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The ongoing climate warming is likely to increase the frequency of freeze-thaw

cycles (FTCs) in cold-temperate peatland regions. Despite the importance of

soil hydro-physical properties in water and carbon cycling in peatlands, the

impacts of FTCs on peat properties as well as carbon sequestration and release

remain poorly understood. In this study, we collected undisturbed topsoil

samples from two drained lowland fen peatlands to investigate the impact

of FTCs on hydro-physical properties as well as dissolved organic carbon (DOC)

fluxes from peat. The soil samples were subject to five freeze-thaw treatments,

including a zero, one, three, five, ten cycles (FTC0, FTC1, FTC3, FTC5, and

FTC10, respectively). Each FTC was composed of 24 h of freezing (−5°C) and

24 h of thawing (5°C) and the soil moisture content during the freeze-thaw

experiment was adjusted to field capacity. The results showed that the FTCs

substantially altered the saturated hydraulic conductivity (Ks) of peat. For peat

samples with low initial Ks values (e.g., < 0.2 × 10−5 m s−1), Ks increased after

FTCs. In contrast, the Ks of peat decreased after freeze-thaw, if the initial Ks was

comparably high (e.g., > 0.8 × 10−5 m s−1). Overall, the average Ks values of

peatlands decreased after FTCs. The reduction in Ks values can be explained by

the changes in macroporosity. The DOC experiment results revealed that the

FTCs could increase DOC concentrations in leachate, but the DOC fluxes

decreased mainly because of a reduction in water flow rate as well as Ks. In

conclusion, soil hydraulic properties of peat (e.g., Ks) are affected by freezing

and thawing. The dynamics of soil hydraulic properties need to be explicitly

addressed in the quantification andmodelling of thewater flux andDOC release

from peatlands.
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1 Introduction

Peatlands cover approximately 3% of the terrestrial surface of

the Earth (Bragazza et al., 2013) but store approximately 21% of

the global soil carbon pool (Leifeld and Menichetti, 2018).

Nowadays, around 10–15% of the world’s peatlands are

artificially drained mainly for agriculture (Kreyling et al.,

2021). Peatland drainage lowers the water table depth, leading

to land subsidence (Hooijer et al., 2012; Liu et al., 2020), water

storage loss (Liu et al., 2022), greenhouse gases emissions (e.g.,

carbon dioxide, CO2; Leifeld and Menichetti, 2018), and

dissolved organic carbon (DOC) release to groundwater and

streams in peatland-dominated catchments (Evans, 2015).

Carbon loss from peatlands could accelerate global warming,

which in turn impacts carbon storage in peatlands (Hanson et al.,

2020).

The ongoing winter climate warming is expected to increase

the frequency of freeze-thaw cycles (FTCs) in cold-temperate

regions (Kreyling et al., 2008), which may substantially alter the

biogeochemical processes (e.g., carbon and nitrogen turnover;

Azizi-Rad et al., 2022; Byun et al., 2021; Henry, 2007; Matzner

and Borken, 2008). A substantial amount of greenhouse gases

(e.g., carbon dioxide, nitrous oxide) are emitted from thawing

soils during and/or following winters (Dörsch et al., 2004;

Matzner and Borken, 2008). The changes in soil structure,

microbial biomass, and root turnover during FTCs are

reported to be the main reasons for the increased carbon and

nitrogen concentrations (Tierney et al., 2001; Matzner and

Borken, 2008).

Dissolved organic carbon is one of the major carbon loss

pathways in peat soils and also leads to water quality problems in

downstream surface and groundwater (Evans et al., 2016; Xu

et al., 2020). Increasing DOC concentrations in streams have

been recorded across Europe and North America (Monteith

et al., 2007). A high DOC concentration can, likewise, cause

color, odor, and taste problems in drinking water (Ritson et al.,

2017). There have been several studies that have addressed the

impact of FTCs on DOC concentrations from peatland, however,

the results are divergent. It has been observed that the FTCs may

increase water-extracted DOC concentrations of permafrost fen

peat (Wang et al., 2014) and pore water DOC concentrations of

natural wetlands soils (Yu et al., 2011). However, some other

studies observed that the FTCs have a limited role in DOC

concentrations of temperate bogs and permafrost bogs (Heinz

and Zak, 2018; Pokrovsky et al., 2018; Payandi-Rolland et al.,

2021). It should be noted that the DOC flux to streams is

controlled by DOC pore water concentrations (Freeman et al.,

2001) and the hydrological processes and DOC transport

mechanisms (Evans et al., 2006; Holden et al., 2012; Olefeldt

and Roulet, 2014). However, the latter conditions as well as DOC

fluxes under FTCs have not been addressed in previous studies.

