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Phycocyanin (PC) concentration is used as an indicator to characterize

cyanobacteria biomass while monitoring eutrophication in inland water.

Remote sensing provides useful methods for quantifying PC concentration;

however, there is a shortage of datasets for the long-term monitoring of PC

concentration when only a single remote sensing data is used. Therefore, PC

concentrations obtained from multisource remote sensing images should be

compared before integrating them for long-term monitoring. In this study,

machine learning (ML) regression algorithms are used to develop PC

concentration retrieval models suitable for Moderate Resolution Imaging

Spectroradiometer (MODIS) and Sentinel-3 Ocean and Land Colour

Instrument (OLCI) images, and their accuracies are compared. The two

optimal retrieval models are applied to satellite images acquired on the

same days to compare the spatial consistency of the two PC concentration

retrieval results. The results show that the sensitive spectral range of PC

concentration is 560–680 nm. Among the ML regression algorithms,

gradient boosted tree (GBT) regression exhibits the highest PC retrieval

accuracy for both the MODIS images (R2 = 0.82, RMSE = 61.9 μg/L) and

OLCI images (R2 = 0.86, RMSE = 45.44 μg/L). The PC concentrations

retrieved from the MODIS and OLCI images acquired in bloom and no-

bloom periods have a high spatial consistency in most areas of Chaohu

Lake. Their correlation coefficient also exceeds 0.7, and the average relative

error reaches 0.293 μg/L. However, a large difference exists in areas with high

PC concentrations, which may cause by the poor applicability of atmospheric

correction algorithms and PC retrieval models in these areas. The proposed PC

concentration retrieval models developed using GBT regression in this paper

can expend the idea for the quantitative retrieval of other inland water quality

parameters in inland water, and the conclusions should enable the effective

integration of MODIS and OLCI images for the time series monitoring of PC

concentrations in reservoirs and lakes.
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1 Introduction

In recent years, cyanobacterial blooms caused by

eutrophication in lakes and reservoirs have become one of the

major global environmental problems. Cyanobacterial blooms

disrupt the normal food chain through the production of algal

toxins and oxygen depletion by decomposition, thus harming

water ecosystems and posing risk to the safety of drinking water

(Yang et al., 2019). The concentration of Phycocyanin [PC], the

signature pigment of cyanobacteria in lakes and reservoirs, is an

important indicator characterizing cyanobacterial biomass in

inland lakes (Matthews and Odermatt, 2015; Beck et al.,

2017). The long-term monitoring of PC concentrations in

lakes and reservoirs can help effectively track and monitor the

formation, spread, and extinction of cyanobacterial blooms.

Ultraviolet–visible [UV–VIS] spectrophotometry is the most

commonly used method of measuring PC concentration in

water; it requires cell crushing, separation and extraction,

concentration determination, and other processes performs via

field sampling and laboratory analysis (Zhang et al., 2014).

Although the measurement accuracy of this method is high, it

is difficult to effectively obtain the spatiotemporal variation of PC

concentration in large-scale water bodies. Satellite remote

sensing technology, which features a wide range, periodic

observation and real-time dynamics, provides an important

means for quantitative monitoring of water quality parameters

in lakes and reservoirs. This approach can compensate for the

shortcomings of water quality monitoring based on discrete

sampling sites. Thus, the remote sensing retrieval of PC

concentrations in lakes and reservoirs is of great significance

and offers application potential for the quantitative monitoring

and early warning of cyanobacterial blooms.

PC concentration in inland water has an absorption peak at

~620 nm and a significant fluorescence peak at ~650 nm, which

distinguishes PC from other algae. Considering this optical

feature, the reflection spectrum measurements of water (Guo

et al., 2016; Liu et al., 2018), multispectral remote sensing images

(Thematic Mapper/Enhanced Thematic Mapper [TM/ETM+],

Medium Resolution Imaging Spectrometer [MERIS], Moderate

Resolution Imaging Spectroradiometer [MODIS], Ocean and

Land Colour Instrument [OLCI]) (Vincent et al., 2004; Tao

et al., 2017; Qi et al., 2014; Miao et al., 2018) and airborne

hyperspectral images (Compact Airborne Spectrographic Imager

[CASI], Hyperspectral Imaging Spectroscopy [HIS]) (Beck et al.,

2017; Pyo et al., 2018) have been used as remote sensing data

sources, and PC concentrations in water bodies have been

retrieved by establishing relationships between the remote

sensing reflectance of water bodies and the PC concentration

measured in recent studies (Varunan and Shanmugam, 2017;

