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Gross primary productivity (GPP) is an important parameter in the carbon cycle

and climate change studies. The results of GPP fluxes estimated based on

multiple models or remote sensing vary widely, but current studies of GPP in

Chinese grasslands tend to ignore data uncertainty. In this study, uncertainty

analysis of GPP datasets estimated based on terrestrial ecosystem models and

remote sensing was conducted using cross-validation, standard error statistics,

and ensemble empirical modal decomposition. We found that 1) the fit

coefficients R2 of two-by-two cross-validation of GPP datasets mostly

exceeded 0.8 at the global scale. 2) GPP from different sources were

consistent in portraying the spatial and temporal patterns of GPP in Chinese

grasslands. However, due to many differences in model structure,

parameterization and driving data, some uncertainties still exist, especially in

the parts of dry-cold areas where the standard deviations are relatively large. 3)

Uncertainties were higher for future scenarios than for historical periods, and

GPP uncertainties were much higher for future high-emissions scenarios than

for low- and medium-emissions scenarios. This study highlighted the need for

uncertainty analysis when GPP is applied to spatio-temporal analysis, and

suggested that when comparing and assessing carbon balance conditions,

multiple source data sets should be combined to avoid misleading

conclusion due to uncertainty.
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1 Introduction

The ability to evaluate the strengths and weaknesses of gross

primary productivity (GPP) between site observations, model

simulations, and remote sensing estimates can be evaluated by

comparing multiple source datasets against each other

(Randerson et al., 2009). Eddy covariance techniques can

accurately measure net ecosystem CO2 exchange, and

ecosystem respiration can be removed from this variable to

directly obtain GPP observations from flux towers at the site

scale (Falge et al., 2001; Morales et al., 2021). However, flux

towers only provide a composite measure of CO2 fluxes over the

footprint (the area upwind of the flux tower measurement),

whose size and shape (ranging from several hundred meters

to several kilometers) vary with tower height, physical properties

of the canopy, and wind speed (Osmond et al., 2004). The

observation footprint is so small that it is not suitable for use

in evaluating models and remotely sensed coarse resolution GPP

datasets. In addition, there are not yet enough effective

observation systems for long periods and large scales in

Chinese grasslands because of the spatio-temporal constraints

and high cost of flux tower site observations (Yuan et al., 2014).

To accurately assess the large-scale GPP dynamics in Chinese

grasslands, the spatio-temporal applicability of models and

remote sensing GPP in Chinese grasslands needs to be

analyzed from macroscopic and long series. Therefore, when

there is a lack of validation of the actual measurement data,

uncertainty analysis can only be done on GPP data from different

sources.

Based on the observed ecophysiological, biophysical, and

biogeochemical processes (Sitch et al., 2008; Huang et al.,

2015), terrestrial ecosystem models can theoretically obtain a

high enough resolution grid GPP and are currently an effective

method for studying GPP variability and its climate effects at

large spatial and temporal scales (Yuan et al., 2021). However, the

accuracy of model GPP is limited by the uncertainty of input

parameters, model-driven data, and defects in the physical

structure of the model, leading to large uncertainties in the

GPP simulated by individual models (Zaehle et al., 2005;

Cheng et al., 2017). In addition, using satellite-derived GPP,

Mao et al. (2012) pointed out that remote sensing provides large-

scale information on real changes in vegetation, land use, and

landforms, which can provide valuable observations at large

scales for terrestrial ecosystem models to correct model GPP

products.

To analyze the uncertainty among the models, the four

Inter-Sectoral Impact Model Intercomparison Project

(ISIMIP) and four Multi-scale Synthesis and Terrestrial

Model Intercomparison Project (MsTMIP) models covered

above were used to analyze GPP data uncertainty. The

ISIMIP and MsTMIP projects were originally established

to assess the physical mechanisms of climate feedback

differences among models and were used to explore the

reasons for the different results between models for the

same driving data outputs. Currently, a small number of

studies on model uncertainty have been conducted for

ISIMIP and MsTMIP (Shao et al., 2016; Krysanova et al.,

2017; Exbrayat et al., 2018), but the spatio-temporal

applicability of the two sets of model GPP data in Chinese

grasslands has still not been compared.