Soil hydraulic properties (e.g., saturated hydraulic

conductivity, Ks) and the soil pore structure (e.g., macropore)

play critical roles in water flow and contaminants export (Baird,

1997; Holden, 2009; Hribljan et al., 2014). It has been reported

that the hydraulic properties and the soil structure could be

substantially altered by FTCs (Starkloff et al., 2017; Ding et al.,

2019; Liu et al., 2021). For mineral soils, it has been reported that

the FTCs can cause the fragmentation of soil coarse particles and

aggregation of soil fine particles (Zhang et al., 2016), thereby

changing the soil structure. However, the impact of FTCs on soil

structure is found to be quite divergent, depending on the soil

texture (Zhao et al., 2021). From computed tomography

scanning and image analysis, Starkloff et al. (2017) observed

that the macroporosity in silty clay loam and loamy sand

decreased after FTCs. However, some other studies found that

the macroporosity in clay and black soils increased significantly

after several FTCs (Fan et al., 2021; Liu et al., 2021). Due to the

changes in soil structure, the soil water permeability also changes

after several FTCs. It has been reported that the saturated

hydraulic conductivity (Ks) of compacted clay increased after

several FTCs (Othman and Benson, 1993). However, Starkloff

et al. (2017) found that the consecutive FTCs can reduce the

water permeability of loose soils. Compared with mineral soils,

peat soils have some unique properties, such as high organic

matter content (as high as 99 wt%, percent by weight; Liu and

Lennartz, 2019) and low bulk density (as low as 0.01 g cm−3;

Boelter, 1968). The Ks values of pristine peat range from 10−2 to

10−5 m s−1 (Letts et al., 2000; Rezanezhad et al., 2016). After

peatland drainage, Ks values generally decrease ranging from 10−4

to 10−8 m s−1 (Wang M. et al., 2021). Although previous studies

have proved that the Ks of peat plays an important role in DOC

export from peatland (Hribljan et al., 2014; Strackloff et al.,

2017), we know very little about the dynamics of Ks and DOC

fluxes under winter warming conditions with frequent FTCs. In

this study, we hypothesize that FTCs may change the hydro-

physical properties (e.g., macroporosity, Ks) of peat, which

possibly influences the DOC fluxes from peat. The main

research objectives were to investigate: 1) the impact of FTCs

on Ks and macroporosity of peat, and 2) the impact of FTCs on

DOC concentrations and fluxes from peat.

2 Materials and methods

2.1 Study sites

The study sites are located in the state of Mecklenburg-

Pomerania, northeastern Germany. The climate of Mecklenburg-

Pomerania is characterized by an average annual precipitation of

620 mm and the average air temperature in winters (reference

period 1882–2010) generally fluctuates between –5°C and 5°C

(data is from Germany’s national meteorological service;

Supplementary Figure S1). In Mecklenburg-Pomerania,

peatlands cover an area of 2,800 km2 and approximately 98%

of peatlands are groundwater fed and thus are called fens (Zeitz
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et al., 2011). Over the last century, more than 95% of peatlands in

Mecklenburg-Pomerania have been drained for agriculture

(Tanneberger et al., 2021). In this study, two drained fen

peatlands (Site 1, 54°00’22.6" N, 12°06’56.3" E; Site 2, 53°59’57"

N, 12°13’56" E) were selected as they represent the majority of the

peatlands in north-eastern Germany (Liu et al., 2016). The

topsoils (0–20 cm) in the two drained peatlands were highly

degraded due to the organic matter mineralization caused by

land drainage. The organic matter contents of the top soils are

30% and 80% for sites 1 and 2, respectively (Liu et al., 2016;Wang

M. et al., 2021), indicating that the soils at site 1 are more

decomposed and degraded (Liu and Lennartz, 2019). The parent

plant materials that form peat soils are Carex peat with some

Phragmites (Liu et al., 2016). For both sites, the water table depth

is approximately 0.8–1.2 m below the ground surface in summers

and 0.2–0.6 m below the ground surface during winters.

