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Accurate near surface ozone concentration calculation with high spatial

resolution data is very important to solve the problem of serious ozone

pollution and health impact assessment. However, the existing remotely

sensed ozone products cannot meet the requirements of high spatial

resolution monitoring. In this study, surface O3 concentration (at 30 km

spatial resolution) was extracted from the daily TROPOMI O3 profile

products. Meanwhile, this study improved the downscaling algorithm based

on the mutual information and applied it to the mapping of surface O3

concentration in China. Combined with the surface O3 concentration data

(with 5 km spatial resolution) obtained by using the Light Gradient Boosting

Machine (LightGBM) algorithm and AOD data (at 1 km resolution) from MODIS,

the downscaling of TROPOMI ground O3 concentration data from 30 km to

1 km has been achieved in this study. The downscaled groundO3 concentration

data were subsequently validated using an independent ground O3

concentration dataset. The main conclusion of this study is that the mutual

information entropy between the bottom layer data of the TROPOMI ozone

profile (at 30 km resolution), LightGBM surface O3 concentration data (at 5 km

resolution), and MCD19A2 AOD data (at 1 km resolution) can accurately reduce

the spatial resolution of ozone concentration in the ground layer. The

downscaling procedure not only resulted in increase of the spatial resolution

over the whole area but also significant improvements in precision with

coefficient of determination (R2) increased from 0.733 to 0.823, mean biased

error decreased from 7.905 μg/m3 to 3.887 μg/m3, and root-mean-square error

decreased from 14.395 μg/m3 to 8.920 μg/m3 for ground O3 concentration.
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Introduction

With the continuous development and changes of economy

and society, air pollution, especially surface-level ozone (O3)

pollution, has been paid more and more attention by the states

and people. Different from upper-layer ozone, which is the

Earth’s protective umbrella, surface ozone is a polluting gas

that can cause photochemical smog, causing many problems

to climate change (Skeie et al., 2011; Shindell et al., 2012;

Stevenson et al., 2013), ecosystem (Victoria et al., 2009;

Ainsworth et al., 2012; Yue and Unger, 2014), and human

health (Ebi and McGregor, 2008; Lim et al., 2012; Chen et al.,

2017), when the higher ozone concentration is located near the

ground surface (0–3 km height). If people are exposed to ozone

pollution for a long time, they will suffer from nausea, respiratory

inflammation, and other diseases, and even damage lung

function or death. Several large population studies in the

United States have confirmed that ozone pollution and

population mortality are dose-dependent, especially for

children, elderly, and patients with some basic diseases (Chen

et al., 2017).

In recent years, morbidity and mortality rates related to

ozone have increased in many countries (Aaron et al., 2017),

and it has become themain culprit of atmospheric environmental

pollution in many cities in summer and autumn, second only to

particulate matter with a diameter < 2.5 μm (PM2.5). At present,

the most accurate means of surface-level ozone monitoring is

measurement by using ground receiving instruments and

generate real-time data. In order to monitor air pollution,

China has successively established more than 1500 trace gas

monitoring stations (Adam-Poupart et al., 2014; Madaniyazi

et al., 2016; Sun et al., 2018) in various provinces and cities to

measure the hourly local ground O3 concentration since 2013,

which provides strong support for the study of ground O3.

However, the ground detection stations only detect the air

quality in the study area in point distribution, with poor

spatial resolution and extremely uneven spatial distribution.

At the same time, ozone is highly reactive, so their ground-

level values are influenced by the deposition process, which in

turn depends on the dominant land use. This also adds spatial

heterogeneity everywhere. Due to the spatial heterogeneity of

ground-level O3 and the uneven distribution of ground detection

stations, traditional spatial interpolation methods cannot obtain

high-precision O3 concentration values and their spatial

distribution characteristics.

A space-based remote sensing method such as geostationary

remote sensing (Lee et al., 2019) provides the potential to assess

long-term trends in atmospheric O3 concentrations over wide

areas to fill the in situmonitoring gaps. However, discriminating

O3 at the surface level from the whole-atmosphere O3 columns is

challenging because only about 10% of the O3 is within the lower

troposphere (Hayashida et al., 2018). Based on the current

development level of satellite remote sensing technology, there

is no sensor that can directly obtain the ground layer O3 data (as

shown in Table 1), but the spatial resolution of the ground O3

concentration is too rough to use.

