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Air quality PM2.5 prediction is an effective approach for providing early warning of air
pollution. This paper proposes a new deep learning model called temporal difference-
based graph transformer networks (TDGTN) to learn long-term temporal
dependencies and complex relationships from time series PM2.5 data for air
quality PM2.5 prediction. The proposed TDGTN comprises of encoder and
decoder layers associated with the developed graph attention mechanism. In
particular, considering the similarity of different time moments and the importance
of temporal difference between two adjacent moments for air quality PM2.5prediction,
we first construct graph-structured data from original time series PM2.5 data at
different moments without explicit graph structure. Then we improve the self-attention
mechanism with the temporal difference information, and develop a new graph
attention mechanism. Finally, the developed graph attention mechanism is
embedded into the encoder and decoder layers of the proposed TDGTN to learn
long-term temporal dependencies and complex relationships from a graph
prospective on air quality PM2.5 prediction tasks. Experiment results on two
collected real-world datasets in China, such as Beijing and Taizhou PM2.5
datasets, show that the proposed method outperforms other used methods on
both short-term and long-term air quality PM2.5 prediction tasks.

Keywords: air quality prediction, deep learning, temporal difference, graph attention, transformer, long-term
dependency

1 INTRODUCTION

With the rapid development of economy, industrialization, and urbanization, a large number of
urban cities throughout the world are undergoing increasingly serious air pollution problems,
thereby threatening human health and lives, the environment, and sustainable social development
(Dargin, 2014; Ke et al, 2021). In pariticular, long exposure to polluted air leads to a variety of
cardiovascular and respiratory sicknesses like lung cancer, bronchial asthma, atherosclerosis, chronic
obstructive pulmonary diseases, etc (Schwartz, 1993; Chang Q. et al., 2020; Yan et al., 2020). Wherein,
PM2.5 (fine particulate with an aerodynamic diameter of 2.5 um or smaller) has become the primary
factor of air pollution, and the increasing PM2.5 concentration directly threats to human health
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(Zhang B. et al., 2020). Aa a result, real-time, accurate and long-
term PM2.5 concentration predictions in advance play a
significant role in preventing and curbing air pollution,
government decision-making, as well as protecting human
health, and so on.

So far, a large number of studies have explored the
performance of various methods for air quality PM2.5
prediction (Liao et al., 2020; Liu et al, 2021). Prior methods
for air quality prediction can be mainly grouped into two
categories, namely physical prediction methods and statistical
prediction methods. The physical prediction methods are a
numerical simulation model on the basis of aerodynamics,
atmospheric physics, and chemical reactions for studying
pollutant diffusion mechanism (Geng et al., 2015). The well-
known physical prediction models include chemical transport
models (CTMs) (Mihailovic et al., 2009; Ponomarev et al., 2020),
community multiscale air quality (CMAQ) (Zhang et al., 2014),
weather research and forecasting (WRF) (Powers et al., 2017), the
GEOQOS-Chem model (Lee et al., 2017), and so on. Nevertheless,
owing to the complicated pollutant diffusion mechanism,
leveraging these models leads to several limitations such as
expensitive computation, the complexity of processing,
uncertainty of parameters, and low prediction accuracy (Wang
J. et al., 2019). Statistical prediction methods employ a statistical
modeling strategy to forecast future air quality on the basis of the
observed historical time series PM2.5 data. In comparison with
physical prediction methods, statistical prediction methods have
low compuation since they can avoid the complicated pollutant
diffusion mechanism. In this case, they can still obtain
competitive performance to physical prediction methods on
air quality PM2.5 prediction tasks (Suleiman et al., 2019).
Owing to these advantages, leverage statistical prediction
methods for air quality PM2.5 prediction is more extensive.
There are two kinds of statistical prediction models: linear and
nonlinear. The commonly-used linear statistical prediction
models, which is based on the supposed linearity of real-world
observed data, are autoregressive moving average (ARMA)
(Graupe et al, 1975), and autoregressive integrated moving
average (ARIMA) (Jian et al, 2012; Cekim, 2020).
Considerning the nonlinearity of real-world observed data, the
conventional nonlinear statistical prediction methods are
machine learning (ML) models. At present, Various common
machine learning (ML) algorithms, including multiple linear
regression (MLR) (Donnelly et al, 2015), artificial neural
network (ANN) (Arhami et al, 2013; Agarwal et al., 2020),
support vector regression (SVR) (Yang et al, 2018; Chu et al,,
2021), random forest (RF) (Gariazzo et al., 2020), as well as
ensemble learning of multple ML models (Xiao et al., 2018), have
been employed for air quality PM2.5 prediction. Among these
models, as non-linear tool ANN has become the most popular
one, since ANN is able to effectively simulate nonlinearities and
interactive relationships when dealing with non-linear systems,
especially when theoretical models are hard to be developed (Feng
et al,, 2015). The widely-used ANN models contain multilayer
perceptron (MLP), back propagation neural network (BPNN)
(Wang W. et al,, 2019), and general regression neural network
(GRNN) models (Zhou et al., 2014). These ML methods have
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distinct mathematical logic in which the correlation between
input and output data is relatively definite. Additionally, they
have relatively shallow network structure, resulting in the limited
ability of modelling dependency on time series PM2.5 data.