The purpose of this study is to assess the capability of

eight terrestrial ecosystem models in ISIMIP and MsTMIP to

simulate GPP, explore the influence of initial conditions and

model structure on model GPP uncertainty, and propose to

address 1) cross-validation of GPP products from global-scale

ISIMIP, MsTMIP, Global Land Surface Satellite (GLASS), and

Multisource data Synergized Quantitative (MuSYQ) on an

pixel-by-pixel basis; 2) study the GPP simulation capability of

ISIMIP and MsTMIP by comparing with GLASS and MuSYQ

remote sensing observations of GPP, investigate the ability of

ISIMIP and MsTMIP to simulate the historical phase

(1981–2005) of the mean climate state and long-term trend

of GPP for grasslands in China through comparative analysis

with GLASS and MuSYQ remote sensing observations of

GPP; 3) explore the future scenarios of different models in

ISIMIP for typical emission pathways RCP2.6, RCP6.0, and

RCP8.5 (LPJmL model only) (2005–2099) for China’s

grassland GPP.

2 Data and methods

2.1 Dataset description

The GPP data used in this study mainly include eight

simulated GPP datasets provided by ISIMIP and MsTMIP,

two observation GPP datasets provided by GLASS and

MuSyQ. Descriptions of the relevant datasets have been

published in our previous analysis (He et al., 2022), but the

difference is that this study focuses on GPP uncertainty.

Ecological process models are the only means to study the

impact of global change factors on the carbon cycle of ecosystems

in the context of past, present and future global change (Wei

et al., 2014). Schimel et al. (2000) simulated several different

ecosystem process models and found that, due to the huge

differences in complexity, input parameters and simulation

algorithms of different models, researchers should used multi-

model simulation and intercomparison to quantify the

uncertainty of GPP in terrestrial ecosystems. At present, the

International Comparison Scheme of Multi-Terrestrial

Ecosystem Models has developed rapidly, such as ISIMIP

(https://www.isimip.org/), MsTMIP (https://nacp.ornl.gov/

MsTMIP.shtml), and TRENDY (http://globalcarbonproject.

org/) for the annual global carbon balance report. Moreover,

MsTMIP and ISIMIP are publicly available free of charge without

application.
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(1) The MsTMIP is a model comparison program designed to

diagnose differences in simulations of historical terrestrial

carbon cycle dynamics between models (Huntzinger et al.,

2013). The ecological process models participating in

MsTMIP all use the same driving data to provide GPP

output products for historical periods (Wei et al., 2014;

Zscheischler et al., 2014). In the latest release of model

simulations (https://doi.org/10.3334/ORNLDAAC/1225),

MsTMIP provides monthly-valued GPP products with a

spatial resolution of 0.5°, and a time span of 1901–2010.

Based on the need for sensitivity analysis, we selected four

terrestrial ecosystem models in MsTMIP for multiple

scenarios based on the findings of previous studies (Zhou

et al., 2017): Community Land Model version 4(CLM4)

(Mao et al., 2012), CLM4-Variable Infiltration Capacity

model (CLM4VIC) (Li et al., 2011), Dynamic Land

Ecosystem Model (DLEM) (Tian et al., 2012), and

Integrated Science Assessment Model (ISAM) (Jain et al.,

2013) were used as the basis dataset for this study. The

MsTMIP model provides multi-simulation GPP results for

different scenarios, and only the BG1 scenario of MsTMIP

(with all environmental drivers) was used in our study.

(2) The ISIMIP is a model comparison program that assesses a

comprehensive and consistent description of global climate

dynamics under different climate change scenarios

(Rosenzweig et al., 2017), and aims to provide

international organizations and individual countries with

a framework for sustainable projections of climate change

and its impacts (https://esg.pik-potsdam.de/projects/isimip/

). The four terrestrial GPP datasat providing GPP data, were

screened for historical period (1901–2005) and future

(2006–2099) scenarios under strict adherence to the

ISIMIP2b standard protocol. The ISIMIP applied the

atmospheric circulation model IPSL-CM5A-LR as

meteorological forcing data, and output products of the

global terrestrial vegetation dynamics model (monthly, 0.

