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Source apportionment of surface water is essential for effective pollution

control and sustainable water management. Physical mechanism models

usually need so much data and parameters for calibration that their

application for complex hydrologic condition watershed becomes difficult.

However, reverse source tracing methods only based on water quality

parameters present a certain subjectivity and uncertainty. In this research,

additional land-use parameters were applied as an auxiliary in principal

component analysis (PCA) for accurate identification of pollution sources.

Thirteen water quality parameters and two meteorology parameters were

used in the PCA and absolute principal component score–multiple linear

regression (APCS–MLR) model to quantitatively identify potential pollution

sources and their contributions to surface water pollution of the Poyang

Lake Basin, in which frequent flow and sediment flux exchange with Yangtze

River make the river–lake relationship complex. The results showed that urban

wastewater with 34% contribution and agricultural non-point sources with 16%

contribution, were the major sources of pollution in water quality. TP and

NH3–N, the most serious pollutants, causing agricultural non-point source

pollutions with 40% contributions and urbanwastewater with 21% contributions

were the major sources in the Poyang Lake Basin. Urban wastewater with 60%

contributions was the major source of organic contamination. It can be

concluded that with associated land-use parameters, the GIS approach with

the APCS–MLR model can improve the accuracy and certainty of source
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apportionment, providing aid decision information for managers on protection

of surface water quality.
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1 Introduction

Due to rapid growth of world’s economies and the expansion

of industrial and agricultural production, surface water pollution

has been a serious problem to human health and economic

development in many countries, such as Nigeria (Ighalo et al.,

2021), central Poland (Zieliński et al., 2016), United Kingdom

(Hutchins et al., 2018), and China (Ma et al., 2020a; Huang et al.,

2021). Contaminants in surface water come from a lot of

pathways, including the discharge of municipal and industrial

wastewater, the excessive usage of fertilizers, the mining

activities, and the natural factors (Yu et al., 2019; Ma et al.,

2020b). To analyze the potential pollution sources of the surface

water contaminants and identify their relationship, it is necessary

to formulate treatment measures for government administration.

The Poyang Lake Basin is one of the most important agricultural

and economic regions in China. However, due to human

activities in recent years, the overall water quality is

threatened by elevated contaminant concentrations (Gao et al.,

2016; Wu et al., 2017; Han et al., 2020; Li et al., 2020b). The

pollution source of the Poyang Lake Basin is quite complex due to

rapidly changing hydrology regime, as well as frequent flow and

sediment flux exchange with the Yangtze River (Wang and Liang,

2015; Yang et al., 2016).

The analytical methods of source apportionment are divided

into forward and reverse source tracing. The forward methods

mainly include the coefficient method and mechanistic model

method. The coefficient approach has been widely used to

estimate non-point source pollution load, describing a

comprehensive effect of generation processes via surface

runoff (Hou et al., 2018). However, it is difficult to determine

pollutants’ attenuation rate of the generation processes due to its

large spatial–temporal heterogeneity in land characteristics,

weather, human activity, and so on (Strickling and Obenour,

2018; Westphal et al., 2019; Wang et al., 2020). Although the

relevant processes of pollutant generation and transport in

terrestrial–riverine systems can be simulated, physical

mechanism models usually need so much data and parameters

for calibration that their application for complex hydrologic

condition watersheds becomes difficult (Lu et al., 2013).

However, reverse source tracing methods do not need detailed

discharge information of pollution sources or track the migration

of pollutants, such as the UNMIX model, positive definite matrix

factorization model, isotope model, absolute principal

component score-multiple linear regression (APCS–MLR),

and so on. Due to good performance, the APCS–MLR model

has been widely used in traceability studies of various pollutants

in surface water (Zhou et al., 2007; Su et al., 2011; Liu et al., 2020).