To address the above-mentioned issue, the recently-emerged
deep learning (Hinton and Salakhutdinov, 2006; LeCun et al.,
2015) methods may provide a possible clue. With the aid of multi-
layer network architecture, deep learning algorithms are able to
aumomatally extract multiple levels of abstract feature
representations from input data. Due to such powerful feaure
learning capability, deep learning methods have made great
breakthroughs (LeCun et al., 2015; Pouyanfar et al, 2018) in
object detection and image classification, natural language
processing (NLP), speech signal processing, and so on.

In recent years, various deep learning models have also been
successfully employed for air quality PM2.5 prediction (Liao
et al., 2020; Aggarwal and Toshniwal, 2021; Saini et al., 2021;
Seng et al.,, 2021; Zaini et al,, 2021). In particular, Ragab et al,
presented a method of air pollution index (AQI) prediction by
means of using one-dimensional convolutional neural network
(ID-CNN) and exponential adaptive gradients optimization for
Klang city, in Malaysia (Ragab et al., 2020). In addition, recurrent
neural network (RNN) (Elman, 1990), and its variants such as
long short term memory (LSTM) (Hochreiter and Schmidhuber,
1997) and gated recurrent unit (GRU) (Chung et al., 2014), have
become popular techniques for forecasting time series PM2.5
data. This is attributed to the fact these RNN-based models have
excellent capablity of capturing temporal dependency from input
time series PM2.5 data. A bidirectional LSTM (BiLSTM)
consisting of both forward and backward LSTM units was
provided for univariate air quality PM2.5 prediction (De Melo
et al,, 2019). In this study, they also adopted transfer learning
techniques to further improve air quality prediction performance.
at wider daily and weekly temporal intervals. Jin ef al., proposed a
new model integrating multiple nested long short term memory
networks (MN-LSTM:s) for accurate AQI forecasting enlightened
with the federated learning (Jin et al., 2021).

At present, several hybrid deep learning framework (Chang
Y.-S. et al,, 2020; Aggarwal and Toshniwal, 2021; Du et al., 2021;
Zhang et al., 2021) have attracted extentive attention for air
quality PM2.5 forecasting. Specially, a hybrid deep learning
model, based on one-dimensional CNNs (1D-CNN) and
bidirectional LSTMs for spatial-temporal feature learning, was
developed for air quality prediction (Du et al., 2021). This hybrid
deep learning framework focused on learning the spatial-
temporal correlation features and interdependence of
multivariate air quality data. A spatio-temporal CNN and
LSTM (CNN-LSTM) model (Pak et al., 2020) was provided to
forecast the next day’s daily average PM2.5 concentration in
Beijing City. In this CNN-LSTM model, the mutual information
(MI) was used for the spatio-temporal correlation analysis, which
took into account both the linear and nonlinear correlation
between target and observed parameter values. A new spatial-
temporal deep learning method with bidirectional gated recurrent
unit integrated with attention mechanism (BiAGRU) (Zhang K.
et al,, 2020), was proposed for accurate air quality forecasting. A
hierarchical deep learning framework comprising of three
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components like the encoder, STAA-LSTM, and the decoder was
presented for forecasting the real-world air quality data of Delhi
(Abirami and Chitra, 2021). In their work, the encoder was used
to encode all spatial relations from input data. The STAA-LSTM,
as a variant of LSTM, aimed to forecast future spatiotemporal
relations in the latent space. The decoder was leveraged to decode
these relations for the actual forecasting.