5°). We used Ecosystem Models: CARbon Assimilation In

the Biosphere (CARAIB) (Warnant et al., 1994), Lund-

Potsdam-Jena: General Ecosystem Simulator (LPJ GUESS)

(Smith et al., 2014), Lund-Potsdam-Jena managed Land

(LPJmL) (Bondeau et al., 2007), and Organizing Carbon

and Hydrology in Dynamic EcosystEms: Dynamic Global

VegetationModel (ORCHIDEE DGVM) (Guimberteau et al.

, 2018) in this study.

(3) The GLASS is widely used in the study of global change.

Among them, the ecosystem GPP is the most important

product dataset of GLASS, which spans nearly 40 years

(1982–2018), and becomes the primary choice for the

current study of long-term evolution characteristics of

GPP due to its relatively high spatio-temporal resolution

(0.05°, 8 days). Previous research found that GLASS GPP can

better characterize the photosynthetic productivity of major

ecosystem types than other satellite-based GPP models

(Yuan et al., 2014). The link to access this GLASS GPP is:

http://www.glass.umd.edu/Download.html.

In addition, to avoid misleading results from a single remote

sensing algorithm inversion of GPP, another MuSyQ GPP

algorithm based on photosynthetic use efficiency model was

used in this study to compare the accuracy of GLASS GPP

results (Wang et al., 2021). The MuSyQ GPP (8 days and 0.05°)

products for 1982–2018 are available. Crucially, when cross-

validating with the model GPP data, we resampled the remotely

sensing GPP to half-degree resolution in line with the

model GPP.

(4) The CRU climate dataset uses an extrapolated spatial

interpolation algorithm to obtain a global image-by-image

gridded product by integrating measured information from

various meteorological stations on a global scale (Harris

et al., 2020). In this study, we used temperature and

precipitation data with a temporal resolution of 1 month

and a spatial resolution of 0.5° provided by CRU TS Version

4.02 (https://crudata.uea.ac.uk/cru/data/hrg/).

2.2 Methods

(1) In this study, the Manner-Kendall (M-K) nonparametric test

was applied to calculate the trend of GPP over time (Kendall

and Gibbons 1957; Culotta 1995). Assuming a time series

with n years (x1,. . ., xn), for all k, j ≤ n, and k ≠ j, the

distributions of xj and xk are different, the test statistic S is

calculated with the following equation.

S � ∑n−1
k�1 ∑n

j�k+1Sgn(xj − xk) (1)

Sgn(xj − xk) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+1(xj − xk)> 0

0(xj − xk) � 0

−1(xj − xk)< 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

S is normally distributed with mean 0 and variance Var(S) =

n (n − 1) (2n + 5)/18. When n > 10, the standard normal statistic

variable is calculated by the following equation.

Z �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S − 1������
Var(S)√ S> 0

S − 1������
Var(S)√ S< 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

For statistical values, greater than 0 indicates an increase in

the series; the opposite is true for a decrease. However, since the

M-K nonparametric test can only provide the sign and statistical

significance of the trend of the variable, it cannot clarify the size

of the trend of the variable. Therefore, the Sen’s slope estimation

method was introduced in this study to quantify the degree of

change in the trend of the variables.
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The Sen’s slope estimation method is a method for robustly

fitting a line to a sampled point in the plane (simple linear

regression) by selecting the median of the slope of all lines at

paired points, which provides a good response to the degree of

change in the series trend, and the Sen’s slope K is given by the

following

K � median(θi) (4)
θi � xj − xk

j − k
(5)

where i is a constant taking value of (1,2,. . .,n); n is the length of

the time series; xj and xk are the sequences of j and k, respectively;

and j > k is satisfied.

The statistical method was implemented in MATLAB

software (Note: The statistics and plots in this study are based

on MATLAB software unless otherwise stated).

