Washington et al., 2011). It has been proposed and
adopted in many transportation studies, such as the analysis
of travel mode choice (Zhao et al., 2020), travel route choice
(González Ramírez et al., 2021), and regional destination choice
(Camacho-Murillo et al., 2021). The model obviates the
limitations of conditional logit model by allowing the

heterogeneity in preferences among decision makers and
avoiding the property of independence from irrelevant
alternatives (McFadden, 1974). It can also deal with the
correlation in repeated choices and adapt to the panel analysis
(Chen et al., 2018). Therefore, the mixed logit model is suitable
for the travel behavior analysis in this study.

The contributions of this study are threefold: 1) It discusses the
decision mechanism of travel mode choice behavior with and
without differentiated shared mobility services; 2) it investigates
the role of shared mobility in alleviating the private car
dependence and on-road carbon emissions in the context of
COVID-19; and 3) it will inform the development of shared
mobility and provide theoretical support for the traffic structure
optimization in a post-pandemic future.

METHODOLOGY

Survey
Beijing, the capital of China, is a typical city with the rapid
expansion and fierce competition of various shared mobility
services for more than 10 years (Chen, 2021). To collect the
mode choice data, we designed a SP survey base on Beijing to
enrich the observed context.

The survey contained two parts, and all questions were closed.
The first part involved the socio-demographic information, such
as sex, age, and car ownership. In addition, respondents were
asked to indicate how they perceive the pandemic severity using a
scale from 0 to 100, in which “0” stands for “extremely not severe”
and “100” for “extremely severe.” They also needed to give their
perception scores for the safety of each shared mobility service.

The second part investigated travelers’mode choices with and
without shared mobility in the context of COVID-19. Seven
modes were considered, including three conventional modes
(e.g., public transport, private car, and taxi) and four shared
mobility services (e.g., ride-hailing, ride-sharing, car-sharing, and
bike-sharing). Hypothetical SP scenarios were presented by
introducing the combinations of levels for influencing factors.
The evidence of selecting factors is as follows:

• Trip distance: This variable was proved to have high
predictive power for the shared mobility usage (Taiebat
et al., 2022); thus, it was selected as the context variable in
the SP survey. The five levels of 3, 10, 15, 20, and 30 kmwere
considered to cover different trip distances.

• Waiting time: This factor was introduced in most existing
SP surveys (Zheng et al., 2016; Choudhury et al., 2018).
According to the timetable in Shang et al. (2019), a waiting
time of 8–40 min for public transport was appropriate.
Furthermore, a waiting time of 10–30 min for taxi and
5–25 min for ride-hailing and ride-sharing are consistent
with the statistical results in DIDI (2016).

• Number of transfers: This variable is a critical determinant
of public transport usage (Marra et al., 2022). The
categorical values of 0, 1, 2, and 3 are given in
accordance with the practical transferring situation in
Beijing.
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• Parking cost: Previous studies examined the effects of this
variable frequently (Liao et al., 2020; Wang Y. et al., 2022). In
this paper, three levels of 5, 12, and 20 CNY were determined
according to the parking rates established by BeijingMunicipal
Commission of Development and Reform (2018).

• Detour time: Detour was specified as an influencing factor of
travelers’ willingness to embrace ride-sharing (König and
Grippenkoven, 2020). Li et al. (2019) reported that most
shared rides made detours <30 min, and the average detour
time was 10 min. Therefore, the levels of 10 and 30 min were
involved.

• Access distance: This factor was proved to negatively affect
the preference for car-sharing (Jin et al., 2020). According to
the car-sharing site distribution, the levels of 700, 1, 200, and
2,000 m were considered.

The levels for the influencing factors are listed in Table 1.

Using orthogonal design, a total of 36 choice scenarios were
generated. The travel time associated with the trip distance was
added to each scenario. To further distinguish differentiated
shared mobility services, their travel cost was also considered.
Under each observed scenario, respondents select their preferred
alternatives with and without shared mobility, and the
corresponding choice sets contain seven and three travel
modes respectively, as shown in Figure 1.

With the assistance of a professional internet-based survey
company, the respondents with experience in adopting the four
shared mobility services were sampled from the permanent
residents in Beijing. The reason for online investigation was to
avoid the close contact with respondents and decrease the risk of
transmission during COVID-19. The survey was conducted for
nearly 1 month in December 2020. Each respondent was
randomly given three out of the 36 SP scenarios. In the
questionnaire collection process, we checked the validation

TABLE 1 | Levels for the SP survey.