Accurate identification of pollution sources in principal

component analysis (PCA) is essential for quantitative

assessment of the percentage contributions to surface water in

APCS–MLR. Analysis of pollution sources with PCA just based

on hydrochemistry indicators may lead to large uncertainty and

subjectivity due to the commonality of pollutants from various

sources (Jiang and Guo, 2019; Li J. et al., 2020). In consequence,

the results of PCA were turned out to show large deviations,

particularly when multiple source profiles are similar for

collinearity (Salim et al., 2019; Zhang et al., 2020a; Zhang

et al., 2020b; Zhang et al., 2022). The associated GIS

approach, land use, and socioeconomic parameters with PCA

analysis were advised to reduce the uncertainty, one-sidedness,

and subjectivity of pollution source identification, so that more

accurate conclusions can be acquired (Zhang et al., 2015; Shen

et al., 2021). Lockhart et al. (2013) found a significant spatial

correlation between groundwater nitrate contamination and land

uses. Mirhosseini et al. (2018) concluded that three land-use

types including rangeland, irrigated, and urban area significantly

affect the water quality of Zanjanroud Watershed in

northwestern Iran. According to Liu et al. (2021), one-to-one

relations of R-squared (R2) between landscape metrics and

hydrochemistry variables vary from 0.32 to 0.74. However,

few studies considered adding land-use parameters to the

improvement of source identification accuracy in PCA (Cheng

et al., 2020).

This study focused on the Poyang Lake Basin aims to: 1) identify

spatio-temporal distribution characteristics of the water quality with

GIS technology, 2) identifying the pollution sources through PCA,

and 3) using the APCS–MLR model to quantify the percentage

contribution of identified pollution sources to water contamination.

Considering the significant correlation between water quality and

land use (Giri and Qiu, 2016; Wijesiri et al., 2018), to obtain more

objectivity and accurate identification results, the correlation analysis

(CA) of factor scores and land use was involved in the PCA analysis

in this research.

2 Materials and methods

2.1 Study area

The Poyang Lake Basin, which accounts for about 97% of the

area of Jiangxi Province, has a drainage area of 1.62 × 105 km2
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(Zhou et al., 2016). The basin belongs to a subtropical monsoon

climate, with a mean annual air temperature of 18° and a mean

annual rainfall of 1615 mm that is concentrated in the wet season

(Peng et al., 2013). Poyang Lake is located in the Middle and

Lower reaches of the Yangtze River and is the largest freshwater

lake in China (Figure 1). As one of the Yangtze-connected lakes,

Poyang Lake freely exchanges water and sediment with the

Yangtze River. Consequently, the limnology of Poyang Lake

changes seasonally based on variations in the water level

which is approximately 10 m (Wu et al., 2013; Zhang et al.,

2014). During the wet season, the surface areas of Poyang Lake

can be 27 times larger than that during the dry season (the wet

season lasts from April to September and the dry season lasts

from October to March), while the volume can be 63 times larger

accordingly (Guo et al., 2012).

2.2 Multivariate statistical methods

All statistical analyses were conducted using SPSS 22 and

RStudio. Multivariate statistical analyses including CA, PCA, and

APCS–MLR were adopted in this research. The PCA could assess

the degree of dispersion in water quality parameters and extract

principal components (PCs), which was conducted in this study

to assess possible sources that influence water quality (Zhang

et al., 2020b). Metadata standardization, Kaiser–Meyer–Olkin

(KMO), and Bartlett’s test were used to test the applicability of

PCA datasets. Eigenvalues greater than one was extracted to be

the principal components based on the Kaiser standard (Kaiser,

1974). To maximize the sum of the squared loadings for each

component, the factor load matrix was rotated in an orthogonal

way. Absolute factor loadings larger than 0.75, in the range of

0.50–0.75, and in the range of 0.30–0.50 are considered to be

strong, moderate, and weak loadings, respectively (Huang et al.,

2010; Liu et al., 2015). Additionally, CA of factor scores and land

use was incorporated to improve the precision of assessing

possible sources (Cheng et al., 2020).