(2) The Empirical Mode Decomposition (EMD) method is an

adaptive time-frequency method first proposed, which is

widely used in climate signal processing. EMD is applied to

decompose the original signal into a series of Intrinsic Mode

Function (IMF) signals. However, EMD suffers from the

modal mixing problem, and the components of IMF may

lose their practical meaning. To solve this problem,

researcher proposed Ensemble Empirical Mode

Decomposition (EEMD) (Wu and Huang 2009), a

method to aid data analysis by controlled addition of

white noise, which can improve EMD performance overall.

x(t) � ∑n

i�1Ci(t) + Rn(t) (6)
As can be seen from the equation, EEMD decomposes a time

series into a series of eigenmodal function IMF components. The

resulting IMF signal must satisfy two conditions: the number of

extremes and the number of zero crossings must be equal or differ by

one, and the mean of the two envelopes is defined by local maxima

and local minima. IMF is the same as the original time series but with

differences in frequency and amplitude, from IMF one to IMF X, the

frequency decreases sequentially. The residual component is

monotonic and contains only one extreme value, so it can be

considered as the overall trend of the original series. In this study,

the amplitude of white noise is added as 1/5 times the standard

deviation of the original time series GPP data, the number of IMFs is

five, and the number of pooled average members is 100.

3 Results

3.1 Global-scale cross-validation of GPP
data from multiple sources

The cross-validation of the GPPs of each source at the whole

Earth showed that the GPPs of the two combinations are in good

agreement (Figure 1). The R2 values of ISIMIP, MsTMIP, GLASS,

and MuSyQ are all high among each other, especially the R2

between IMSMIP and GLASS is close to 0.85, and even the

combination of ISIMIIP and MuSyQ with the lowest R2 is over

0.79. This reflects that the model simulation and remote sensing

observation GPPs fit well on the global with high consistency.

When compared the remotely sensed GPP of different

algorithms, we found that the fitted R2 of GLASS with

MsTMIP and ISIMIP model GPP is obviously higher,

0.85 and 0.84, respectively, which is significantly higher than

0.79 and 0.80 of MuSyQ. This represents that GLASS GPP may

be able to portray the true value of GPP at global better than

MuSyQ.

Most of the global pixel values are concentrated within the

value of 1,000 g C m−3. The prominent feature of value threshold

data is that the GPP simulated by the ISIMIP model is

significantly above the 1:1 value line, which is significantly

higher than the remotely sensed GPP, represents a possible

overestimation of ISIMIP at the low value threshold GPP.

However, the same modeled MsTMIP GPP, the low-value

threshold is clearly lower than the two remotely sensed

datasets, represents that MsTMIP may underestimate GPP.

3.2 Uncertainty analysis of grassland GPP
data in China during the historical period

Before analyzed the uncertainty of the spatial mean state of

GPP in Chinese grasslands during the historical period, the

spatial distribution of GPP from various sources in Chinese

grasslands was shown, and the influence of environmental

factors (temperature, precipitation) on the spatial distribution

of GPP in ecosystems is initially explored. Figure 2 showed the

spatial distribution of GPP from multiple sources, indicated that

each GPP maintains a similar spatial pattern, with higher GPP

values closer to the east and a gradual decrease in GPP closer to

the inland northwest. The high value area includes the eastern

part of the Inner Mongolia steppe, the middle-eastern part of

Qinghai-Tibet Plateau and the southeastern part of Loess

Plateau, while the low value area includes the western part of

Inner Mongolia steppe, most of Qinghai-Tibet Plateau, Xinjiang

and the northwestern part of Loess Plateau. The spatial

divergence is obviously related to the combination of water

and heat resources. When the mean values of ecosystem GPP

in different precipitation and temperature intervals were

analyzed, we found that the high value areas of GPP in

Chinese grasslands were mostly located in areas with higher

temperature and more abundant precipitation, while the low

value areas were mostly concentrated in areas with water scarcity

and temperature limitation (Figure 3).