Variable Number of Levels Level Specification

Trip distance 5 3, 10, 15, 20, 30 km
Waiting time for public transport 4 8, 15, 25, 40 min
Waiting time for taxi 2 10, 30 min
Waiting time for ride-hailing/ride-sharing 2 5, 25 min
Number of transfers for public transport 4 0, 1, 2, 3
Parking cost for private car 3 5, 12, 20 CNY
Detour time for ride-sharing 2 10, 30 min
Access distance for car-sharing 3 700, 1,200, 2000 m

FIGURE 1 | Example of the SP survey.
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based on the the following two principles: 1) The assigned
scenarios were completely answered; and 2) the non-car
owners did not choose private car as their preferred mode. A
total of 1,007 valid questionnaires were collected in the end, and
the number of mode choice data with and without shared
mobility were both 3,021. Ethical approval from institutional
review boards was not required because this study constituted
empirical analysis instead of human research, and no confidential
data were recorded.

Model Specification
Discrete choice models describe decision makers’ choice among
alternatives, which must be mutually exclusive, exhaustive, and
finite. In this study, the alternatives were chosen repeatedly; thus,
the choice tastes vary over people and are constant over choice
scenarios for each person. Therefore, the mixed logit model based
on panel data was employed to formulate the travel mode choice
behavior with and without sharedmobility (Train, 2003). The two
model structures are shown in Figures 2A, B.

The formulation process includes three steps:

• Utility function construction.

According to the assumption of utility-maximizing behavior
by the decision maker, the travel mode with the maximum utility
will be selected. In the mixed logit model, the utility Unit that
traveler n obtains from mode i in choice scenario t is

Unit � βniXit + εnit, i ∈ Cn (1)
where Cn is the choice set; Xit is the observed variable vector for
mode i in scenario t; βni is the corresponding coefficient vector for
traveler n; and εnit is the unobserved part of utility and is assumed
to be independently and identically distributed according to
Gumbel (0, 1) across travelers, choice scenarios, and modes.
The Gumbel distribution of εnit is different from the normal
distribution of error term in traditional regression models (e.g.,
generalized linear models and CD production function) (Elahi

et al., 2021; Krueger et al., 2021; Elahi et al., 2022; McFadden,
2022; Yang Y. et al., 2022).

The explanatory variables used in modeling came from the
influencing factors investigated in the SP survey (see Section
2.1). Since travel cost was closely associated with travel time
and trip distance (Shen et al., 2020), the trip distance was
excluded from the two models. For the model without shared
mobility, the explanatory variables include travel time,
waiting time, number of transfers for public transport,
parking cost for private car, and perception of COVID-19
severity. For the model with shared mobility, the additional
variables include travel cost and perceived safety of shared
mobility, detour time for ride-sharing, and access distance for
car-sharing.

• Choice probability calculation.

Suppose that each traveler has a total T of choice scenarios and
has a sequence of choices. Because each εnit is independent over
time, the standard logit probability Lni(β) will be the product of
logit formulas, one for each scenario, as specified in Eq. 2:

Lni(β) � ∏
T

t�1

exp(βniXit)
∑j∈Cn

exp(βnjXjt) (2)

FIGURE 2 | Mixed logit model structure: (A) without shared mobility, and (B) with shared mobility.

TABLE 2 | Summary statistics of respondents.

Variable Description Ratio (%) The Whole Population
in Beijing (%)

Gender Men 52.63 51.63
Women 47.37 48.37

Age (years) 18–29 37.64 20.21
30–39 36.54 23.90
40–49 19.36 18.49
≥50 6.46 37.40

Car ownership Yes 63.36 54.00
No 36.64 46.00
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Different from the standard logit model, the random
coefficient β in vector βni of mixed logit model is no longer a
fixed value. It varies over decision makers in the population with
density f(β|θ), in which θ collectively represents the parameters
of this distribution, for example, the mean and covariance of β in
the population. According to Train (2003), the mixed logit choice
probability Pni will be the integral of Lni(β) over the density
f(β|θ), expressed as Eq. 3:

Pni � ∫ Lni(β)f(β∣∣∣∣θ)dβ (3)

• Parameter estimation.