The APCS–MLR model is designed to quantify the

contribution of pollution sources to water quality parameters

in rivers/lakes based on PCA. First, the PCA analysis extract PCs

from plenty of relevant variables by data dimensionality

reduction, then the pollution source of PCS could be identified

FIGURE 1
Location of the study area, water quality sampling sites, and land-use distribution (LUT1: cultivated land; LUT2: forest land; LUT3: grassland;
LUT4: water area; LUT5: urban residential areas and other construction land; and LUT6: unused land).
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according to the calculated rotating load. Nevertheless, the

percentage contribution of pollution sources could not be

directly calculated based on the standard value of data by

PCA (Thurston and Spengler 1987). Converting the

standardized factor score into the non-standardized absolute

principal component score (APCS) is indispensable. The

APCS can be expressed as

APCSjk � (Az)jk − (A0)jk, (1)

where (Az)jk and (A0)jk are the actual and zero score value of

principal component k at the sampling site j, respectively.

The source contributions to contaminant’s concentration

(Ci) could be modeled by building a multiple linear regression

(MLR) model. The calculation formula can be as follows

Ci � ∑
m

ami · APCSmi + bi, (2)

where ami is the coefficient of MLR of the source m for

contaminant i, and ami · APCSmi stands for the contribution

of sourcem to Ci, and bi represents the constant term of MLR for

contaminant i. The negative sign of ami · APCSmi suggests

negative contributions for the source, which has resulted in

the contribution of other pollution sources more than 100%.

To overcome this issue, Gholizadeh et al. (2016) proposed an

absolute value method to calculate the percentage source

contributions to water quality parameters. The calculation

formula of the source contribution rate (PCmi) can be

expressed as

PCmi �

∣∣∣∣∣∣∣ami · APCSmi

∣∣∣∣∣∣∣

|bi| +∑
m

∣∣∣∣∣∣∣ami · APCSmi

∣∣∣∣∣∣∣

. (3)

The contribution rate of unidentified source can be

expressed as

PCmi � |bi|
|bi| +∑

m

∣∣∣∣∣∣∣ami · APCSmi

∣∣∣∣∣∣∣

, (4)

where APCSmi stands for the mean value of the absolute

principal component factor scores of all samples of

contaminant m.

2.3 Description of data

Monthly data of 13 hydrochemistry and two weather

parameters at 98 surface water sampling sites covering the

whole basin were considered for analysis (Table 1). A total of

35,072 observations from January 2017 to December 2018 were

collected to identify the pollution sources. These 98 sampling

sites are managed by local Ecology and Environment monitoring

bureaus as state control sites in China. The 13 hydrochemistry

parameters included pH, dissolved oxygen (DO), potassium

permanganate index (CODMn), chemical oxygen demand

(CODCr), biochemical oxygen demand (BOD5),

ammonia–nitrogen (NH3–N), Cu, Zn, total phosphorus (TP),

Cd, Hg, Pb. and fluoride (F). Land-use data (30-m resolution) for

2018 were obtained from the Resource and Environment Data

Cloud Platform (https://www.resdc.cn/Default.aspx). Data on

monthly averaged precipitation (P) and temperature (T) of

each monitoring sites were obtained from the 0.1-degree

China Meteorological Forcing Dataset (CMFD) v0106 (http://

data.cma.cn/).

3 Results

3.1 Temporal and spatial variations in
water quality

The basic statistics of mean value, standard deviation (SD),

coefficient of variation (CV) of water quality parameters in

Poyang Lake, inflowing rivers, and different seasons are

presented in Table 1 and Figure 2. According to the National

SurfaceWater Quality Standard of China (GB3838-2002), during

2017–2018, the water quality of the Poyang Lake was grade III

except for TP in Poyang Lake. TP concentrations were the main

sources of pollution. Due to different standards in TP between

lakes and rivers, the inflowing rivers reached grade II. The mean

TP concentrations reached 0.080 ± 0.042 mg/L (1σ) and 0.085 ±

0.068 mg/L in Poyang Lake and inflowing rivers, respectively, in

all the sites during 2017–2018. Temporal characteristics of water

quality in wet (May to October) and dry seasons (November to

April) are shown in Figure 2B. It can be seen that air temperature

and precipitation in the wet season were higher than those in the

dry season. The DO concentration in the wet season, which was

accompanied by high temperature, was lower because higher

temperature could reduce the solubility of DO in water. The

other parameters had no significant differences between the two

seasons.