As shown in Figure 4, the GPP mean states based on models

and remote sensing differed, and there were also differences

between GPPs at different spatial scales. The difference between

the GPP simulated by different ISIMIPmodels is very obvious for
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Chinese grasslands, with a maximum of 720 g C m−2 and a

minimum of 380 g C m−2, and the extreme difference is nearly

double. The simulation results of MsTMIP multi-model are

closer, and the same two remote sensing GPP estimation

results are similar. Compared the absolute values of GPP for

each source at both national and global scales, we found that the

GPP values are closer, which is consistent with the findings in

Section 3.1 that multi-source GPP may have a better match at the

global scale, but the error may be large at the regional scale. This

reminds that in regional studies, a single model or remotely

sensed GPP should not be selected as the base data, but rather a

multi-source dataset should be used to judge whether the

conclusion obtained from a single data are reliable. Multiple

source datasets can provide multiple conclusion that increase the

robustness and applicability of the conclusion, and also avoid

misleading findings as much as possible.

Considerd that the simulation of GPP by different models is

influenced by the model complexity and climate state settings,

the accuracy of GPP obtained from the simulation should be

more concerned with the consistency of its evolution

characteristics over time rather than its mean size (Dirmeyer

et al., 2004). To eliminate the effect of differences in the climate

state of GPP between different models, the distance level of GPP

over the time series was first calculated. The time series of the

mean GPP distance levels for the four different sources were

shown in Figure 5A. To facilitate comparison between ISIMIP

and MsTMIP multi-models, doubled standard deviation was

used to indicate the variability between the two groups of

terrestrial ecosystem model members. The analysis revealed

that the ensemble averages of the two groups of models

showed very similar patterns of change during the period

1901–2005, with both showed a significant upward trend and

a significantly faster rate of increased since 1980. Comparison

with the two remotely sensed GPPs also showed that the

evolution characteristics of model GPP and remotely sensed

GPP over time are consistent overall (Figure 5A). Figure 5B

reflected the time series of the simulated standard deviations of

the two GPP ensembles, ISIMIP andMsTMIP, and we found that

the standard deviations of the two GPP models are significantly

different over time.

To quantitatively assess the inter-model uncertainty, the

relative standard deviation (relative standard deviation was

defined as the ratio of standard deviation to mean GPP)

between the members of the ISIMIP and MsTMIP models

was then obtained. The relative standard deviation, which is

more applicable than the standard deviation, was used in this

FIGURE 1
Cross-validation between four different sources of GPP data at the global scale per pixel. (A) ISIMIP vs. GLASS; (B) ISIMIP vs. MuSyQ; (C)MsTMIP
vs. GLASS; (D) MsTMIP vs. MuSyQ.
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study because it is considered that the relative standard deviation

can effectively eliminate GPP units and facilitate the

intercomparison of the two groups of models in different

climate zones. From the analysis of Figure 6, we point out

that the differences between different ISIMIP simulations are

greater than MsTMIP (Figures 6A,B), and the relative standard

deviation among the four ISIMIP models is less than 20% of the

ensemble average for 26.71% of the pixels in Chinese grasslands,

while 28.43% of the pixels are greater than 50% of the ensemble

average and they are mostly located in the grasslands of eastern

Inner Mongolia, western Qinghai-Tibet Plateau, and Xinjiang. In

contrast, 69.36% and 90.02% of the pixels were less than 20% and

50% of the ensemble average, respectively, for MsTMIP.

Therefore, the relative standard deviation of MsTMIP is

significantly smaller than that of ISIMIP, which means that

there is less variation among GPP results output from

MsTMIP at the image element scale.