The mixed logit probability Pni is approximated through
simulation methods for any given value of θ. One of the
widely used methods is the Monte Carlo integration with
Halton draws. Assuming that the number of draws is R. For
the r th draw, a value of βr is drawn from the density, f(β|θ), and
the standard logit probability Lni(βr) is calculated. The simulated
mixed logit probability �Pni is

�Pni � 1
R
∑
R

r�1
Lni(βr) (4)

Insert the simulated probability into the log likelihood
function, then the simulated log likelihood is

SLL � ∑
n

∑
i

dniln�Pni (5)

where dni � 1 if traveler n chooses mode i and 0 otherwise. The
maximum simulated likelihood estimator is the value of θ
maximizing SLL. The parameter estimation results will reveal
the decision mechanism of travel mode choice behavior with and
without differentiated shared mobility services.

RESULTS

Socio-demographic Results
The socio-demographic characteristics of 1,007 participants are
summarized in Table 2. Most respondents were aged 18–39.
Older people were fewer in our sample, because they were not
familiar with the internet-based shared mobility applications.
More than 60% of the respondents owned their own vehicles.

The distribution of perceived COVID-19 severity and safety of
shared mobility is listed in Table 3. Almost 50% of the participants

perceived the pandemic severity as exceeding 80. Ride-hailing is
perceived as the safest service, while ride-sharing is perceived as
having the minimum safety. Although the average perceived safety of
car-sharing is only 27.11, 18.87% of the respondents feel it safe
enough. Bike-sharing is generally perceived as a safe mode, while its
safety is considered to be <20 by 22.05% of the sample.

To assess the quality of the questionnaire, we conduct the
psychometric analysis (specifically reliability and validity) on the
five perception related questions. The Cronbach’s alpha of these
questions is 0.698, higher than 0.6; thus, the scale has acceptable
internal consistency reliability (Cronbach, 1951). In addition, the
KMO value is 0.725, and the significant level of the Bartlett sphericity
test is 0.000, indicating the scale has good validity (Hair et al., 2010).

Mode Choice Analysis
The travel mode choices are shown in Figure 3. The mode split of
shared mobility is 37.54% and is specifically sorted as ride-hailing
(19.53%), ride-sharing (7.12%), car-sharing (7.02%), and bike-sharing
(3.87%), in that order. Private car ismostly favored (48.59%), which is
consistent with the statistical results by Jiang et al. (2020). If shared
mobility is absent, the popularity of private car increases by 17.45%.

TABLE 3 | Statistics of respondents’ perceived COVID-19 severity and perceived safety of each shared mobility service.

Proportion (%)

Variable Mean [0,20) [20,40) [40, 60) [60,80) [80,100]

Perceived COVID-19 severity 72.12 3.38 5.76 14.69 27.11 49.06
Perceived safety of ride-hailing 60.99 1.79 5.26 24.43 37.24 31.28
Perceived safety of ride-sharing 16.05 61.57 26.71 7.75 3.57 0.40
Perceived safety of car-sharing 27.11 49.35 15.00 10.33 6.45 18.87
Perceived safety of bike-sharing 57.84 22.05 12.61 9.93 5.56 49.85

FIGURE 3 | Travel mode choices with and without shared mobility.

TABLE 4 | Travel modal shift from shared mobility to conventional modes.

Shared Mobility Public Transport (%) Private Car (%) Taxi (%)

Ride-hailing 19.83 47.80 32.37
Ride-sharing 22.79 49.30 27.91
Car-sharing 16.04 58.96 25.00
Bike-sharing 84.62 11.97 3.42
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Furthermore, the proportion of public transport and taxi rise by
9.9 and 10.19%, respectively.

Table 4 summarizes the travel modal shift to conventional
modes if shared mobility is absent. In addition, 58.96% of car-
sharing users switch their choices to private car, followed by
ride-sharing (49.30%) and ride-hailing (47.80%). Taxi is more
preferred than public transport for motorized shared mobility
adopters. This statistical result is inconsistent with the pre-
COVID-19 studies (Shen et al., 2020; Yang H. et al., 2022), in
which more than 50% of respondents select public transport as
the alternative mode. In addition, 84.62% of bike-sharing users
switch to public transport; thus, bike-sharing would contribute
to decreasing the infection risk for those concerned regarding
travel cost.