Therefore, downscaling the existing ground O3

concentration map to obtain higher resolution round O3

concentration data is of great practical significance to

environmental management, disease prevention, research, and

other industries. There are three downscaling methods in remote

sensing (Atkinson, 2013): 1) assumptions or prior knowledge

about the character of the target spatial variation coupled with

spatial optimization, 2) spatial prediction through interpolation,

and 3) direct information on the relation between spatial

resolutions in the form of a downscaling (such as regression)

model. Among them, methods 1) and 2) are less effective in

improving the spatial resolution or increasing the information

contained. At present, there are many studies on obtaining

ground ozone by using method 3.

Among many studies that use downscaling models to

estimate the O3 concentration in the high-resolution ground-

level, machine learning or deep learning models are mostly used,

such as the geographically weighted regression (GWR) model

(Zhang et al., 2020), space-time extremely randomized trees

(STET) algorithm (Wei et al., 2021), multivariate adaptive

regression splines (MARS) model (Gauthier-Manuel et al.,

2022), gradient boosting regression tree (GBRT) algorithm

(Gauthier-Manuel et al., 2022), and spatiotemporally

embedded deep residual neural network (STE-ResNet) model

(Li and Cheng, 2021). The basic principle of these downscaling

methods is the same. First, relevant data such as meteorological

data, satellite images, reanalysis data, emission data, or others are

spatiotemporally matched and input into the machine learning

model or the deep learning model as independent variables. Then

the O3 measurement of the ground station is taken as the

dependent variable, and the mapping relationship between the

independent variable and the dependent variable is obtained by

using the powerful computing ability of the learning model.

Finally, the ground-level O3 concentration in the high-resolution

is estimated by using this mapping relationship. These

algorithms are different in the selection of independent

variables, selection of models, input nodes of variables,

verification methods of estimation results, and so on.

TABLE 1 Surface ozone product and its spatial resolution. OMI, ozone
monitoring instrument; FY-3, Fengyun-3 satellite; and TROPOMI,
TROPOspheric Monitoring Instrument.

Surface ozone product Spatial resolution

OMI O3 profile product 13 km × 48 km

FY-3 O3 profile product 50 km × 50 km

TROPOMI troposphere O3 product 0.5° × 1°(>100 km)

TROPOMI O3 profile product 30 km × 30 km
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The mechanism opacity and relatively poor scalability of the

learning model also make the relevant research questioned to a

certain extent. However, this cannot hide the high accuracy and

resolution of the calculation results of such methods, and many

of them have also achieved novel and effective results in

spatiotemporal information. Li and Cheng (2021) proposed to

embed time and space into the deep learning model as

classification variables so that the model estimation has higher

accuracy in time and space (Li and Cheng, 2021). Sun et al. (2021)

used the spatiotemporal indices as mandatory inputs to the

spatiotemporal statistical model to reproduce the

spatiotemporal autocorrelation of their observations (Sun

et al., 2021).

Therefore, this study tried to combine the high-quality results

of the machine learning model with the non-learning

downscaling model (mutual information algorithm) to

improve its interpretability and reliability while maintaining

its high-resolution and high-accuracy characteristics. In this

study, a downscale estimation method of ground O3

concentration over China based on the mutual information

(MI) entropy model is improved, and the downscaling of

ground ozone concentration from 30 km to 1 km was realized.