The above studies used standard deviation to demonstrate

the uncertainty among models, but the standard deviation is

essentially an averaging value that does not fully reflect the subtle

differences among different members of the models. Therefore,

in our study, time series distance levels of GPP simulated by eight

terrestrial ecosystem models for the period 1901–2005 were

calculated (Figure 7A). We found that the results vary among

model members but the trends are nearly consistent,

i.e., individual models all showed an upward trend while

showing interannual fluctuations of varying amplitudes. In

addition, we found that the pooled averaging (black line in

Figure 7A) effectively eliminates the interannual fluctuations

of the model, and makes the data show only low-frequency

FIGURE 2
Spatial patterns of ecosystem GPP value per pixel estimated based on process model simulations and remote sensing datasets for the period
1982–2005. (A) ISIMIP; (B) MsTMIP; (C) GLASS; (D) MuSyQ. The results of averaging over multiple model ensembles to reduce inter-model errors
were used in Figure (A,B). Black dots represent standard deviations between members that exceed 50% of the mean of the model ensemble. The
regional average trend values are counted as box plots in the lower left corner, NM, LP, QT, and XJ represent grasslands in Inner Mongolia, Loess
Plateau, Qinghai-Tibet Plateau, and Xinjiang, respectively, red dots represent GPP anomalies.
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signals. Since interannual fluctuations generally contain a large

amount of uncertain information about the internal variability of

the model, pooled averaging is an important way to effectively

eliminate the uncertainty of the internal variability of the model.

To further explore the uncertainty of the model results on

different time scales, the GPP of each model on the original time

series was decomposed into five IMF components and residuals

at different time scales by the EEMD method. Figures 7B–G

showed the variation curves of IFM1 to IFM5 with time series,

representing the GPP signals at different time scales from high

frequency to low frequency, and the residuals represent the long-

term trend of GPP. The analysis showed that the five IMFs have

different periodic signals, and their variation periods are

shortening while their amplitudes are becoming larger as the

signal frequency decreases. However, we noted that there are

differences in the simulated curves of IMF3 and IMF4, which

FIGURE 3
Mean values of GPP of Chinese grasslands in different temperature and precipitation intervals. The precipitation and temperature variables here
are themulti-year average annual total precipitation and themulti-year average annual average temperature, respectively. The red curve in the figure
represents the mean value of GPP at that temperature and precipitation value threshold. The gray shading represents the uncertainty, and the darker
the color reflects the greater uncertainty of GPP. (A) Simulated GPP based on ecosystem process model; (B) Estimated GPP based on remote
sensing dataset.

FIGURE 4
Average GPP frommultiple sources for Chinese grasslands, China, and globally during 1982–2005. The black dashed line parallel to the x-axis is
the ensemble mean of the four ISIMIP process models and the four MsTMIP process models.

Frontiers in Environmental Science frontiersin.org07

He et al. 10.3389/fenvs.2022.928351

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.928351


indicated that the model complexity can lead to uncertainty in

the model GPP at each time scale. As seen in the residual signals,

the eight models exhibit a generally consistent upward trend, and

this is consistent with the conclusive information presented in

Figure 6A. However, the long-run signals of the residuals whose

starting values in 1901 and 2005 are inconsistent suggest that

there is still some uncertainty in the simulated GPP for each

model.

FIGURE 5
Time series of annual average GPP distance levels based on multiple data sources. Shading represents the doubled standard deviation of the
four model members. Dotted dashed lines are 20-years moving average of ISIMIP GPP and MsTMIP GPP. (A) Annual average GPP; (B) model GPP
standard deviation.

FIGURE 6
Spatial patterns of the relative standard deviations of the (A) ISIMIP, and (B) MsTMIP simulations for the period 1901–2005.
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3.3 Uncertainty analysis of China’s
grassland GPP data in the future period

Since only the ISIMIP model comparison program provides

GPP products under future emission scenarios, the uncertainty of

the ISIMIP GPP dataset under future scenarios is then analyzed.

Figure 8 showed the long-term change curves of the GPP models

for each future scenario, which showed that the overall Chinese

grassland GPP maintains some increase from 2006 to 2099 for

the low, medium, and high scenarios. The analysis of the change

curves and doubling standard deviation of each model showed

that the difference between the models is relatively small in the

first half of the 21st century, while the uncertainty increases in the

second half of the century with increasing standard deviation.

When compared the standard deviations within the Chinese

grassland pixels for each future scenario, we found that the

FIGURE 7
Average GPP distance levels for 1901–2005 and IMF1...IMF5, and the time series of residuals. (A) Time series of simulated GPP distance levels for
the four ISIMIP and four MsTMIP models, the black line is the result of the average of the eight model ensembles; (B–F) time series of IMF1 to
IMF5 extracted by the EEMD method; (G) residuals extracted by the EEMD method.