In addition, graph neural networks (GNN) (Scarselli et al,
2008) have become an emerging active research subject in machine
learning, and obtained great success in processing graph-structured
data owing to their powerful graph-based feature learning ability.
The representative GNN method is graph convolutional neural
network (GCN) (Kipf and Welling, 2016). GCN is a generalization
of conventional CNNs to deal with homogeneous graph, in which
the graph nodes and edge types should be identical. Considering
the fact that different air quality monitoring stations may have
different topological structure in space, GCNs can be intuitively
used to capture the spatial dependencies among multiple air quality
monitoring stations. Specially, Xu et al. proposed a hierarchical
GCN Method called HighAir (Xu et al, 2021) for air quality
prediction, in which a city graph and station graphs were
constructed to take into account the city-level and station-level
patterns of air quality, respectively. Chen et al. presented the group-
aware graph neural network (GAGNN) (Chen et al,, 2021) for
nationwide city air quality prediction. GAGNN aimed to build up a
city graph and a city group graph to learn the spatial and latent
dependencies between cities, respectively. In addition, combining
GNN with LSTM has recently become a popular method to model
spatio-temporal dependencies for air quality PM2.5 forecasting.
Specially, a graph-based LSTM (GLSTM) model (Gao and Li,
2021) was developed to forecast PM2.5 concentration in Gansu
Province of Northwest China. They regarded all air quality
monitoring stations as a graph, and yielded a parameterized
adjacency matrix based on the adjacency matrix of the graph.
Then, integrating the parameterized adjacency matrix with LSTMs
was employed to learn spatio-temporal dependecies for air quality
PM2.5 prediction. These existing graph-based works aim to
capture the spatial dependencies among multiple air quality
monitoring stations rather than the single air quality
monitoring station.

More recently, the attention mechanism (Niu et al., 2021) has
become an important direction in the field of deep learning. In
particular, the temporal attention mechanism is capable of
adaptively assigning greater weights to input data at different
times from a sequence with higher correlations for target
prediction tasks. Moreover, it can be also calculated in parallel,
thereby improving the computational efficiency. Among
attention-based deep learning methods, the recently-developed
Transformer (Vaswani et al, 2017) technique achieving great
success for machine translation tasks in NLP, has become
fashionable at present. The original Transformer model does
not contain any recurrent structures and convolutions and aims
to model temporal dependencies in machine translation tasks
with the aid of the powerful self-attention mechanism. So far, the
Transformer models have exhibit better performance than RNN
and LSTM in capable of learning long-range dependencies in a
number of areas ranging from NLP (Vaswani et al., 2017; Neishi
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and Yoshinaga, 2019), object detection and classification (Bazi
et al, 2021; Duke et al., 2021; Lanchantin et al, 2021), to
electricity consuming load analysis (Yue et al., 2020; Zhou
et al,, 2021).

Although the recently-emerged Transformer techniques have
achieved promising performance in various domains, few studies
focus on the applications of Transformer techniques to air quality
PM2.5 prediction. Additionally, as a typical graph-based deep
learning method, GNNs have a powerful graph-based feature
learning ability when processing graph-structured data. As a
typical attention-based deep learning method, Transformer
techniques are able to effectively model temporal dependencies
due to the used self-attention mechanism. In this case, how to
integrate the advantages of GNNs and Transformer techniques
based on a graph attention mechanism for air quality PM2.5
prediction is a challenging problem, which is under-exploited in
existing works.

Inspired by the recent great success of GNNs and Transformer,
this paper combines the advantages of GNNs processing graph-
structured data and Transformer modeling temporal
dependencies, and proposes a novel graph attention-based deep
learning model called temporal difference-based graph transformer
networks (TDGTN) for air quality PM2.5 prediction. The main
contributions of this paper are summarized as follows:

1) Considering the similarity of different time moments and the
importance of temporal difference between two adjacent
moments for air quality prediction, for the single air
monitoring station we aim to construct graph-structured
data from the obtained time series PM2.5 data at different
moments without explicit graph structure. To the best of our
knowledge, this is the first attempt to exploit graph-based air
quality PM2.5 prediction for the single air monitoring station
from a graph-based perspective.

2) This paper combines the advantages of both GNNs and
Transformer, and proposes a new deep learning model
called TDGTN to learn long-term temporal dependencies
and complex relationships from time series PM2.5 data for
air quality PM2.5 prediction. In the proposed TDGTN model,
we improve the self-attention mechanism with the temporal
difference information and develop a new graph attention
mechanism.

3) This paper evaluates the performance of the proposed
TDGTN on two real-world datasets, in China, including
Beijing and Taizhou PM2.5 datasets and compares it with
the state-of-the-art models such as ARMA, SVR, CNN, LSTM,
and the original Transformer. Experimental results
demonstrate that TDGTN outperforms existing models
both short-term (1h) and long-term (6, 12, 24, 48 h) air
quality prediction tasks.

2 DATA AND METHODS
2.1 Study Area and Data Collection

To verify the effectiveness of the proposed method on air quality
prediction tasks, we adopt two real-world hourly air quality

Frontiers in Environmental Science | www.frontiersin.org

June 2022 | Volume 10 | Article 924986


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Zhang et al.