The grade of water quality was assessed according to the

National Surface Water Quality Standard of China (GB3838-

2002). Grade I to grade V indicate an increasing deterioration in

water quality. As T, P, and pH are not included in the standard,

we could not arrest the relationship between them and the

standard. Thus, the grade of T, P, and pH are listed as ‘‘–”,

meaning not applicable.

As shown in Figure 2, TP and NH3–N were the most

serious and concerned pollutants in the Poyang Lake Basin.

CODCr, CODMn, and BOD5 are generally considered as crucial

indicators for organic pollution. DO reflects the self-

purification ability of a river. Consequently, spatial

variability of the six parameters, which reflected the impact

of anthropogenic activities and different land-use types, are

selected to show in Figure 3. For TP, NH3–N, CODCr, CODMn,
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TABLE 1 Statistical descriptions (arithmeticalmean [mean], standard deviation [SD], coefficient of variation [CV], and grade ofwater quality [grade]) of
the water quality and weather parameters of the Poyang Lake Basin.

Parameter Poyang Lake Inflowing river

Mean SD CV Grade Mean SD CV Grade

T (°C) 19.81 8.07 0.41 - 19.34 7.91 0.41 -

P (mm) 156.97 105.05 0.67 - 140.53 106.84 0.76 -

pH 7.41 0.46 0.06 III 7.41 0.48 0.06 III

DO (mg/L) 8.32 1.59 0.19 I 8.11 1.56 0.19 I

CODmn (mg/L) 2.59 0.72 0.28 II 2.31 0.86 0.37 II

CODCr (mg/L) 11.35 3.67 0.32 I 10.10 3.98 0.39 I

BOD5 (mg/L) 1.74 0.74 0.42 I 1.47 0.81 0.55 I

NH3–N (mg/L) 0.22 0.16 0.73 II 0.30 0.27 0.89 II

TP (mg/L) 0.08 0.04 0.52 IV 0.09 0.07 0.80 II

Cu (mg/L) 0.00 0.01 2.52 I 0.00 0.02 4.93 I

Zn (mg/L) 0.01 0.02 1.49 I 0.02 0.03 1.61 I

F (mg/L) 0.28 0.08 0.28 I 0.30 0.14 0.47 I

Hg (mg/L) 0.00 0.00 0.46 I 0.00 0.00 0.54 I

Cd (mg/L) 0.00 0.00 1.59 I 0.00 0.00 2.47 I

Pb (mg/L) 0.00 0.00 2.81 I 0.00 0.00 1.94 I

FIGURE 2
Water quality and weather parameters in the Poyang Lake and inflowing rivers (A), wet and dry season. (B) Ordinate is the logarithm of the
parameters, and the base number is 10. The different letters denote significant differences (p < 0.05) between mean parameters for groups within
each category. Units: mg/L, except pH dimensionless, T: °C, P: mm.
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and BOD5, the lowest values almost all occurred in Zhelin

Lake and upstream of Gan River. The monthly averaged values

in Zhelin Lake reached 0.017 ± 0.008 mg/L (1σ), 0.055 ±

0.041 mg/L, 9.0 ± 2.6 mg/L, 1.60 ± 0.31 mg/L, and 1.55 ±

0.49 mg/L, respectively. For upstream of the Gan River, they

reached 0.067 ± 0.034 mg/L, 0.270 ± 0.208 mg/L, 9.4 ± 3.2 mg/

L, 1.96 ± 0.59 mg/L, and 1.13 ± 0.52 mg/L, respectively. The

highest values of TP and NH3–N occurred in the Yuan River,

reached 0.117 ± 0.057 mg/L and 0.498 ± 0.301 mg/L. For

CODCr, CODMn, and BOD5, the highest values all occurred

in Xiannv Lake, reached 15.1 ± 5.1 mg/L, 3.88 ± 1.16 mg/L,

and 2.58 ± 1.27 mg/L, respectively.