Estimation Results
We estimate the parameters in mixed logit models with and
without shared mobility through simulation methods, and the
estimation results are shown in Table 5. Assuming that
distributions of random coefficients are normal, the
probability is approximated using Monte Carlo integration
with Halton draws of 600. The goodness-of-fit measures ρ2 are
0.406 and 0.269, respectively, indicating the mixed logit models
have good fitting effects.

For the model with shared mobility, the random coefficients
exist in waiting time, access distance, and travel cost. The mean
and standard deviation of the random parameters are all
significant, which means the estimation results explain the
individuals’ travel mode choice behavior properly. The
estimated coefficients of travel time, waiting time, travel cost,
and perceived safety are statistically significant and have the
expected signs. The number of transfers for public transport,
parking cost for private car, and access distance for car-sharing
have negative effects on the preference for corresponding modes.
This is consistent with the results of existing studies (Yan et al.,
2019; Jin et al., 2020; Fang et al., 2021).

The coefficient of detour time for ride-sharing is insignificant,
which is inconsistent with the previous studies (König and
Grippenkoven, 2020; Ke et al., 2021). The reason may be that
people would mind sharing in-vehicle spaces rather than the
detour time in the context of COVID-19.

With the increase of perceived pandemic severity, private car is
more favored, and public transport is less favored. Furthermore,
the pandemic severity positively affects the usage of car-sharing
and bike-sharing, and negatively affects the usage of ride-sharing.
In terms of the mode specific constants, we find that private car
has the largest positive constant. Therefore, it is predicted to be
most preferred without the prior knowledge of the market. This

TABLE 5 | Mixed logit model estimation results.

Variable With Shared Mobility Without Shared Mobility

Estimates p-value Estimates p-value

Waiting time -0.017** 0.035 -0.035*** 0.000
Waiting time (std) 0.071*** 0.000 0.080*** 0.000
Access distance -2.260*** 0.000 – –

Access distance (std) 1.710*** 0.000 – –

Travel cost -0.010*** 0.000 – –

Travel cost (std) -0.020*** 0.000 – –

Travel time -0.015*** 0.001 -0.010*** 0.006
Number of transfers -0.103* 0.078 -0.205*** 0.000
Parking cost -0.026*** 0.000 -0.045*** 0.000
Detour time -0.001 0.916 – –

Perceived safety 0.012*** 0.000 – –

Perceived COVID-19 severity
Public transport -0.021*** 0.000 -0.018* 0.056
Private car 0.037*** 0.000 0.022*** 0.000
Taxi (References) 0 0
Ride-hailing 0.011 0.132 – –

Ride-sharing -0.014* 0.079 – –

Car-sharing 0.034*** 0.000 – –

Bike-sharing 0.018** 0.025 – –

Constant
Public transport 0.664*** 0.000 0.272* 0.075
Private car 1.770** 0.029 1.280*** 0.000
Taxi (References) 0 0
Ride-hailing 1.210*** 0.000 – –

Ride-sharing 0.867*** 0.009 – –

Car-sharing -0.714* 0.064 – –

Bike-sharing 1.600*** 0.007 – –

Number of observations 3,021 3,021
Log likelihood -3,931.973 -2,400.814

ρ2 0.406 0.269

- Variable is not available in the model.
*** Significance at the 0.01 level, ** Significance at the 0.05 level, * Significance at the 0.1 level.
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result is consistent with the surveyed mode split in Figure 3.
Among the shared mobility services, bike-sharing is the most
popular, while car-sharing is less popular than the base alternative
of taxi.

The model without shared mobility only has one random
coefficient of waiting time. The variables related to shared
mobility use do not exist in the model. The remaining
variables have similar effects on the travel mode choice as the
model with shared mobility.

DISCUSSION

To evaluate the role of shared mobility in the context of COVID-
19, we predict the mode split of private car and on-road carbon
emissions using the two mixed logit models.

The mode split prediction is to calculate the choice probability
of each travel mode for any given value of explanatory variables
based on the estimated parameters. In this section, we predict the
mode split of private car in response to the perceived COVID-19
severity. As presented in Figure 4, the average probabilities of
private car choice with and without shared mobility are
38.70% and 57.77%, respectively. Even if the pandemic is at its
worst, the mode split of the former is 20.78% lower than that of
the latter. According to Awad-Núñez et al. (2021), the preference
in extraordinary periods could reestablish people’s travel habits.
In a post-pandemic future, shared mobility would be beneficial in
relieving the private car dependence.