2.2 Soil sampling and freeze–thaw
experiments

Forty-five undisturbed peat core samples (7.2 cm in diameter

and 6.1 cm in length) were collected randomly over an area of

8 m × 8 m at each study site in November 2020. All undisturbed

peat samples were taken by cutting soil with steel cylinders and a

sharp knife (Wang et al., 2020). After soil sampling, all peat cores

were refrigerated and transported to the laboratory at Rostock

University, Germany, for freeze-thaw experiments.

Before starting the freeze-thaw experiments, all the peat cores

were saturated slowly from the bottom using tap water with an

electrical conductivity (EC) of approximately 700 μS cm−1

corresponded to that of the groundwater at the field sites.

After saturation, the Ks was determined for all peat cores by a

constant-head permeameter (Liu et al., 2016). Thereafter, the

samples were classified into five groups (each group, n = 9) with a

comparable mean value of Ks. Among the five groups, one group

was set as control group (without freeze-thaw treatment; FTC0)

and the other four groups, the peat cores experienced 1, 3, 5, and

10 FTCs (FTC1, FTC3, FTC5, FTC10, respectively). The freezing

and thawing of the samples were conducted using a freezer with

temperature range of –10–20°C and each FTC was composed of

freezing at −5°C for 24 h and thawing at 5°C for 24 h. The soil

moisture content of peat samples was adjusted to the field

capacity by draining the samples at –60 cm H2O pressure

head before the start of the FTC experiment. For the control

group, the moisture content of the samples was also adjusted to

the field capacity after initial Ks measurement. After

experimental treatments (freeze-thaw treatment and control

treatment), all the peat cores were re-saturated from the

bottom and the Ks was measured. Thereafter, the peat cores

were drained at –60 cm H2O pressure head again and after the

final round oven-dried at 105°C for 24 h to determine the bulk

density using dry mass. The soil organic matter content of peat

samples was analyzed by using the loss on ignition method

[burning samples at a temperature of 550°C for 4 h; ISO

(2,247)6–3:2005]. In this study, we define the macropore as

pores with an equivalent cylindrical diameter greater than

30 μm (Cameron and Buchan, 2016), which can be estimated

as the difference between the total porosity and the volumetric

water content at –60 cm H2O pressure head (assuming the soil

liquid contact angle of 52° for peat; Gharedaghloo and Price,

2019; Wang M. et al., 2021). The gravimetric soil water content

and bulk density were determined to estimate the total porosity

and the volumetric water content at –60 cm H2O pressure head.

In order to determine the impact of FTCs on DOC flux,

additional eight peat core samples were collected from each field

site. The samples were separated into two groups (control group

without freeze-thaw treatment and freeze-thaw group) with a

comparable mean value and range of Ks. For the freeze-thaw

group, the samples were saturated with artificial water (NaCl

solution with EC of 700 μS cm−1, corresponded to that of the

groundwater at the field sites) and then they were flushed with

rainwater alike (NaCl solution, EC = 50 μS cm−1) at a constant

water hydraulic head of 1.5 cm (Supplementary Figure S2). After

1-h of flushing, the peat samples were drained at –60 cm H2O

pressure head and subjected to one FTC. Thereafter, the soil

samples were re-saturated and re-flushed following the same

procedure. The effluent water samples were collected after the

peat samples experienced a cumulative of 0, 1, 3, 5, and 10 FTCs.

The volume of the effluent was also recorded during the flushing

experiment. For the control group, the peat samples were

saturated, flushed, and drained 5 times on the same dates as

treatment group. The samples of the control group were kept in a

refrigerator at 5°C between leaching experiments and each

sample of the freeze-thaw group was covered by a plastic

sheet (Profissimo, dm-drogerie markt, Karlsruhe, Germany;

not directly contact with the peat soils) during freezing-

thawing treatment to prevent water loss by evaporation. The

effluent water samples were collected and filtered through a pre-

washed 0.45 µm mixed cellulose ester (MCE) syringe filter to

determine the DOC concentrations using DIMATOC® 2000

(Dimatec Analysentechnik GmbH, Essen, Germany). The

DOC flux (qDOC; mg cm−2 h−1) was determined by Eq. 1:

qDOC � Q
A
× CDOC (1)

Where Q is the volumetric flow rate (liter per hour; L h−1), A is

the cross section of the peat core (cm2), and CDOC represents the

effluent DOC concentration (mg L−1).