3.2 Pollution source identification with
principal component analysis

The KMO value for the Poyang Lake Basin was 0.661, and the

value of Bartlett’s test was close to zero (p < 0.005). The

statistically significant interrelationship was proven between

variables and that the results of PCA analysis was valid. Five

principal components were obtained, summing 71% of the total

variance in the dataset (Table 2).

To improve the objectivity and accuracy of pollution source

identification by PCA, CA of the factor scores and area

percentage of each land-use types were applied to offer

FIGURE 3
Spatial distribution of the contents of (A) TP, (B) NH3-N, (C) CODMn, (D) CODCr, (E) DO and (F) BOD5 of the Poyang Lake Basin during
2017–2018.
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reference criteria for comprehensive judgment (Table 3), as well

as area percentage of each land-use types in different sub-basins

(Table 4).

3.3 Pollution source apportionment with
absolute principal component
score–multiple linear regression model

According to the aforementioned source identification

results, this study built a APCS–MLR model to perform

source apportionment of water pollution in the Poyang Lake

Basin. The contribution rate of unidentified sources as estimated

values bi in Eq. 4 was also considered. In general, R2 > 0.5 implies

a good fitting between observed and predicted values, and a

reliable source apportionment result (Gholizadeh et al., 2016;

Wang et al., 2016). As shown in Table 5, mean R2 of 0.65 (most

parameters more than 0.70) and mean ratio/slope of 0.86 (most

parameters more than 0.90) indicated that the model’s

performance is perfect (Simeonov et al., 2003), except for

relatively low R2 for Hg (0.48), Cd (0.44), and Pb (0.53) and

low ratio for Cd (0.52) and Pb (0.62) due to some of the observed

values below the detection limit (Liu et al., 2019).

As shown in Figure 4, most of the variables were mainly

affected by VF1 (average 34%), manifested by the high

contribution rates of organic indexes (CODMn, 61%; CODCr,

62%; and BOD5, 58%), Hg (53%), and Pb (39%). In addition,

VF4 accounted for 16% of the total pollution source, represented

as NH3–N (40%) and TP (39%), respectively. The contributions

of VF2 (average 8%) for different water quality parameters

ranged between 1% (Cd) and 31% (DO). VF3 explained 8% of

the total pollution sources, mainly shown by Zn (33%), Cd (23%),

and Pb (21%). VF5 (average 7%) represented copper mine

sources, and the corresponding contribution rate on Cu was

33%. At last, the contribution of UIS was ranging from 12%

(CODMn) to 36% (Zn and Cd). The receptor model estimated

that 27% of DO, 17% of CODCr, 26% of BOD5, 25% of NH3–N,

and 28% of TP resulted from UIS, respectively. It might be due to

TABLE 2 Loading of 15 variables on varimax rotated factors (VFs) in the
Poyang Lake Basin.