Data

The ground ozone concentration of the
TROPOspheric Monitoring Instrument

The TROPOspheric Monitoring Instrument (TOPOMI),

mounted on the Sentinel-5 Predictor (Sentinel-5P) satellite, is

an atmospheric monitoring spectrometer with the most

advanced technical performance and the highest spatial

resolution so far. Sentinel-5P was launched on 13 October

2017 and flew in the polar orbit and the solar synchronous

orbit. The time for the satellite to cross the equator is about 13:

30 local time. TROPOMI O3 profile data were officially released

in November 2021. The classic ozone profile retrieval algorithm

(optimal estimation method, OE) was used to retrieve the ozone

profile, with an original spatial resolution of 30 km × 30 km

(ESA, 2021a). In order to ensure the accuracy of the data, this

study eliminated bad values of the ozone profile provided by

TROPOMI according to the following three aspects (ESA,

2021b):

1) If the data quality value (qa value) is too low, it is not

recommended (ESA, 2021b).

qa value≤ 0.5. (1)

2) Inspection of the data shows that for some of the retrievals

unphysical solutions are found, which pass the qa value

filtering guidelines provided in Eq. 1. Therefore, it is

recommended to disregard a pixel that matches the

following criteria (ESA, 2021b).

∑i�32
i�0

∣∣∣∣n(i) − nap(i)
∣∣∣∣> 1.66 × 10−5mole ·m−3, (2)

where i is index for the altitude or pressure level, n(i) is the ozone
concentration in mole ·m−3, and nap(i) is the a priori ozone

concentration.

3) The fitting quality of some ground pixels (especially in polar

regions) is low. These data can be filtered by removing pixels

for which the cost function data field exceeds 200 (ESA,

2021b).

cost function> 200 (3)

The obtained ozone profile is divided into 33 layers from the

ground to 1Pa (about 80 km) at the vertical height of the

atmosphere. The typical ozone profile is shown in Figure 1. In

addition, the ozone concentration of each layer of the ozone

profile product provided by TROPOMI is in mole ·m−3, which
can be converted into micrograms per cubic meter (μg ·m−3)
through the following formula, where M is the molar mass of

ozone and its value is 48 g/mol.

O3PR(mol ·m−3) × M(g ·mol−1) × 106 � O3PR(μg ·m−3).
(4)

As shown in Figure 1, the bottom layer data of TROPOMI

ozone profile are the inversion data of ozone profile

concentration about 500 m away from the surface. This study

separated this part of data and converted the unit into

micrograms per cubic meter (μg ·m−3), consistent with

ground observation stations. Then this part of data was

evaluated by the observation data at the corresponding positions.

Figure 2 shows the evaluation results of the measured O3

concentration of the station about the original ground O3 data

extracted from the profile data. The determination coefficient

(R2) is 0.672, the root-mean-square error (RMSE) is 17.973 μg/

m3, and the average deviation error (MBE) is 7.836 μg/m3, which

indicates that the bottom layer data of the TROPOMI ozone

profile have good correlation with the measured O3

concentration at the station, and there is little difference. The

normalized root-mean-square error (nRMSE) is 29.789%, which

is also within a reasonable range, indicating that the bottom layer

data of the TROPOMI ozone profile can be used to characterize

the ground O3 concentration to a certain extent.

The ground ozone concentration of the
Light Gradient Boosting Machine
algorithm

The surface O3 concentration dataset covering China can be

used to assist the downscaling of surface O3 concentration. Based
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on the analysis of the source and the sink of ground ozone, the

Light Gradient Boosting Machine (LightGBM) algorithm (Ke

et al., 2017) was used to fuse various satellite-based variables

(from TROPOMI), meteorological variables based on

numerical models (from the European Centre for Medium-

Range Weather Forecasts, ECWMF), and land variables (from

National Aeronautics and Space Administration, NASA) to

estimate the surface O3 concentration (The details of the

aforementioned variables are shown in Table 2). That

model was developed to estimate surface ozone mass

concentrations by selecting relevant data corresponding to

each component of the source and the sink as independent

variables and in situ surface O3 concentration as dependent

variables (Kang et al., 2021). The time of LightGBM algorithm

estimation in this study is 13:30 local time daily, and the

spatial resolution is 0.05° × 0.05° (about 5 km × 5 km). In that

case, LightGBM model parameters were set as follows:

boosting_type = “gbdt,” objective = “regression,”

learning_rate = 0.07, metric = “rmse,” max_depth = 9,

min_child_weight = 0.01, min_child_samples = 20,

reg_alpha = 0.03, reg_lambda = 0.05, n_estimators = 167,

task = “train,” feature_fraction = 0.98, bagging_fraction =

0.92, num_leaves = 200, and bagging_freq = 5. The LightGBM

model is verified by the 10-fold cross-validation random

method. Figure 3 shows the verification results. The

estimated mass concentration of surface ozone is in good

agreement with the measured value at ground stations, with a

high correlation coefficient (R2 = 0.959) and a relatively low

RMSE (9.483 μg/m3).