2.3 Data analysis

The Ks values followed a lognormal distribution; therefore,

the data were transformed to common logarithms (log10) before a

further statistical analysis. A t-test was used to investigate the
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differences in bulk density, macroporosity, and log10Ks between

the two study sites. A paired t-test was performed on each group

to evaluate the mean difference of log10Ks before and after FTC

treatment. A one-way analysis of variance (ANOVA) was carried

out to analyze whether the log10Ks differed significantly among

the groups after freeze-thaw treatments. The Shapiro-Wilk tests

indicate that the changes in flow rate, DOC concentrations as

well as DOC fluxes were normally distributed. Therefore, a t-test

was used to investigate whether the changes in DOC

concentrations and fluxes as well as flow rates differed

significantly between the freeze-thaw group and control group

after each freeze-thaw treatment. A paired t-test was applied to

the freeze-thaw group to evaluate the mean difference of DOC

concentrations before and after FTCs. All the statistical analyses

were conducted using R (R Core Team, 2020).

3 Results

3.1 Hydro-physical properties of peat

The organic matter contents of peat samples from the study sites

1 and 2 were 35.7 ± 0.3 wt% and 76.5 ± 0.4 wt% (by weight; mean ±

1 standard error), respectively (Supplementary Table S1). The

average soil bulk density value was 0.48 g cm−3 for site 1, which

was higher than the value of site 2 (0.41 g cm−3; p < 0.001). The

average macroporosity differed likewise between sites (site 1 = 0.12 ±

0.01 cm3 cm−3, site 2 = 0.10 ± 0.01 cm3 cm−3; mean ± 1 standard

error). The average field capacity at sites 1 and 2 were 0.61 ± 0.02 and

0.67 ± 0.01 cm3 cm−3, respectively (mean ± standard error). TheKs of

fen peat at site 1 ranged from 1.9 × 10−6 m s−1 to 1.0 × 10−4 m s−1,

while the according values of site 2 varied from 3.0 × 10−7 m s−1 to

4.5 × 10−4 m s−1. ForKs, the coefficient of variation (CV) was 99% for

site 1 and 138% for site 2. There was no significant difference in

log10Ks between the two study sites (p = 0.082). A strong positive

linear relationship was found between log10Ks and macroporosity

(Supplementary Figure S3; R2 = 0.68; p < 0.001).

3.2 Impact of freeze-thaw cycles on Ks of
peat

The paired t-test suggested that there was no significant

difference between the average log10Ks before and after zero

FTC (FTC0) treatment in the control group (without freeze-thaw

treatment; p = 0.92; Supplementary Tables S2, S3). Figure 1

shows that the log10Ks values before and after zero freeze-thaw

treatment are distributed along the 1:1 ratio line. For the control

groups, the differences between the first and second

measurements of Ks was generally within 10% of its initial

value. The differences of Ks values in the two measurements

possibly resulted from measurement errors or occurrence of gas

bubbles during the saturation or re-saturation procedure.

For the other four groups (FTC1, FTC3, FTC5, and FTC10),

the average log10Ks values generally decreased after temperature

treatment (Table 1). The results from the paired t-test suggested

that significant differences in log10Ks before (without freeze-thaw

treatment) and after FTCs were observed after five cycles for site

1 samples (p = 0.028) and after three cycles for site 2 samples (p =

0.033; Supplementary Tables S2, S3). The results from the one-

way ANOVA suggested that there was no significant difference in

Ks between the four groups and after FTCs within one site (p >
0.05). For site 1, the geometric mean value of Ks decreased from

2.0 × 10−5 m s−1 (log10Ks,—4.7) to 1.1 × 10−5 m s−1 (log10Ks,—4.9)

after five FTCs. For site 2, the geometric mean value of Ks

decreased by 25% from 3.6 × 10−6 m s−1 to 2.7 × 10−6 m s−1

(log10Ks from—5.45 to—5.57) after three FTCs (Table 1).