TDGTN For Air Quality PM2.5 Prediction

50°0'0"N
n

£

- I % Air quality monitoring station

T T T
$0°00°E 90°00"E 100°00"E

FIGURE 1 | The location of Beijing and Taizhou air quality monitoring stations in China.
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FIGURE 2 | An illustration of hourly PM2.5 values (ug/m?®) from 5/01/2014 to 5/31/2014 on Beiing PM2.5 dataset [Each observation point in the horizontal axis
denotes a timescale (hour) related to the collected PM2.5 value, as described in the vertical axis in this figure].
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PM2.5 datasets to perform air quality prediction experiments.
They are Beijing PM2.5 dataset (Liang et al., 2015), and Taizhou
PM2.5 dataset. Figure 1 shows the location of Beijing and
Taizhou air quality monitoring stations in China. In
particular, Beijing city is located at 116°66’ east longitude and
40°13' north latitude. Taizhou is located at 121°42' east longitude
and 28°65' north latitude. Taizhou city lies in the southeast of
Zhejiang Province, China. These two cities represent two distinct
climate areas in China. Specially, Beijing city is a typical dry area
in the north of China, whereas Taizhou city is a typical wet area in
the south of China.

The used Beijing PM2.5 dataset contains around 43,800
samples, each of which was recorded with an hourly interval

ranging from 01/01/2010 to 12/31/2014. In this dataset, the
PM2.5 data (http://www.mee.gov.cn/) was collected from the
United States Embassy in Beijing, and the corresponding
meteorological data (http://tianqi.2345.com/) was collected
from Beijing Capital International Airport. This dataset
comprises of eight feature items, including PM2.5
concentration (ug/m’), dew point, temperature, pressure,
combined wind direction, cumulated wind speed (m/s),
cumulated hours of snow, cumulated hours of rain. Figure 2
presents an illustration of hourly PM2.5 values from 5/01/2014 to
5/31/2014 on Beijing PM2.5 dataset.

The used Taizhou PM2.5 dataset contains about 26,000 hourly
records ranging from 01/01/2017 to 12/31/2019. They were

Frontiers in Environmental Science | www.frontiersin.org

June 2022 | Volume 10 | Article 924986


http://www.mee.gov.cn/
http://tianqi.2345.com/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Zhang et al. TDGTN For Air Quality PM2.5 Prediction

- — PM2.5
60
Q
= |
T 40
20
0
0 100 200 300 400 500 600 700

Observation Points(10/01/2019-10/31/2019)

FIGURE 3 | An illustration of hourly PM2.5 values (ug/m°®) from 10/01/2019-10/31/2019 on Taizhou PM2.5 dataset [Each observation point in the horizontal axis
denotes a timescale (hour) related to the collected PM2.5 value, as described in the vertical axis in this figure].
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collected by our teams from the single Hongjia monitoring  (Vaswani et al., 2017), our proposed TDGTN model
station, which is located in Jiaojiang urban district from  comprises of encoder and decoder layers associated with the
Taizhou city in the southeast of Zhejiang Province. This  graph attention mechanism, as depicted in Figure 4. Compared
dataset also include eight feature items, such as PM2.5  with the original Transformer (Vaswani et al., 2017), TDGTN
concentration (ug/m’), dew point, temperature, pressure,  has two distinct properties. One is that we embed the graph
combined wind direction, cumulated wind speed (m/s), attention into the encoder and decoder instead of the common
cumulated hours of rain, cumulated hours of relative  multi-head attention in the original Transformer except for the
humidity. Figure 3 provides an illustration of hourly PM2.5  used masked multi-head attention. The other is that based on
values from 10/01/2019-10/31/2019 on Taizhou PM2.5 dataset. ~ time series PM2.5 data, the first-order backward difference

information between two adjacent moments is embedded
2.2 Method into the constructed graph so as to learn long-term
Figure 4 presents an overview of our proposed temporal  dependency and complex relationships from a graph
difference-based graph transformer networks (TDGTN) for  perspective. In the following, we will describe the relevant
air quality PM2.5 prediction. Like the original Transformer  details of TDGTN.
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2.2.1 Problem Description

Given a length L, of input time series data X = {x;, x2,...,x,}
(x; € R%) with feature dimension d,, the used air quality
prediction methods aim to forecast the corresponding time
series PM2.5 data Y ={y;, y,,... ,yLy} (yi € R%) with a
length L, and feature dimension d,. The encoder aims to
learn hidden continuous feature representations Z =
{z1,22,...,2z1,} with a length L, from input time series data
X. Then, the decoder produces an output of Y = {y1, y», ... ,yLy}
from the obtained hidden continuous feature representations in
the encoder. This inference is performed by means of an step-by-
step implementation, in which the decoder computes a new
hidden feature representation zy,; from the previous feature
representation z; and other outputs in k-th step, and then
predict (k + 1)-th time series data yg,;.