Using the aforementioned model, the surface O3

concentration dataset with 5 km resolution covering China

was obtained. The dataset, as part of the development of MI

model in this study, was used to improve the accuracy of

downscaling results.

FIGURE 1
Tropomi ozone profile (November 23, 2021).

Frontiers in Environmental Science frontiersin.org04

Wang et al. 10.3389/fenvs.2022.925979

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.925979


The aerosol optical depth product of
moderate resolution imaging
spectrometer

Many studies have pointed out that the complex physical and

chemical characteristics of aerosols would affect the formation

and loss of O3 in the ground layer (Shao et al., 2017). Aerosol

particles can change the atmospheric heterogeneous reaction

process, which can affect the formation of O3 (Li et al., 2014;

Lou et al., 2014). In addition, the absorption and scattering of

radiation by external aerosol particles can affect the photolysis

process of O3 precursor, which also affects the formation of O3

(Li et al., 2014; Lou et al., 2014). In the Earth’s atmosphere, there

is a certain correlation between O3 and aerosol optical depth

(AOD), as one of the most important parameters of aerosol.

Many studies have found that when the solar radiation is strong,

the formation of near surface O3 is also quite sensitive to the

change of AOD (Ran et al., 2009; Pozzoli et al., 2011). At the same

time, some studies (such as Kang et al. (2021)) have used AOD as

input data when estimating surface ozone concentration.

Moderate resolution imaging spectrometer (MODIS) has

36 bands. It is a large space remote sensing instrument

developed by National Aeronautics and Space Administration

(NASA) to understand the changes of global climate and the

impact of human activities on climate. It can provide surface

parameters such as surface temperature and the vegetation index

with different temporal and spatial resolutions (Han et al., 2018;

Cao et al., 2019). In this study, the aerosol optical depth product

(MCD19A2) was selected for the downscaling of O3

concentration map in the ground. MCD19A2 is the

shortname for the multi-angle implementation of atmospheric

correction (MAIAC) algorithm–based level-2 gridded (L2G)

aerosol optical thickness over land surfaces product

(Lyapustin et al., 2018). This product is obtain using Terra

and Aqua MODIS input with daily 1 km resolution, which is

available from NASA’s website (https://ladsweb.modaps.eosdis.

nasa.gov/) for free. In this study, the product with high spatial

resolution and close relationship with ground O3, as a part of the

development of the MI model, was used to reduce the spatial

scale of ground O3 concentration data.

The ground-based measurements

The measured O3 concentration data (2021, Figure 4) of

stations used in this study are from the national air quality

data provided by the National Real-Time Release Platform for

Urban Air Quality of the China National Environmental

Monitoring Station, with a total of 1925 stations. In

addition, in order to ensure the accuracy of the data, this

study eliminated the invalid values (null) and abnormal

values (greater than 1000 and less than 0) caused by

instrument calibration problems. Because of the limited

temporal resolution of TROPOMI, the present study

targeted once a day (i.e., 13:30 local time). The observation

data used in this study were the average values at 13:00 and

14:00, which is consistent with TROPOMI and

LightGBM data.

At the same time, the ground-based measured O3

concentration dataset was randomly divided into a

calibration subset (90%) and a test subset (10%). The

calibration subset was used as a dependent variable in the

LightGBM model to calibrate the model and generate a 5 km

LightGBM surface ozone dataset, whereas the test subset was

used as an independent ground O3 concentration dataset to

validate and evaluate the accuracy of input data (30 km

TROPOMI surface O3 concentration data, 5 km LightGBM

surface O3 concentration data, and 1 km MCD19A2 AOD

data) and MI method results.