For individual peat samples, the FTCs substantially altered theKs

values. After FTCs, theKs value was generally 30%–270% of its initial

value. The changes in Ks differed between the two study sites but

highly relied on the initialKs of peat before FTCs (Figure 2). A strong

negative correlation was observed between the differences in log10Ks

before and after FTCs and the initial log10Ks values before FTCs (R
2>

0.6; Figure 2). For peat soils with low Ks, the Ks increased after FTC.

In contrast, the Ks of peat decreased after FTC, if the initial Ks was

high. It seems that the threshold value, above and below this value soil

Ks responded differently with FTCs, differed between the two study

sites (0.8 × 10−5 m s−1 for site 1 and 0.2 × 10−5 m s−1 for site 2) and the

threshold values are much smaller than the average Ks values of the

peatlands.

FIGURE 1
The saturated hydraulic conductivity (Ks, m s−1) of peat in the
control group before (log10Ks, before) and after (log10Ks, after) zero
freeze-thaw treatment (FTC0; without FTCs).
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3.3 Impact of freeze-thaw cycles on flow
rates, dissolved organic carbon
concentrations and dissolved organic
carbon fluxes

There was no significant difference in average flow rate

between the freeze-thaw group and the control group at both

sites. For the control groups, the flow rates generally changed

slightly over the entire experiment (Figure 3). In contrast, the

changes of the flow rates in freeze-thaw group were much greater

than in the control group. The average flow rates of the freeze-

thaw group at sites 1 and 2 decreased by approximately 40%

(0.08–0.14 L h−1; Figure 3) until three to five FTCs and then

increased slightly after ten FTCs.

Before any FTCs, the effluent DOC concentrations of the

samples at site 1 varied from 19.9 to 49.3 mg l−1, which were

lower than those values from the samples at site 2

(69.4–128.7 mg l−1). No significant difference was observed in

DOC concentrations between the freeze-thaw group and control

group at both sites. For the control groups, the DOC

concentrations were kept almost constant in the beginning

and then decreased by approximately 50% (14.4 ± 6.5 mg L−1

for site 1 and 60.5 ± 6.6 mg L−1 for site 2) at a later stage of the

experiment (Figure 3). In contrast, for the freeze-thaw group at

site 1, the average effluent DOC concentration increased by 23%

(7.8 ± 3.6 mg L−1) after one FTC and then decreased and

increased again thereafter. At site 2, the average effluent DOC

concentrations increased by 37% (35.4 ± 12.6 mg L−1) after one

FTC and then decreased with further increase in FTCs (Figure 3).

At both sites, the highest average DOC concentration was

observed after one FTC. After ten FTCs, the changes in DOC

concentrations were significantly greater for control group than

the freeze-thaw group for site 2 (Figure 3).

The average DOC fluxes (standard error) at sites 1 and 2 were

0.27 ± 0.03 and 0.31 ± 0.07 mg cm−2 h−1, respectively. For the

control group, the average DOC flux varied slightly at the

beginning and then decreased by approximately 40% at a later

stage of the experiment (Figure 3). In contrast, the DOC fluxes of

the freeze-thaw groups decreased by approximately 50% (0.12 ±

0.02 mg cm−2 h−1 for site 1 and 0.18 ± 0.08 mg cm−2 h−1 for site 2)

until three to five FTCs, and then increased after ten FTCs. After

ten FTCs, the changes in DOC fluxes are comparable between the

freeze-thaw group and control group (Figure 3).

4 Discussion

4.1 Freezing-thawing effects on the
variability of Ks values

Peat soils are highly heterogeneous with complex dual-

porosity media (Rezanezhad et al., 2016). The Ks values

generally differ by two to three orders of magnitude for one

peat horizon (Beckwith et al., 2003; Cunliffe et al., 2013; Liu et al.,

TABLE 1 Mean (standard error) of saturated hydraulic conductivity, log10 (Ks, m s−1) before and after different freeze-thaw cycles (FTC1, FTC3, FTC5,
and FTC 10).