2.2.2 Graph Construction

Graphs, as a special form of data, aim to characterize the
relationships between different entities. GNNs endow each
node in a graph with an ability of learning its neighborhood
context by means of propagating information through graph-
based structures. In this case, air quality PM2.5 prediction for the
single air monitoring station can be intuitively regarded as a
problem of graph-based multivariate time series forecasting from
a view point of graphs. Considering the similarity of different
time moments and the importance of temporal difference
between two adjacent moments for air quality prediction, for
the single air monitoring station we first construct graph-
structured data from the obtained time series PM.25 data at
different moments without explicit graph structure, as described
below. Based on the constructed graph-structured data, modeling
time series PM2.5 data from a graph prospective may be a good
way to maintain their temporal trajectory while exploring the
temporal dependencies among time series PM2.5 data.

A graph is defined as G = (A, I') where A represents its nodes,
and I' denotes its edges. The number of nodes in a graph is
denoted by n. The graph adjacency matrix U € R™" is used to
characterize the relationships among nodes.

As shown in Figure 5, the moment ¢; (i = 1,2,...n) from time
series PM2.5 data can be regarded as the i-th node in a graph, and

they are interconnected by using their hidden dependency
relationships. Therefore, all the nodes in a graph can be
defined as

A= (t, by, tn) (1)

The graph adjacency matrix is computed by a Hadamard
product

U=AoE (2)

Where A € R™" denotes the initial multiplicative attention scores
calculated by A = XX’, and E € R™ represents the first-order
backward difference matrix, which is obtained by

E=E W (3)
E’ = (v10> VZI)V_’»Z)---) Vn,n—l) (4)
Viioi =% —xi.,i=1,2,---,n (5)

Where W is the linear transformation of the original first-order
backward difference matrix E' € R™!, and V,;_, is the first-order
backward difference between two adjacent nodes in a graph
representing the meteorological dynamical changes between
two adjacent moments. In this way, the edge values in I' from
a graph correspond to the element values in the produced graph
adjacency matrix U, as depicted in Figure 5A.

It’s worth pointing that there are two distinct properties about
our constructed graph-structured data from original time series
PM2.5 data without explicit graph structures. First, the attention
score A is used to weigh the similarity of different nodes (i.e., time
moments). The higher the similarity of different nodes is, the
larger the attention score values are. Moreover, the dynamical
changing information in time series PM2.5 data between two
adjacent moments is very important for air quality prediction.
Therefore, the Hadamard product A ® E between the attention
score A and first-order backward difference matrix E is designed
to weigh the similarity of different nodes, and the dynamical
changing in time series PM2.5 data simultaneously. Second, it is
known that in long-term time series data the obtained
information with close nodes (such as two neighboring nodes)
is more important for air quality prediction than the obtained
information with far nodes. Multiplying the attention scores of far
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nodes with the first-order backward difference of neighboring
nodes, thus makes the graph adjacency matrix U not only focuses
on the information of far nodes, but also pays more attention to
the neighboring nodes.

After constructing graph-structured data, the self-attention
mechanism in Transformer (Vaswani et al., 2017) can be
operated on these graph-structured data. Then, we improve
the self-attention mechanism with the temporal difference
information. This yields our graph attention mechanism used
in the proposed TDGTN model for learning long-term temporal
dependencies from a graph prospective on air quality PM2.5
prediction tasks.

2.2.3 The Details of TDGTN Model

Similar to the original Transformer (Vaswani et al., 2017),
TDGTN contains encoder and decoder blocks with the
developed graph attention mechanism, as described in Figure 4.

Encoder: The encoder is composed of a graph attention layer
and a fully connected feed-forward network layer. Around each of
two sub-layers, the residual connection (He et al, 2016) is
adopted, each of them is followed by an addition and layer-
normalization layer (Add and Norm). Given input time series
data X, the encoder aims to learn the interrelationship of PM2.5
related data in time series data from a graph perspective.

Decoder: The decoder comprises of a masked multi-head
attention layer, a graph attention layer and a fully connected
feed-forward network layer, and each of them is followed by an
addition and layer-normalization layer (Add and Norm). Similar
to the encoder, the residual connection is employed around each
of two sub-layers. The decoder accepts the input time series data
Xae = {Xioken» X0}, in which X;oen denotes the started tokens,
and X represents the placeholder for target time series data. The
decoder aims to produce the output of predicted PM2.5
concentration data in a generative manner based on the
obtained hidden continuous feature representations in the
encoder.