Methodology

The overall procedure of the downscaling surface O3

concentrations, shown in Figure 5, consists of two parts: 1)

model development and 2) model evaluation. First, the

original ground O3 concentration data with relatively low

FIGURE 2
Validation result of the TROPOMI surface-level ozone
concentration map in 30 km. N means total matched points, R2 is
the correlation coefficient, RMSE is the root-mean-square error,
nRMSE is the normalized root-mean-square error, and MBE
represents mean biased error. The solid blue line is the 1:1 line. The
solid red line is the fitting line of observation and surface ozone of
TROPOMI, and the equation marked in red is the fitting formula,
where X represents surface ozone observation and Y represents
surface ozone of TROPOMI. The color bars in (a)-(l) indicate the
number of samples in the 1.5 μg/m3 square.
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resolution was extracted through the TROPOMI O3 profile

product. Second, the MI downscaling model was developed to

obtain the 1 km TROPOMI ground O3 concentration by

inputting the 30 km TROPOMI surface O3 data, 5 km

LightGBM O3 data, and 1 km MODIS AOD data into it.

Then the MI downscaling model was validated with the

hourly ground monitoring station dataset followed by the

description of error.

Model development

Mutual information (MI) is an important concept in

information theory, which can represent a measure of the

relative entropy between two sets and can be described as a

measure of information redundancy. Generally speaking, MI

can represent the amount of information about variable X in

the random vector Y. From this definition, it can be easily

shown that the MI of two images is at its maximum when

these two images are identical (Johnson et al., 2001). In MI

computing, if X and Y are two images, then the joint

probability distribution is p(x, y) of X and Y, when p(x)
and p(y) are defined as the marginal probability

distributions. The entropy of X and H(X) is then defined

as follows (Shannon, 1948):

H(X) � −∑
x

p(x)logp(x), (5)

TABLE 2 Independent variables of the LightGBM model.

Data Variables Resolution (°) Source

Satellite-based data O3 total column 5.5 × 3.5 TROPOMI

NO2 total column 5.5 × 3.5

CO total column 5.5 × 7

HCHO total column 5.5 × 3.5

SO2 total column 5.5 × 3.5

Model-based data Total column ozone 0.25 × 0.25 ERA5 hourly data on pressure levels from 1979 to present

Total column water

Skin temperature

Model-based data 10 m u-component of wind 0.25 × 0.25 ERA5 hourly data on single levels from 1979 to present

10 m v-component of wind

2 m dewpoint temperature

2 m temperature

Surface pressure

Maximum 2 m temperature since previous post-processing

Minimum 2 m temperature since previous post-processing

Total sky direct solar radiation at surface

Clear sky direct solar radiation at surface

Vertical integral of divergence of ozone flux

Boundary layer height

Convective available potential energy

Land data DEM 30 × 30 NASADEM

FIGURE 3
Estimated value and ground station cross-validation results of
surface-level O3.
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H(Y) � −∑
y

p(y)logp(y). (6)

The joint entropy ofX, Y, andH(X,Y) is as follows (Li et al.,
2012):

H(X,Y) � −∑
x

∑
y

p(x, y)logp(x, y). (7)

So that the mutual information of X, Y, and MI(X,Y) is as
follows (Li et al., 2012):

MI(X,Y) � H(X) +H(Y) −H(X,Y) � −∑
xy

p(x, y)log p(x, y)
p(x)p(y). (8)

Also, in the actual calculation, the joint probability

distribution p(X,Y) is typically replaced by a joint histogram

h(X,Y) (Li et al., 2012):

p(x, y) � h(x, y)∑x,y h(x, y), (9)

p(x) � ∑
y

p(x, y), p(y) � ∑
x

p(x, y). (10)

FIGURE 4
Spatial distributions of ground O3 monitoring stations (blue dots) in 2021 across China, where the background is surface elevation (m). The
uppermost, lowermost, and rightmost panels show the three regions of interest in this study: the Beijing–Tianjin–Hebei (BTH) region, Pearl River
Delta (PRD), and Yangtze River Delta (YRD).
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The downscaling method based on MI was first proposed

by Li et al. (2012). In the study of Li et al., the MI between the

MODIS image and the CCD upscaled image was maximized

by adjusting the coefficients, so as to obtain the weights and

coefficients required for downscaling transformation (Li

et al., 2012). Finally, they realized the downscaling of

MODIS image from 500 m to 100 m by using these

weights and coefficients.