FIGURE 8
Time series of ISIMIP annual average GPP distance levels for future periods, distance levels are based on 2006–2025 average. (A) RCP2.6; (B)
RCP6.0 and RCP8.5, note that the RCP8.5 model only provides the LPJmLmodel so only its curves are plotted. The gray lines in the figure represent
the distance level of the four models in the time series for the RCP2.6 (A) and RCP6.0 (B) scenarios, and the shading represents the doubled standard
deviation of the four model members. The dotted dashed line is the 20-years moving average for ISIMIP GPP and MsTMIP GPP.
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FIGURE 9
Time series of ISIMIP simulated standard distance levels for GPP in China grasslands for each emission scenario in the future period, with
distance levels based on the 2006–2025 average.

FIGURE 10
Percentage change inmean GPP from 2050 to 2099 compared to 2006–2049 over the Chinese grassland. (A) RCP2.6; (B) RCP6.0; (C) RCP8.5;
(D) distribution density of percentages in the RCP2.6 scenario; (E) distribution density of percentages in the RCP6.0 and RCP8.5 scenarios. Where the
black dots in figure (A,B) represent three of the four models where the positive and negative directions of percentages are consistent.
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standard deviations of RCP2.6 and RCP6.0 were relatively low

(Figure 9), reflecting that the differences among regions of

Chinese grassland under the low-moderate emission scenario

were relatively small and maintained a range in the time series.

The standard deviation of Chinese grassland under the high

emission scenario of RCP8.5 showed a gradual increase from

2030 onward, indicated that the standard deviation of Chinese

grasslands under the RCP8.5 high emission scenario increased

gradually after 2030, indicated that the simulated GPP between

regions of Chinese grasslands became more spatially

heterogeneous and the internal uncertainty increased with time.

After analyzing thepercentage changebetween the secondhalf

and the first half of the 21st century (Figure 10), we found that

under theRCP2.6 lowemission scenario, theGPPvaluesofmost of

the Chinese grasslands would exceed those of the first half of the

century in the second half of the century, and the density

distribution curve was more distributed to the right of the 0-

value line, andmost of themodels showed a consistent percentage

change in the direction. The RCP8.5 scenario showed the same

directionofGPPpercentage change asRCP6.0.Weconcluded that

the GPP of Chinese grasslands will not continue to grow steadily

under the medium and high emission scenarios in the future, and

continued high emissionswill limit the productivity accumulation

of Chinese temperate grassland and Xinjiang grassland. However,

the special point is that the simulation of the direction of the

percentage change differs greatly among models for each future

scenarioTibetanPlateaugrassland in the secondhalfof thecentury

despite showing a stronger increase in GPP, reflecting the great

challenge for the models to accurately portray the GPP change on

the Tibetan Plateau.

4 Discussion

We indicated that terrestrial ecosystem models have

significant uncertainties in model structure, parameterization,

and driving data, and the correction and deterministic

assessment of model data become important scientific issues

(Shao et al., 2016; Cheng et al., 2017). We previously suggested

that remote sensing technology provides near real-time

indicators related to global vegetation growth and gross

primary production, which can be a global-scale constraint for

assessing the reliability of the information provided by ecological

process models (Mao et al., 2012). In this study, based on the

cross-validation results of the model and remotely sensed GPP,

we found that the model is an important way to accurately

portray the true GPP at the global scale, and its R2
fit coefficient

between the model and remotely sensed data was as high as 0.8,

which is consistent with the findings of Mao et al. (2012).