Treatment Site 1 Site 2

Before After Before After

FTC1 – 4.84 (0.15) – 4.91 (0.11) – 5.46 (0.22) – 5.55 (0.18)

FTC3 – 4.82 (0.14) – 4.91 (0.07) – 5.45 (0.16) * – 5.57 (0.14) *

FTC5 – 4.71 (0.13) * – 4.94 (0.07) * – 5.46 (0.20) – 5.47 (0.09)

FTC10 – 4.80 (0.13) – 4.85 (0.09) – 5.49 (0.21) – 5.46 (0.11)

For each site, the asterisk represents a significant difference in log10Ks before and after freeze-thaw treatment (p < 0.05; paired t-test).

FIGURE 2
Scatter plot of the differences between log10Ks before and
after different FTCs against log10Ks of peat before FTCs.
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2016). The Ks values of fen peat of the two study sites varies from

10−7 to 10−4 m s−1, which is within the range reported for

degraded fens (10–8 to 10–4 m s−1; Kechavarzi et al., 2010;

Schwärzel et al., 2006; Wang M. et al., 2021). The CV values

for Ks at site 1 and site 2 (99% and 138%, respectively) are higher

than the value reported for a fen peat in the United Kingdom

(98%; Baird, 1997) but within the range of 70%–150% reported

by Wang M. et al. (2021). In our experiments, the CV for Ks

decreased after a few successive FTCs (Supplementary Table S4)

for both sites with approximately 40% decrease after five FTCs.

This finding indicates that the spatial heterogeneity of peat may

be reduced under winter warming conditions with

frequent FTCs.

4.2 The Ks, macroporosity, and freeze-
thaw cycles

The Ks of peat is mainly influenced by the peat-forming plant

residues (Sphagnum or Carex; Päivänen, 1973), peat

decomposition and degradation stages (Letts et al., 2000;

Rezanezhad et al., 2016; Liu and Lennartz, 2019; Morris et al.,

FIGURE 3
Changes in flow rates, DOC concentrations, and DOC fluxes as observed from samples of the freeze-thaw group and control group for site 1
(left) and site 2 (right) in comparison to the initial values before FTCs. The bars denote the standard error within one group. The asterisk represents a
significant difference at p < 0.05.
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2019), microhabitat (Morris et al., 2015), and soil pore water

chemistry (Kettridge and Binley, 2010; McCarter et al., 2019,

2020; Sirianni and Comas, 2020). Branham and Strack (2014)

observed that the Ks of Sphagnum peat (pristine peat) was

strongly positively correlated with the macropore occurrence

(pore diameter of 2000 μm; Spearman correlation > 0.8). It

should be noted that the definition of macropore differs in

previous studies from minimum pore diameter of

30 μm–3,000 μm (Beven and Germann, 1982; Holden et al.,

2001; Weber et al., 2017; Wallor et al., 2018). The peat

samples used in this study are highly degraded fen peat, for

which the macroporosity with a pore diameter of > 300 μm is

quite small (<1 vol%) and difficult to quantify (Liu et al., 2020).

Therefore, we here defined the macroporosity as pores having a

diameter of greater than 30 μm. The relation between

macroporosity and log10Ks is supported by a recent study

from Wang M. et al. (2021), who observed a moderate

correlation between macroporosity and log10Ks for various

kinds of peat types (Pearson’s correlation coefficient > 0.55).

We here found that the function between macroporosity and

log10Ks is not affected by the FTCs (Figure 4), indicating that the

macroporosity is the main factor controlling the Ks of peat at a

centimeter scale.

Our results showed that the FTCs did not change the average

macroporosity of peat soils (site 1 = 0.12 ± 0.01 cm3 cm−3, site 2 =

0.10 ± 0.01 cm3 cm−3; mean ± 1 standard error). But the FTCs

alter the individual macroporosity of peat soils where the changes

ranged from –5 vol% to 4 vol%, depending on the initial

macroporosity. A moderate negative relationship was found

between the initial macroporosity and the changes in

macroporosity after FTCs (Pearson’s correlation coefficient of

–0.58, p < 0.01). For peat soils, to our knowledge, no information

on the temperature-affected macroporosity dynamic is available.

For mineral soils, the changes in soil structure depend on the

texture and it has been reported that the macroporosity

(> 140 µm pore diameter) of looser sand decreased up to 2 vol

% after six FTCs (Starkloff et al., 2017). Leuther and Schlüter

(2021) observed that the macroporosity (> 48 µm pore diameter)

of repacked loose silt clay decreased by 8 vol% after 10 FTCs. For

clay soils opposite results were obtained and the macroporosity

increased by 30%–60% upon freezing and thawing (Fan et al.,

2021).