This study comprehensively coordinated all the spatial scales

and strictly matched and aligned each input data based on the

spatial scale of the original ground O3 concentration data (as

shown in Figure 6). In order to realize the downscaling of

TROPOMI ground O3 concentration data from 30 km to

1 km, the assumptions of this study are as follows (Li et al., 2012):

1) The downscaled image should contain the information and

physical meaning of both the two original images;

2) The MI between the downscaled images and the LightGBM

surface O3 concentration image should be maximized;

3) The downscaling should be reversible that means if we

upscale the downscaled image back, it should be as the

same as the original;

4) The physical meaning of the downscaled image should be

remained.

In Figure 6, 5 km LightGBM surface O3 image and 1 km

MODIS AOD image are shown as 6 × 6 and 30 × 30 pixel

matrixes, respectively, which corresponds to a 30 km TROPOMI

surface O3 pixel on the left. On the far right, there are the

downscaled 1 km TROPOMI surface O3 pixels in the box. Each

pixel value in it should contain the information of 30 km

TROPOMI surface O3 pixel, 5 km LightGBM surface O3 pixel,

and 1 kmMODIS AOD pixels and keep them within the effective

range. In addition, the MI value between 1 km TROPOMI

FIGURE 5
Process flow diagram for downscaling transformation of surface O3 concentration guided by mutual information entropy.

FIGURE 6
Downscaling of 30 km TROPOMI surface O3 pixel to 1 km pixels.
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surface O3 image and 5 km LightGBM surface O3 image should

be maximized. According to these assumptions, the pixel

downscaling transformation formula in this study should be

as follows:

ρTROPOMI1km(i, j) � k1 ρTROPOMI30km + k2 ρLGBM5km([i/5], [j/5])
+k3 ρMOSID1km (i, j) + k4 (11)

where ρTROPOMI30km is the value of a 30 km TROPOMI

surface O3 pixel; ρMOSID1km and ρTROPOMI1km are the value of

1 km MODIS AOD pixel and 1 km TROPOMI surface O3 pixel

located at (i, j) in the box, respectively; ρLGBM5km is the value of

5 km LightGBM surface O3 pixel located at ([i/5], [j/5]) in the

box. In the formula, k1, k2, k3, and k4 are coefficients where k1, k2,

and k3 are the weights of 30 km TROPOMI surface O3, 5 km

LightGBM surface O3, and 1 km MODIS AOD images,

respectively, and k4 is an adjustment coefficient that is used to

fit the assumptions 3) and 4).

During parameter estimation, we first set the initial weights

k1, k2, and k3 according to the characteristics of different inputs

(such as uncertainty), and then we calculated Eq. 11. When the

downscaled image data violates assumptions 3) or 4), we would

use the adjustment coefficient k4 to make it meet assumptions 1),

2), 3), and 4) at the same time. Then we calculated the MI

between the downscaled image and the 5 km LightGBM surface

O3 image and judged whether this MI value was the current

maximum value. Finally, we continuously iterated the above

process until getting k1, k2, k3, and k4 that can satisfy

assumptions 1), 2), 3), and 4) simultaneously and has the

largest MI. In this way, we can make the downscaling

transformation results to have sufficient physical coincidence

with the original data and supplement the details of the high-

resolution image.

Model evaluation

In order to evaluate the performance of the proposed models,

the test subset of ground-based O3 observation data was used in

this study to validate the accuracy of the model. The accuracy

evaluation index—coefficient of determination (R2), root-mean-

square error (RMSE), normalized root-mean-square error

(nRMSE), and mean biased error (MBE) —were used.

R2 � ∑n

i�1
∣∣∣∣(xi − �x)(yi − �y)∣∣∣∣






















∑n

i�1(xi − �x)2∑n

i�1(yi − �y)2√ , (12)

RMSE �












∑n

i�1(xi − yi)2
n

√
, (13)

nRMSE �
100 ×













∑n

i�1(xi − yi)2
n

√
�y

,
(14)

MBE � ∑n

i�1(xi − yi)
n

, (15)

where xi and yi are the result and observed data, respectively; �x and
�y are themean of the result and observed data, respectively, when n is

the number of the observations. The value of R2 indicates the degree

of the correlation between the result data and the observed data.