Graph attention: Based on the constructed graph, we improve
the self-attention mechanism with the temporal difference
information and embed it into the produced graph-structured
data to calculate the hidden representations of each node in the
graph. As shown in (Vaswani et al.,, 2017), the canonical self-
attention consists of three parts: query, key and value, and is
computed by performing scaling dot product calculation:

. B QK"
Attention (Q,K,V) = softmax(\/a>V (6)

Where Q € R is the query matrix, K € RP? is the key matrix,
V € R4 is the value matrix, L is the length of input data, and d is
the feature dimension of input data.

As mentioned-above, the first-order backward difference
between two adjacent nodes in a graph can be used to
represent the meteorological dynamical changes between two
adjacent moments. This difference information is useful for air
quality prediction, and can be embedded into the canonical self-
attention. In order to simultaneously capture the interrelation
and dynamical changes among different nodes, we modify the
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attention calculation in Eqn. 6 by multiplying the first-order
backward difference matrix E as follows:

L Q-K"
Attention = softmax((\/a> . E)V 7)

For graph-based time series PM2.5 data prediction, we
employed fixed position encoding with the nonlinear sine and
cosine functions (Vaswani et al., 2017) to provide the temporal
information of time series data for graph attention calculation.

3 EVALUATION CRITERIA

To verify the performance of air quality PM2.5 prediction
methods, three representative evaluation metrics, including
mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE), were employed for
experiments. MAE, RMSE, and MAPE are defined as:

8)

MAE(J’» )A’> = %Z‘)’i - i
in1

A 1 Z N 2
RMSE(y, y) = az<y,- -y ) 9)
i1
=y
1oy i
MAPE(y,f») ) — (10)
m; y,‘

Where y and 3\/ separately denotes the ground-truth and
predicted PM2.5 value, and m represents the whole number of
testing data. The smaller the values of MAE, RMSE, and MAPE
are, the higher the final prediction results are. Since MAPE is very
sensitive to outlier data, the obtained MAPE values are often
higher than MAE and RMSE. In this case, MAE, RMSE and
MAPE are employed simultaneously to evaluate the performance
of all used methods.

3.1 Implementation Details
We implement all the experiments on a PC server with a GPU
NVIDIA Quadro P6000 with 24G memory. The open source
Pytorch tools are leveraged to conduct all machine learning
models for air quality prediction. For deep learning models,
the open source Tensorflow library is installed and configured.
The Adam optimizer is adopted, and the initial learning rate is set
to le-4. The batch size is set to 32, the maximum epoch number is
200, and the mean squared error loss function is employed.
Normalization is conducted to be [0, 1] for air quality time
series data. The lookup size (window size), which is used to
represent historical observations as input size of all machine
learning models, is 24 for its promising performance. We evaluate
the performance of our method in comparison with other
representative methods, such as the traditional ARMA and
SVR, as well as the recently-emerged deep models like CNNGs,
LSTMs, original Transformer methods, as describe below.
ARMA is a traditional linear statistical method for time series
data prediction. Here, ARMA is just used for singe-step air quality
prediction since it is limited multi-step air quality prediction
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FIGURE 6 | Comparisons of different methods for single-step PM2.5
prediction tasks for the next 1 h.

strategy. For ARMA, there are two key parameters ARMA (p, q)
affecting its performance, in which p is the order of the AR part
and q is the order of the MA part. In this work, we seek the
optimal p and q in a simple exhausting search way in the range of
[1, 10] with an interval of 1 to produce the best performance for
ARMA. As a result, we separately employ ARMA (4, 1) on Beijing
dataset and ARMA (1, 9) on Taizhou dataset for experiments due
to its best performance. SVR is a kernel method on the basis of
non-linear statistical machine learning theories. We adopt the
linear kernel for SVR on air quality PM2.5 prediction tasks.

CNNss are a well-known deep model originally processing two-
dimension (2D) image data. Due to the used 1D time-series
PM2.5 data, 1D-CNN is adopted in this work. The network
configuration for 1D-CNN is that it consists of 256 convolution
kernels with a kernel width of 5 and a stride of 1. Then, a batch
normalization layer, max-pooling layer, rectified linear units
(RLU) layer, a dropout (0.3) layer, and a fully-connected (FC)
layer are used after the convolution layers.

LSTMs are a typical kind of recurrent architecture modeling
long-range dependencies of time series data. Bidirectional LSTM
(BiLSTM) is employed for air quality prediction. BiLSTM
contains a forward LSTM and a backward LSTM. We
leveraged a two-layer BiLSTM for air quality forecasting in
this work. Each layer of BiLSTM contains 256 hidden
neurons, followed by a dropout (0.05) layer. For the original
Transformer model (Vaswani et al., 2017) and our proposed
TDGTN model, we leverage three encoders and two decoders for
their promising performance on air quality PM2.5 prediction.
Moreover, in these two Transformer-based models the number of
multi-head attention is 8, and the used single feed-forward
network has 2048 nodes.