A moderate positive linear relation was found between the

differences of log10Ks and the differences of macroporosity for

before and after FTCs (R2 = 0.41, p < 0.001; Figure 5). This

finding suggests that for peat soils with low Ks values, the

macroporosity generally increases after FTCs, thereby

increasing the hydraulic conductivity. In contrast, the FTCs

decrease the macroporosity and thereby the Ks, if the

hydraulic conductivity of peat is comparably high. A similar

relationship has been observed for mineral soils. For sand, the Ks

values decreased from 2.0 × 10−5 to 6.0 × 10−6 m s−1 after six FTCs

(Wang Y. B. et al., 2021). For mineral soils with low initial Ks

values (e.g., saline–alkali soils or black soils; 10−7 m s−1), the FTCs

FIGURE 4
The relationship between macroporosity and saturated
hydraulic conductivity (log10Ks) of peat before (orange circles) and
after (blue circles) freeze-thaw cycles (FTCs).

FIGURE 5
The differences between saturated hydraulic conductivity of
peat (log10Ks) before and after different freeze-thaw cycles (FTC1,
FTC3, FTC5, FTC10) against the difference betweenmacroporosity
before and after different FTCs.
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increase the macroporosity and the Ks increased by 2–20 times

after a few FTCs (Ma et al., 2019; Xu et al., 2021). In our study, the

soil samples were drained at—60 cm H2O pressure head before

FTCs. Thus, the macropores (pore diameter > 30 μm) are

dewatered and the micropores (pore diameter < 30 μm) were

water saturated. We assume that ice lenses form in the

microporous domain during the freezing period causing

cracks, which increase the Ks of soils with low initial Ks values

upon thawing (Othman and Benson, 1993). However, for soils

with high initial Ks values (high macroporosity), the ice lenses

formation may cause a breakdown of large-size aggregates and

block the original macropores (Hayashi, 2013; Starkloff et al.,

2017), thereby reducing the soil permeability. Considering all the

peat samples, the average Ks values of peat decreased as the

average Ks values are much higher than the threshold values

(0.8 × 10−5 m s−1 for site 1 and 0.2 × 10−5 m s−1 for site 2). It has

been reported that the response of hydraulic conductivity to

freeze-thaw cycles is related to the initial soil moisture content

(Roy et al., 2021). The soil organic matter (76.5 ± 0.4%) and the

soil moisture content (0.67 ± 0.01 cm3 cm−3) before freezing of

site 2 samples were significantly higher than for site 1 samples

(p < 0.01), which may be the reasons for the different threshold

values.

4.3 Impact of freeze-thaw cycles on flow
rates, dissolved organic carbon
concentrations and fluxes

The flow rate depends on the Ks of the soil core when the

hydraulic gradient is constant (Hillel, 1998). The Ks values of the

samples from the freeze-thaw group for DOC experiment were

generally greater than 0.48 × 10−5 m s−1. The temperature

treatment decreased the Ks values consistently and thereby

lowered the flow rates. Only one soil core from site 2 had a

low initial Ks value (0.15 × 10−5 m s−1) and the flow rate increased

slightly after FTCs. However, in general, the average Ks values

and flow rates decreased after FTCs.

The effluent DOC concentrations increased after one FTC

consistently for both sites, showing the possible effect of the FTCs

on DOC concentration in peat. This finding can be supported by

previous studies that FTCs may increase the DOC pore water

concentrations due to the physical breakdown of macroaggregates,

death of microbial cells, and root turnover during the freezing period

(Matzner and Borken, 2008; Yu et al., 2011; Wang et al., 2014).

However, some other studies reported that the FTCs have little

impact on DOC concentrations of permafrost peat soils (e.g.,

Payandi-Rolland et al., 2021). One possible reason is that in the

permafrost studied by Payandi-Rolland et al. (2021), the microbial

communities are resistant to FTCs. Previous studies reported that the

microbes in a variety of soil types are highly susceptible to the first

freeze-thaw cycle, and then less affected by subsequent freeze-thaw

cycles (Koponen et al., 2006; Song et al., 2017; Patel et al., 2021;

Rooney et al., 2022). The different climate regions and peatland types

(temperate fen grasslands vs. permafrost bogs)may be responsible for

the different changes in DOC concentrations after FTCs.