R2 � 1 indicates complete correlation, and R2 � 0 indicates that the

observation data is completely irrelevant to the result data. RMSE

representing the deviation between the observed data and the result

data. The nRMSE is calculated by dividing the RMSE by the mean

observed data, which was used to prevent judgment errors due to the

size of units and numbers (Bouman and van Laar, 2006). MBE

measures the average bias between observed and result data, using the

same scale as the data being measured, μg ·m−3.

Results

Spatial distribution

The Figures 7A–C are 30 km TROPOMI surface O3

concentration data, 5 km LightGBM surface O3 concentration

data, and 1 km MCD19A2 AOD data as model input data,

respectively, and the corresponding time of the data used in this

study is daily 13:30 local time. Figure 7D is the downscaling result of

30 km TROPOMI surface O3 concentration data based on the MI

method, which contains the information from Figures 7A–C.

However, Figure 7D added many fine texture features and spatial

details, compared with Figure 7A. Figure 7E is the round-based O3

observation data, which was used to validate the

aforementioned data.

In Figure 7A, there is a small amount of missing data, which

is the result of eliminating the bad value of the bottom data of the

original TROPOMI O3 profile product. The missing amount is

small and has little impact on the final downscaling result.

Through comparison, it can be found that there is a very

obvious spatial correlation between 30 km TROPOMI surface

O3 data image and 5 km LightGBM surface O3 data image: The

highest values of surface O3 concentration appear in the Qinghai

Tibet Plateau, and the low value surrounds the high value step by

step with the Qinghai Tibet Plateau as the center.

The 1 kmMCD19A2 AOD data image (Figure 6C) also shows a

certain correlation compared with the two ground O3 concentration

maps (a) and (b). For example, the values in the middle part are

relatively low and the values on both sides are relatively high. In

addition, due to the limitation of inversion algorithm and the

influence of cloud interference, there is a certain lack of effective

value in Figure 6C (Levy et al., 2013). In order to avoid this situation

in the downscaling result image, this study adopted the cubic

convolution interpolation method to realize the downscaling of

spatial resolution from 5km to 1 km at the corresponding

position where AOD data is missing, which based on the
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calculation results of MI method. This method is based on the

calculation results of MI model with 30 km TROPOMI surface O3

concentration data and 5 km LightGBM surface O3 data as inputs.

From the perspective of spatial distribution, Figure 6D has great

spatial correlation with Figures 6A,B have great spatial correlation,

which shows that this downscaling result does not lose its spatial

geographical features while improving the accuracy and spatial

resolution. However, there are many fine texture features and

spatial details in Figure 6D which are not available in Figure 6A,

enabling it to further indicate more detailed ground ozone

concentration characteristics. These data can provide a reasonable

and reliable basis for pollution supervision and the prevention and

control of epidemic diseases caused by high O3 concentration.

Figure 7E shows the ground-based O3 observation data, covering

almost the whole of China. However, due to geographical and

economic constraints, the distribution of these stations is very

uneven. Although the distribution of stations is very sparse in

western and northern China, its value can also correspond to the

surface ozone concentration at the corresponding position in

Figure 7D. Meanwhile, the observed values of ground stations in

other areas of China are very related to the surface ozone

concentration at the corresponding position in Figure 7D. It can

be seen that the improved MI downscaling method in this study can

not only reduce the data scale of surface ozone concentration but also

ensure that its accuracy is not lost.

Figure 8 shows the spatial distribution of the three regions of

interest in this study. Among them, the Beijing–Tianjin–Hebei

(BTH) region, the Yangtze River Delta (YRD) region and Pearl

River Delta (PRD) are relatively developed regions in China, which

have been affected by O3 pollution for a long time and have attracted

more attention. Figures 8A–C show the initial ground O3

concentration in the YRD region, BTH region, and PRD region,

respectively. Figures 8D–F show the performance of 1 km ozone

concentration values after downscaling by MI model in the YRD

region, BTH region, and PRD region, respectively, and the

corresponding ground observation values are shown on them.