In this work, we adopt a year-independent strategy for air
quality forecasting experiments which is definitely close to the
real-world sceneries. More specially, the training, and testing sets
are selected from different years. In detail, on the used Beijing
PM2.5 dataset, the first four-year data (01/01/2010 to 12/31/2013)
is selected as the training net, and the last year data (01/01/2014-
12/31/2014) is adopted for testing. On the used Taizhou PM2.5
dataset, the first two-year data (01/01/2017 to 12/31/2018) is
employed for training, and the last year data (01/01/2019 to 12/
31/2019) is adopted for testing. During the training of deep
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models, we randomly select 10% of the entire training set as
the validation set for model validation.

3.2 Results and Analysis

To verify the performance of different air quality PM2.5
prediction methods, we presented two types of experimental
results: single-step prediction for the next 1h, and multi-step
prediction for the next multiple hours.

3.2.1 Single-Step Prediction Results

Figure 6 provides performance comparisons of different air
quality prediction methods on Beijing and Taizhou PM2.5
datasets for single-step PM2.5 prediction tasks when the
forward-step prediction size is 1 for the next 1h (hl). These
comparing methods contain ARMA, the linear SVR, CNN,
LSTM, the original Transformer (abbreviated as Transformer),
as well as our method. As shown in Figure 6, it can be seen that
our method outperforms other used methods on Beijing and
Taizhou PM2.5 datasets for single-step PM2.5 prediction tasks. In
detail, our method obtains the lowest RSME, MAE, and MAPE on
these two datasets. More specially, our method is able to reduce
RMSE to 18.51 (ug/m’), MAE to 11.06 (ug/m?), and MAPE to
22.91 (%) on Beijing PM2.5 dataset, whereas on Taizhou PM2.5
dataset our method can reduce RMSE to 5.70 (ug/m3), MAE to
3.66 (ug/m3), and MAPE to 20.23 (%). This indicates the
effectiveness of our proposed method for air quality PM2.5
prediction from a graph perspective. In comparison with other
methods like ARMA, SVR, CNN, LSTM, and Transformer, our
method has stronger capability of capturing long-term
dependency and complex relationships from time series PM2.5
data for air quality prediction. In addition, our method yields
better performance than Transformer, showing the advantages of
our method on the basis of graph attention.

Besides, compared with traditional shallow learning
methods like ARMA and SVR, deep learning methods,
including LSTM, Transformer and our method, produce
better performance for air quality prediction. This
demonstrates the superiority of deep learning techniques
over traditional shallow learning techniques on air quality
prediction tasks. However, the used 1D-CNN obtains slight
lower performance than SVR on single-step PM2.5 prediction
tasks. This indicates that CNN may not very effective to learn
long-term dependency and complex relationships from 1D
time series PM2.5 data.

3.2.2 Multi-Step Prediction Results

For multi-step prediction results, we provided performance
comparisons of different air quality prediction methods for the
next multiple hours (6, 12, 24, 48). For the next 6 h, the average
prediction results in the next forward 6 h were reported as the
testing error of different methods. For more than the next 6 h, we
divided them into a number of adjacent intervals and trained
individual models corresponding to every interval. Then, we
figured out the average prediction results for every interval. In
particular, for the next 12h prediction, we split it into three
intervals: 0-3 h, 3-6 h, and 6-12 h. For the next 24 h prediction,
we split it into four intervals: 0-3 h, 3-6 h, 6-12 h, and 12-24 h.
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FIGURE 7 | Comparisons of different methods for multi-step prediction
results for the next 6 h.

For the next 48 h prediction, we split it into four intervals: 0-6 h,
6-12h, 12-24 h and 24-48 h.

Figure 7 presents the obtained results (RMSE, MAE and
MAPE) of different methods for the next 6 h on Beijing and
Taizhou PM2.5 datasets. It can be seen from the results in
Figure 7, compared with other methods, our method achieves
the smaller RSME, MAE and MAPE on Beijing and Taizhou
PM2.5 datasets. This indicates the superiority of the proposed
method on long-term air quality prediction tasks. More specially,
our method reduces RMSE to 36.27 (ug/m3), MAE to 22.61 (ug/
m?), MAPE to 51.88 (%) on Beijing PM2.5 dataset, and RMSE to
11.19 (ug/m3), MAE to 7.40 (ug/m3), and MAPE to 44.37 (%) on
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Taizhou PM2.5 dataset, respectively. The ranking order for other
methods is Transformer, LSTM, CNN, and SVR. Note that CNN
provides slightly smaller RMSE, MAE, and MAPE than SVR on
multi-step PM2.5 prediction tasks for the next 6h. This is
opposite to single-step PM2.5 prediction tasks for the next 1h,
as shown in Figure 6. This shows that CNN is capable of
promoting the prediction performance with the increasing
forward-step prediction size from the next 1h to the next 6 h.
This finding of CNN will be verified further in the next 12, 24
and 48 h.