Parameter VF1 VF2 VF3 VF4 VF5

BOD5 0.72 −0.02 0.15 0.24 −0.06

CODMn 0.65 0.14 −0.06 0.46 0.22

CODCr 0.64 0.07 −0.08 0.35 0.13

pH 0.61 −0.24 −0.04 −0.30 0.07

Hg 0.43 0.26 0.41 −0.20 −0.15

T 0.01 0.85 −0.05 −0.17 0.07

DO 0.23 −0.82 −0.07 −0.10 −0.15

P 0.22 0.57 0.06 0.00 −0.23

Zn 0.02 0.02 0.76 0.09 −0.01

Pb 0.10 −0.02 0.71 −0.03 0.12

Cd −0.09 0.02 0.65 0.12 0.06

TP 0.15 0.03 0.02 0.73 −0.02

NH3–N 0.09 −0.18 0.17 0.71 0.06

Cu 0.11 −0.08 0.11 −0.18 0.71

F 0.02 0.10 0.04 0.29 0.63

Eigenvalue 2.57 2.31 2.16 2.14 1.50

Total variance/% 17.14 15.42 14.41 14.24 10.02

Cumulate/% 17.14 32.56 46.97 61.21 71.23

TABLE 3 Pearson correlation coefficientmatrix between the APCS and
land-use types. For LUT1-6, refer to Figure 1.

PC LUT1 LUT2 LUT3 LUT4 LUT5 LUT6

VF1 .505** −.473** −.328** .428** .711** −.102

VF2 .183 −.199 .064 .194 .003 .215

VF3 −.149 .123 −.095 −.023 .253* −.146

VF4 .471** −.440** −.157 .306* .384** .024

VF5 .184 −.236 .067 .219 .221 .025

*Is significant at 0.05 level.

**Is significant at 0.01 level.

The significant positive correlation between PC and area percentage of each land-use

types is shown in bold.

TABLE 4 Area percentage of each land-use types in different sub-basins.

Sub-basin LUT1 (%) LUT2 (%) LUT3 (%) LUT4 (%) LUT5 (%) LUT6 (%)

Ganjiang River 26 65 5 2 2 0

Fuhe River 27 66 3 2 2 0

Xingjiang River 25 67 4 2 2 0

Raohe River 14 81 3 1 2 0

Xiushuihe River 20 73 3 3 1 0

Poyang Lake 40 32 5 17 4 2
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the fact that pollutants coming from mixed and complicated

sources resulted in the difficulty in source identification using the

APCS–MLR model (Gholizadeh et al., 2016).

4 Discussion

VF1 explained 15.42% of the total variance, with moderate

positive loadings (0.72, 0.65, 0.64, and 0.61) on BOD5, CODMn,

CODCr, and pH. VF1 was most positively related to urban

residential areas and other construction land, cultivated land,

and water areas. These substances are all organic pollutants,

which mainly come from urban wastewater, involving domestic

sewage and industrial effluents (Najar and Khan, 2012; Liu et al.,

2019). VF1 is negatively related to forest land and grassland, which

have the ability to absorb and well trap these organic substances in

surface water that flows through them before they enter the nearby

rivers (Xu et al., 2019), VF1 is also included in urban runoff.

VF2 explained 17.14% of the total variance, with strong and

moderate loadings (0.85, −0.82, and 0.57) on T, DO, and P. No

significant relationships between VF2 and land-use types were

detected. The negativeDO loadings could be interpreted by the fact

that higher temperature could reduce the solubility of DO in water

(Guo et al., 2021). VF2 could be ascribed tometeorological sources.

VF3 explained 14.41% of the total variance, with strong and

moderate loadings (0.76, 0.71, and 0.65) on Zn, Pb, and Cd.

Only urban residential areas and other construction land had a

weak positive correlation with VF3. The lead–zinc mines in this

TABLE 5 Mean source contributions to different variables concentrations (UIS: unidentified source).