However, the comparison with remotely sensed GPP data also

reveals that there is a significant overestimation or

underestimation of GPP in both models, especially in the

pixels in the low GPP region. The reason for this discrepancy

may be related to the uncertainty of the model input data in

addition to the uncertainty of the model itself. For example, the

climate information, system noise and processing bias input to

the model can affect the accurate simulation of GPP at the

regional scale (Wei et al., 2014; Cheng et al., 2017). In

particular, the selected historical climate dataset inputs may

cause considerable uncertainty in the estimated GPP with

output fluctuations of 9%–20% (Jung et al., 2007; Barman

et al., 2014; Wu et al., 2017). In our study, the input climate

datasets selected in the MsTMIP model comparison program

were mainly CRU-NCEP reanalysis data (Wei et al., 2014), while

ISIMIP selected climate datasets from the IPSL-CM6A-LR

climate model output (Boucher et al., 2020). Therefore, it is

possible that the differences in the selection of climate input

parameters led to the differences in the Chinese grassland GPP

output from the two model datasets. In addition, other

environmental drivers and related data are different between

the two model sets, including time-varying atmospheric CO2

concentration, time-varying N deposition, C3/C4 fraction, major

crop distribution, phenology, and soil characteristics, which may

also be another reason for the existence of over- or under-

estimation of model-simulated Chinese grassland GPP (Wei

et al., 2014; Shao et al., 2016; Exbrayat et al., 2018).

Grassland GPP uncertainty in China showed an increasing

pattern from southeast to northwest, which may be related to

the differences in model responses under different environmental

stresses. During the historical period, the grasslands of the Qinghai-

Tibet Plateau, Xinjiang, and eastern Inner Mongolia had colder and

drier climates, and the environmental stresses of moisture and

temperature had a greater impact on the accuracy of model

simulations (Jia et al., 2018), so the historical GPP based on

model simulations also had large uncertainties in colder and

drier environments (Shao et al., 2016). In contrast, for future

emission scenarios, the uncertainty in model GPP increased in

the second half of the 21st century and spatially showed that except

for the Qinghai-Tibet Plateau (and the direction of change is not

consistent among models), grasslands in other regions exhibit

consistent decreasing GPP changes. This aspect reflects that the

future GPP of Chinese grasslands will not consistently increase

along with rising CO2 concentration andwarming all the time.With

the exception of the temperature-constrained Tibetan Plateau, the

carbon sequestration capacity of the other grasslands, which are

more sensitive towater (especially drought), will be greatly limited in

the future (Wu andWang 2022). On the other hand, we also be seen

that accurately simulating the cold-dry Tibetan Plateau GPP in the

future will still be quite difficult.

In addition, our study found that ensemble averaging can

effectively eliminate the uncertainty of the internal variability

among model GPPs, and make the results exhibit low-

frequency signals, which is a reasonable and necessary

treatment for multi-model ensemble averaging than the results

of single-model simulations. The results of EEMD analysis showed

that the amplitude of each IMF component after model ensemble
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averaging is significantly lower than the time series of the original

values, which is consistent with the results of previous studies

consistent with previous findings that the ensemble averaging

method is not only effective in eliminating the effect of model

internal variability, but also may filter out the interdecadal scale

signal (Cheng et al., 2017), which is meaningful in many fields.

Therefore, in the future, a new method that can eliminate the

internal variability and retain the interdecadal scale signal in a

more scientific way needs to be explored to resolve this conflict.

5 Conclusion

Uncertainty analysis of GPP datasets based on terrestrial

ecosystem models and remote sensing estimates was conducted

using cross-validation, standard error statistics and ensemble

empirical modal decomposition. We found that 1) the R2 of the

fit coefficients for two-by-two cross-validation of the GPP datasets

mostly exceeded 0.8 globally. 2) GPP from different sources were

consistent in portraying the spatiotemporal patterns of GPP in

Chinese grasslands. However, due to many differences in model

structure, parameterization, and driving data, uncertainties still

exist, especially in the relatively large standard deviations in some

arid-cold areas. 3) The uncertainties of future scenarios are higher

than those of historical periods, and theGPPuncertainties of future

high-emissionscenariosaremuchhigherthanthoseofmedium-low

emission scenarios. In summary, we found that the uncertainty

between different data is very large. Therefore, we recommend that

multi-source data (includingmodels and remote sensing) shouldbe

usedwhenanalyzingecosystemGPPdynamicsinthefuture, toavoid

the shortcomings of a single data that is not sufficient to fully and

truly reflect changes in ecosystem productivity.
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