Figures 8, 9 separately show the prediction results (RMSE,
MAE and MAPE) of different methods for the next 12 h (three
intervals) on Beijing and Taizhou PM2.5 datasets. Figures 10, 11
individually depict the prediction results (RMSE, MAE and
MAPE) of different methods for the next 24 h (four intervals)
on Beijing and Taizhou PM2.5 datasets. Figures 12, 13
independently present the prediction results (RMSE, MAE and
MAPE) of different methods for the next 48 h (four intervals) on
Beijing and Taizhou PM2.5 datasets. From the results in Figures
8-13, we can observe that when the forward prediction size
increases from 12 to 48h, the multi-step PM2.5 prediction
accuracies of all used methods clearly drop down. This may be
attributed to the fact that the larger the forward prediction size is,
the more difficult and challenging the accurate air quality
prediction task is. In addition, Figures 8-13 show that our
method still presents the lowest prediction error (RMSE,
MAE, MAPE) among all used methods when the forward
prediction size changes from 12 to 48h. Besides, CNN
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FIGURE 8 | Comparisons of different methods for multi-step prediction results for the next 12 h on Beijing dataset.
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FIGURE 9 | Comparisons of different methods for multi-step prediction results for the next 12 h on Taizhou dataset.
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FIGURE 15 | Comparisons of our method and Transformer on single-step (h1) and multi-step (h48) ground truth and air quality prediction tasks during 1 month (4/
01/2019-4/30/2019) on Taizhou dataset.

To intuitively exhibit the superiority of our method over the
original Transformer method, Figures 14, 15 separately provide
the visualization of their single-step ground truth and predicted
PM2.5 values for the next 1 h, and multi-step ground truth and

performs better than SVR again for the next 12-48h, and
outperforms LSTM for the next 48 h. This shows that CNN is
more appropriate to implement long-term air quality prediction
compared with short-term air quality prediction tasks.

Frontiers in Environmental Science | www.frontiersin.org 11 June 2022 | Volume 10 | Article 924986


https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

Zhang et al.

predicted PM2.5 values for the next 48 h on Beijing and Taizhou
PM2.5 datasets. The forward prediction size is 4/01/2014-4/30/
2014 on Beijing PM2.5 dataset, and 4/01/2019-4/30/2019 on
Taizhou PM2.5 dataset. Here, an illustration of their difference
is labeled with a red circle in Figures 14, 15.

As shown in Figures 14, 15, we can observe that both of them
obtain promising performance on single-step prediction tasks for
the next 1h. Nevertheless, our method slightly outperforms
Transformer on subtle changes in the time period of wave
valley and the wave peak of air quality PM2.5 testing data
from these two datasets. Moreover, such superiority of our
method over Transformer is more obvious for multi-step
prediction results for the next 48h. The visualization in
Figures 14, 15 show the advantages of our method over
Transformer on short-term and long-term air quality PM2.5
prediction tasks, again.

Compared with the results obtained on single-step PM2.5
prediction tasks, all used methods for multi-step PM2.5
prediction achieves much larger RMSE, MAE and MAPE,
demonstrating the difficulty in long-term air quality prediction
when adopting a year-independent strategy widely used in real-
word sceneries. Specially, the obtained MAPE values are much
higher than RMSE, and MAE, due to the inherent drawback of
MAPE as an error measure, that is, MAPE is very sensitive to
outlier data (Kim and Kim, 2016). This is consistent with previous
findings (Wen et al,, 2019; Du et al, 2021). Nevertheless, the
obtained results on multi-step PM2.5 prediction tasks
demonstrate the advantage of the proposed TDGTN again,
outperforming other methods.

4 CONCLUSION AND FUTURE WORK

In this work, a new deep learning model called TDGTN is proposed
to learn long-term temporal dependencies and complex
relationships from time series PM2.5 data for air quality PM2.5
prediction. The proposed TDGTN model contains a number of
encoder and decoder layers associated with the newly-developed
graph attention mechanism. Specially, the conventional self-
attention mechanism in the original Transformer model is
improved by means of integrating the temporal difference
information, which gives rise to a new graph attention
mechanism used in the proposed TDGTN model. Based on the
constructed graph-structured data, we are the first to implement air
quality PM2.5 prediction tasks for the single air monitoring station
from a view point of graphs. Experiment results on Beijing and
Taizhou PM2.5 datasets demonstrate the promising performance of
the proposed TDGTN method on both short-term and long-term air
quality prediction tasks.
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