Variable Source contribution,% Observed mean
concentration

Estimated mean
concentration

Ratio/slope
(estimated/observed)

R2

VF1 VF2 VF3 VF4 VF5 UIS

DO 33 31 1 5 4 27 8.15 ± 1.57 8.15 ± 1.35 0.99 0.74

CODmn 61 5 0 18 3 12 2.35 ± 0.84 2.35 ± 0.70 0.97 0.80

CODCr 62 5 1 14 2 17 10.31 ± 3.96 10.32 ± 3.54 0.94 0.75

BOD5 58 6 1 8 1 26 1.52 ± 0.81 1.52 ± 0.69 0.91 0.70

NH3–N 21 11 2 40 1 25 0.29 ± 0.25 0.29 ± 0.19 0.94 0.77

TP 22 10 0 39 0 28 0.084 ± 0.064 0.084 ± 0.053 0.89 0.75

Cu 16 5 1 11 33 33 0.004 ± 0.002 0.004 ± 0.002 0.88 0.76

Zn 12 2 33 16 1 36 0.019 ± 0.031 0.019 ± 0.024 0.80 0.60

F 5 7 9 22 21 37 0.30 ± 0.13 0.30 ± 0.09 0.92 0.60

Hg 53 8 4 9 3 23 0.000025 ± 0.000013 0.000025 ± 0.000009 0.90 0.48

Cd 25 1 23 12 3 36 0.00013 ± 0.00031 0.00012 ± 0.00021 0.52 0.44

Pb 39 2 21 4 8 26 0.001 ± 0.002 0.001 ± 0.002 0.62 0.53

Mean 34 8 8 16 7 27 0.86 0.66

FIGURE 4
Contributions on the selected water quality parameters (A) and average contributions (B) of different pollution sources in the Poyang Lake Basin
using the APCS–MLR model.
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area are abundant, such as the Yinshan Lead–Zinc mine, which

located near the right bank of the Jishui River, a tributary of the

Rao River, were as high as 4.3 × 105 t for Pb and 5.2 × 105 t for Zn

(Wang et al., 2013; Li et al., 2020a). The corresponding non-ferrous

metal processing enterprises, such as the Yinshan Lead–Zinc mine

smelter, were also built nearby the mine. Furthermore, data from

this study show that the average concentration of Zn reached

0.038 mg/L in the Rao River during 2017–2018, which was the

highest within the Poyang Lake Basin. Cd showed a significantly

positive correlation with Zn (r = 0.33**). VF3 could be ascribed to

lead–zinc mining and industrial activities. VF4 explained 14.24%

of the total variance, with moderate loadings (0.73 and 0.71) on TP

and NH3–N. These substances are primarily from the application

of fertilizers on farmland and from the discharge of domestic

sewage containing a large number of nutrients (Yang et al., 2020).

VF4 was most significantly positively related to cultivated land,

then was to urban residential areas and other construction land,

and significantly negative related to forest land. This relative

analysis demonstrated that VF4 was non-point sources, which

could be composite pollution sources from agricultural non-point

sources and urban sewage overflows pollution. VF5 explained

10.02% of the total variance, with moderate loadings (0.71 and

0.63) on Cu and F. Also, no significant relationships between

VF5 and land-use types were detected. There are large quantities of

copper deposits in the basin. Wang et al. (2017) found Cu deposit

in the sediment in Poyang Lake mainly due to increasing mining

activities, as well as mineral deposits. The sediment load from the

Xinjiang and Raohe rivers, which was strongly influenced by

mining activities (such as the Yongping and Dexing copper

mines), contributed more than 35% of the Cu in Poyang Lake

(Cui et al., 2013; Wang et al., 2017; Dai et al., 2018). In particular,

the Dexing copper mine accounts for as high as 20% of China’s

copper reserves, which is the biggest opencast coppermine (Kuang

et al., 2020). Between 1983 and 2003, the amount of Cu eventually

flowed into the lake climbed to 1000t in 2003 from 447t in 1983.

Fluoride in both rivers and groundwater mainly came from

fluoride-rich rocks and minerals (Agorhom et al., 2015). Similar

to VF3, VF5 was attributed to copper mine sources.

Poyang Lake is threatened by elevated TP concentrations.