The on-road carbon emissions generated by surveyed
respondents are calculated by multiplying the emission factors
by the total travel distance of corresponding mode. The emission
factors of buses, cars, and electric vehicles are adopted as 35.0 g/
(person·km), 131.7 g/(person·km), and 80.3 g/(person·km),
respectively (Yang et al., 2017a; Yang et al., 2017b). Assuming
that the occupancy of ride-sharing is two riders, the on-road
carbon emissions with and without shared mobility are estimated
and reported in Table 6.

Total on-road carbon emissions with shared mobility are
5,799.07 kg, less than those without it. Furthermore, motorized
vehicles produce fewer carbon emissions while introducing shared
mobility. This is because of the following: 1) Affected by new services’
competition, private car and taxi are less used; 2) ride-sharing
mitigates emissions by improving occupancy; 3) the car-sharing
service adopts electric vehicles and thus is eco-friendlier; and 4)
bike-sharing is the main replacement of public transport and no
emission is created. This result is inconsistent with the pre-COVID-
19 studies (Shen et al., 2020; Yang H. et al., 2022), in which shared
mobility increases the on-road vehicular emissions because it replaces
many public transport trips rather than private car-based trips. In
addition, among shared mobility services, only ride-hailing is
considered in these studies. In our study, the whole shared
mobility contributes 33.02% to the total carbon emissions.

In addition, we investigate the total carbon emissions in response
to different pandemic severity levels. As shown in Figure 5, the on-
road carbon emissions would increase with the pandemic severity.
The emissions with shared mobility are always lower than those
without shared mobility, whereas the two would be closer when the
severity is >53. Therefore, to reduce the carbon emissions, the

FIGURE 4 | Predicted mode split of private car in response to the
perceived COVID-19 severity.

TABLE 6 | On-road carbon emissions with and without shared mobility in the
context of COVID-19.

Mode On-road Carbon Emissions (kg)

With Shared Mobility Without Shared Mobility

Public transport 211.68 339.82
Private car 3,457.26 4,663.10
Taxi 215.07 953.51
Ride-hailing 1,337.55 –

Ride-sharing 265.38 –

Car-sharing 312.13 –

Bike-sharing 0 –

Total 5,799.07 5,956.43

FIGURE 5 | On-road carbon emissions in response to different
pandemic severity levels.
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pandemic prevention and the maintenance of shared mobility
ridership need to be carried out simultaneously.

CONCLUSION

This study explored the role of shared mobility in the context of
COVID-19. Considering shared mobility services (e.g., ride-hailing,
ride-sharing, car-sharing, and bike-sharing) and conventional modes,
the SP survey was designed and conducted in Beijing, China. Mixed
logit models were specified and estimated to compare the travelmode
choice behavior with and without shared mobility.

The main findings are as follows:

1. The perceived safety of shared mobility services is in the order
of ride-hailing > bike-sharing > car-sharing > ride-sharing,
and the mode split is in the order of ride-hailing > ride-
sharing > car-sharing > bike-sharing.

2. If shared mobility is absent, approximately 50% of the
motorized shared mobility adopters switch to using private
car, whereas 84.62% of bike-sharing users select public
transport as the alternative mode.

3. The estimates show that the coefficient of detour time for ride-
sharing is insignificant, which may be because people would
mind sharing in-vehicle spaces rather than the detour time in
the context of COVID-19. The perceived pandemic severity
positively affects the usage of car-sharing and bike-sharing,
while it negatively affects the usage of ride-sharing.

4. Under different pandemic severity levels, the average probabilities
of private car choice with and without shared mobility are
38.70 and 57.77%, respectively. Therefore, shared mobility
would contribute to relieving the private car dependence in a
post-pandemic future. It also helps to decrease the on-road carbon
emissions when the pandemic severity is <53.

To sum up, it is necessary to maintain the ridership of shared
mobility owing to its vital role in the context of COVID-19. However,
the role of shared mobility would be limited with the pandemic
severity increases, thus the policymakers need to contain the

pandemic at the same time. In addition, pricing discount and
safety enhancement would be more effective than reducing detour
time to protect the environmental ride-sharing service against
COVID-19.

For future research, twofold directions were suggested. First,
more variables could be figured out and applied in the mode
choice modeling by combining the massive order data and the
survey data of shared mobility services. Second, we will
investigate the travel behavior in different stages of pandemic
development and then provide a more detailed analysis on the
role of shared mobility.
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