Through comparison, it is found that in these key urban areas,

MI models can significantly improve their information richness.

However, the specific spatial distribution is still different. Among

them, the coincidence degree of spatial distribution of images in the

BTH region before and after downscaling is the best. Although, the

images of the YRD region and the PRD region before and after

downscaling can also ensure that the overall concentration change

trend is consistent, they are not completely consistent in detail. This is

the performance of the increase in the amount of information and

therefore the increase in accuracy. In addition, the results show that

the measured O3 concentrations at these sites are in close agreement

with those estimated by the MI model.

Model validation

In this study, the ground observation O3 concentration

dataset was used to verify the effectiveness of the MI

FIGURE 7
Downscaled result based on theMImethod. (A) 30 kmTROPOMI surfaceO3 concentration image, (B) 5 km LightGBM surfaceO3 concentration
image, (C) 1 km MCD19A2 AOD image,(D) 1 km TROPOMI surface O3 concentration image based on MI method, and (E) ground-based O3

observation image.
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FIGURE 8
Downscaling results based on the MI method in YRD, BTH, and PRD. (A) and (D) are the 30 km TROPOMI surface O3 concentration image and
the 1 km TROPOMI surface O3 concentration image based on theMI method in BTH, respectively. (B) and (E) are the 30 km image and 1 km image in
YRD, respectively. (C) and (F) are the 30 km image and 1 km image in PRD, respectively.

FIGURE 9
Validation of surface O3 concentration downscaling results (23 November 2021). (A) Validation of original 30 km TROPOPMI surface O3

concentration data and (B) validation of downscaled 1 km TROPOPMI surface O3 concentration data.
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downscaling method in the mapping of ground O3 concentration

data. We extracted the original low resolution TRTOPOMI

surface O3 concentration data and downscaling result data of

the station location and calculated the validation index. The

verification result (23 November 2021) is shown in Figure 9. The

downscaled 1 km TROPOPMI surface O3 concentration is good

agreement with the measured value at ground stations, with a

high determination coefficient (R2 = 0.877) and a relatively low

RMSE (7.385 μg/m3), nRMSE (11.471%), and MBE (2.893 μg/

m3). Compared with the index of original data (R2 = 0.668,

RMSE = 14.533 μg/m3, nRMSE = 24.365%, and MBE = 5.761 μg/

m3), it can be concluded that the downscaling procedure

significantly increased the determination coefficient R2 and

reduced RMSE, nRMSE, and MBE. The downscaled ground

O3 concentration images have higher accuracy than the 30 km

TROPOMI surface O3 concentration images, and its spatial

resolution has been greatly improved, which shows that the

improved MI downscaling method in this study has a good

application prospect.

We further tested the model performance in interest regions in

China. This model is most applicable in the Yangtze River Delta

(YRD, Figure 10B) region with coefficient of determination R2 values

of 0.925. The model performance is slightly poorer (e.g., R2 =

0.786 and R2 = 0.888) in the Beijing–Tianjin–Hebei (BTH,

Figure 10A) region and the Pearl River Delta (PRD, Figure 10C).

Overall, there are certain uncertainties in the model, and also certain

differences in the robustness of the model in different regions (e.g.,

RMSE = 3.962–8.253 μg/m3, nRMSE = 6.253–13.603 μg/m3, and

MBE = −0.519–6.998), which is also the direction we will continue to

work on next.

Conclusion

This study improved a downscaling method based on mutual

information, using TROPOMI O3 profile product (at 30 km

resolution), LightGBM surface O3 concentration data (at 5 km

resolution), and MCD19A2 AOD data (at 1 km resolution). The

TROPOMI surface O3 concentration data (at 1 km resolution) was

obtained, and the downscaling results were validated using the

observation data of the ground monitoring station. The improved

downscaling method based on MI significantly resulted in very

significant improvements in the spatial resolution and accuracy of

TROPOMI surface O3 concentration data. In the subsequent studies,

the analysis of annual and seasonal variations in surface O3 and some

test of significance will be carried out.
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