The source apportionment has attracted much attention in

recent years. This study demonstrated that TP come mainly

from VF4 (agricultural non-point source and urban sewage

overflows; 39%), VF1 (domestic sewage, urban runoff, and

industrial effluents; 22%), and VF2 (meteorological sources,

10%). Additionally, unidentified sources comprised 28%. The

contributors exhibited a similar pattern as Yang et al. (2020),

to know which agricultural non-point source (planting, 29%;

livestock, 17%; aquaculture, 10%) and urban sewage (25%)

contributed the most in 2016 and 2017. Given the lack of

consideration of hydro-climatic conditions and background

concentrations, such as soil erosion, the contribution rate of

the aforementioned sources of this study is lower than that of

Yang et al. (2020). However, these two factors cannot be

ignored. Furthermore, pollutant transportation and

degradation along the way in the Poyang Lake Basin are

deeply affected by variations in the hydrological regime. Li

et al. (2020) showed a significant correlation between monthly

TP and water level fluctuations in Poyang Lake due to the

dilution effect and biological degradation capacity. Gao et al.

(2016) also found that net anthropogenic phosphorus input

and the water level together explains 64% of TP variability.

Given the close correlation between meteorological and

hydrological conditions, this study showed that the

contribution rate of meteorological sources (VF2) is 10%.

Compared to previous research in pollution source

apportionment with APCS–MLR, combining land-use

information in PCA decreased the subjectivity, one-sidedness,

and uncertainty of pollution source identification in this study,

and the methodology provides an alternative way that can be

applicated in source apportionment for other polluted lakes/

rivers. With the help of land-use parameters, urban and

agricultural sources could be distinguished easily, as well as

point and non-point pollution sources. However, there are

still some deficiencies due to limitations in the methods and

data. Because of a weak relationship between land use and factor

scores for some pollutants, subjective experience to identify the

sources still exists. Moreover, the correlation coefficients between

certain land-use types are very high (Table 6), which increased

the uncertainty of the source identification results combined with

land-use parameters. Additionally, the contribution of pollution

sources is relative values. For better recognition of factors and

pressure exerted by these pollution sources, we need to know the

absolute values. In future research, based on even more

monitoring sites and longer datasets, long-term validation

could be tested to obtain a more accurate source identification

result. Combining with other source identification technologies,

such as stable isotopic tracer method and fingerprinting

techniques, can reduce the uncertainty of source

apportionment. Furthermore, some forward traceability

models could be used to calculate the absolute values of

source contributions in order to formulate better protective

measures by practitioners.

TABLE 6 Correlation analysis of land-use type in the Poyang Lake
Basin. For LUT1-6, refer to Figure 1.

LUT1 LUT2 LUT3 LUT4 LUT5 LUT6

LUT1 1

LUT2 −.922** 1

LUT3 −.309** .244* 1

LUT4 .756** −.895** −.344** 1

LUT5 .404** −.693** −.331** .700** 1

LUT6 0.173 −0.147 0.152 0.029 −0.001 1

*Is significant at 0.05 level.

**Is significant at 0.01 level.
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5 Conclusion

In this research, CA, PCA, GIS analytical methods, and

APCS–MLR model combined with land-use parameters were

applied to assess temporal and spatial variation of the water

quality and source apportionment in Poyang Lake and its

major rivers. Five potential pollution sources were identified

by PCA analysis. Urban wastewater with 34% contribution

and agricultural non-point sources with 16% contribution,

were the major sources of pollution in water quality. TP and

NH3–N, the most serious pollutants, agricultural non-point

source pollutions (VF4) with 40% contributions and urban

wastewater (VF1) with 21% contributions was the major

sources in Poyang Lake Basin. Urban wastewater (VF1)

with 60% contributions was the major source of organic

contamination (CODMn, CODCr, and BOD5). It can be

concluded that with associated land-use parameters, the

GIS approach with the APCS–MLR model can improve the

accuracy and certainty of source apportionment, providing

aid decision information for managers on protection of

surface water quality. Some additional research should be

conducted to assess precisely the UIS and variation of other

water quality parameters that were not considered in this

research.
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