The highest effluent DOC concentrations were observed after

one FTC and the impact of freezing and thawing on DOC

concentrations varies with the number of FTCs. Comparing with

the initial DOC concentrations, an increase of DOC concentrations

was observed in the first FTC and there was no change in DOC

concentrations after three FTCs. For soils that experienced five or ten

FTCs, the DOC concentrations decreased but the reduction in DOC

concentrations was lower than the control group. This finding is

consistent with the studies from Yu et al. (2011) and Yang et al.

(2022), in which an increase of DOC concentration generally

occurred in the first two FTCs. Similarly, Wang et al. (2014)

reported that the FTCs significantly increased the water-extracted

organic carbon concentration of peat by 22%–36% and the highest

values occur after five FTCs.

The DOC flux calculations explicitly account for water flow.

The leached water volume differed after FTCs because the

hydraulic conductivity changed, while the hydraulic head was

kept constant. In contrast to the control group, where the DOC

fluxes changed only slightly, the DOC fluxes of the freeze-thaw

group decreased significantly within three FTCs mainly due to

the reduction of flow rate (Figure 3). Thus, the DOC fluxes

decreased though DOC concentrations may increase after FTCs.

It should be noted that the FTCs may also change the soil carbon

to nitrogen ratio as well as DOC sorption processes (Yu et al.,

2010; Song et al., 2017), which may further impact the DOC

fluxes from soils. The mineral particles in peat (e.g., clay) may

also affect the soil response to FTCs, which needs to be further

investigated. The physical disruption of macro-aggregates during

FTCs might expose previously inaccessible substrate and induce

a faster carbon and nitrogen mineralization rate (Matzner and

Borken, 2008; King et al., 2021), the importance of soil pore

structure on water and carbon fluxes has rarely been addressed.

The findings of this study indicate that the soil hydraulic

properties (e.g., Ks) control the flushing and retention of pore

water (Hribljan et al., 2014) and thus play a vital role in

compound fluxes (e.g., DOC). In view of the entire

experiment, we can conclude that although winter warming in

high latitude regions could increase DOC pore water

concentrations in lowland drained fen peat, the DOC fluxes

may decrease after three FTCs because of the changes in soil

hydraulic properties (Figure 3). It should be noted that the

impact of FTCs on hydro-physical properties depends on the

freezing and thawing temperatures, soil water content, and the

duration of freezing and thawing (Henry, 2007; Wei et al., 2018;

Feng et al., 2020; Azizi-Rad et al., 2022). Under global warming

conditions, the amplitude of FTCs may shift, and the

frequency of freeze-thaw will probably increase in cold-

temperate regions. It would, therefore, be helpful to

investigate various freeze-thaw conditions in a systematic

manner in future studies.
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5 Conclusion

Ongoing global warming in cold-temperate regions will

increase the frequency of freeze-thawing processes, which may

alter the water and carbon cycles in boreal and temperate

peatlands. Until now, the dynamics of peat properties under

global warming conditions have not been sufficiently investigated

and considered in hydrological models, which may result in an

over- or underestimation of water and matter fluxes from

peatlands to adjacent water bodies. This study demonstrated

that FTCs could alter the macroporosity, hydraulic conductivity,

and DOC concentrations of peat. The average Ks values as well as

the flow rates decreased after FTCs, whichmay decrease the DOC

fluxes and, thus, the export of DOC from peatlands, although the

DOC concentrations increase after FTCs. To our knowledge, this

is the first study quantifying the dynamics of hydraulic properties

of drained peat soils and their linkage to DOC fluxes under

freeze-thaw conditions. The results reveal that the dynamics of

soil physical properties might be as important as the pore water

concentrations when evaluating the export of compounds from

peat in winter conditions. At landscape scale, the results imply

that the hydrological processes (e.g., infiltration, runoff) may

change under freeze-thaw conditions due to the dynamics of Ks.

We argue that the dynamics of peat hydraulic properties should

be considered in modelling the water flow and contaminant

transport from peatlands. We also recommend investigating

severity, duration and frequency of FTCs in more detail in

future studies to fully understand the consequences of

intensified temperature amplitudes for high latitude peatlands.
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