Yan et al., 2018). Envisat MERIS and Sentinel-3 OLCI images

were extensively used data sources because of their high

radiometric and temporal resolutions, but MERIS images were

discontinued in early 2012. As the successor of the MERIS

images, OLCI images have a higher spectral resolution in the

spectral range of 400–900 nm, and the central wavelength of

band seven is located near the absorption peak (620 nm) of PC;

however, their Earth observations only began in 2016 (Tao et al.,

2017; Yan et al., 2018). MODIS images have been continuously

acquired since 2000, but lacks a band with a central wavelength of

620 nm. In the long-term remote sensing monitoring of PC

concentration in inland water, the use of a single data source

is often limited by the acquisition of weather conditions. This

results in a scarcity of high-quality images and long monitoring

intervals, which are not conducive to the dynamic monitoring of

rapid changes in water quality. Due to the 4-years data gap

between OLCI and MERIS sensors, some studies have seamlessly

integrated MODIS sensor with these two sensors through cross-

calibration for remote sensing algorithms, such as the maximum

chlorophyll index [MCI], to generate long-term remote sensing

reflectance, chlorophyll a and algal bloom remote sensing

products (Wynne et al., 2021; Zeng and Binding, 2021;

Tilstone et al., 2022). Therefore, for monitoring the long-term

dynamics of PC concentrations in reservoirs and lakes, MODIS

and OLCI images should be combined to retrieve these

concentrations, and their consistency and spatial differences

must be identified.

Currently, several studies on PC concentration retrieval have

been performed based on measured hyperspectral data or remote

sensing images. The retrieval algorithms include empirical

model, semianalytical model, and machine learning model.

The most common retrieval methods of PC concentration are

empirical models, which establish a functional relationship

between the remote sensing reflectance of a certain band (or

band combinations) and measured PC concentration through

statistical regression (Ma et al., 2009; Qi et al., 2014; Matsushita

et al., 2015; Woźniak et al., 2016; Tao et al., 2017). However,

because of differences in atmospheric conditions, water quality

conditions, sensor characteristics, and other factors, there are

considerable uncertainties in the relationship between water

optical properties and water components, which limit the

retrieval accuracy and universality of these models (Zhou

et al., 2009; Vanhellemont and Ruddic, 2018). Semianalytical

methods have been proposed on the basis of the inherent optical

properties of water and the radiative transfer theory in water,

including nested band ratio algorithms (Lyu et al., 2013;

Matthews et al., 2020; Miao et al., 2020) and three-band

(Song et al., 2012) and four-band algorithms (Liu et al., 2018).

These methods have the well physical mechanism and strong

applicability, but need several environmental input parameters,

and the calculation process is complicated. Because of the

application limitations of traditional empirical and

semianalytical models in the spatial and temporal dimensions,

many researchers have introduced machine learning [ML]

regression models in the remote sensing retrieval of water

quality parameters. With Sentinel-2 Multi-Spectral Imager

[MSI], Landsat-8 Operational Land Imager [OLI], ENVISAT
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MERIS and other optical remote sensing data, different ML

algorithms such as support vector machines (Keller et al.,

2018; Peterson et al., 2018), artificial neural network (Riha

and Krawczyk, 2011; Peterson et al., 2018), random forest

[RF] regression (Miao et al., 2018; Ruescas et al., 2018; Wu

et al., 2018), extreme random trees (Keller et al., 2018), and

extreme learning machines (Peterson et al., 2018) have been used

to train and learn a large number of water samples and simulate

the complex relationship between the remote sensing reflectance

of water bodies and various water quality parameters (total

suspended solids, chlorophyll a, Components Of Dissolved

Organic Matte [CDOM]). Their results demonstrate that the

ML regression models can involve all remote sensing spectral

bands and optimal band combinations as feature variables, which

can improve the retrieval accuracy of water quality parameters

(Ruescas et al., 2018).

Chaohu Lake is one of the five largest freshwater lakes in

China. In recent years, the rapid development of surrounding

towns has severely damaged the lake water environment and

ecosystem, resulting in frequent outbreaks of algal blooms

(Zhang et al., 2016; Huang et al., 2020; Qin et al., 2022). In this

study, based on the spectral reflectance and PC concentration

of Chaohu Lake measured in different seasons, the sensitive

bands or band combinations of PC concentration were

analyzed for the MODIS and OLCI sensors, respectively.

Then, RF, K-nearest neighbor [KNN], multiple linear

regression [MLR], and gradient boosted tree [GBT]

regression models were developed for PC concentration

retrieval from the MODIS and OLCI images that were

obtained, and their accuracies were evaluated. Finally, the

optimal PC concentration retrieval models were applied to

MODIS and OLCI images of Chaohu Lake acquired on the

same dates, and the PC concentration results retrieved from

the images were compared. Our study can be a scientific

reference for generating long-term PC concentration

remote sensing products and for the time series monitoring

of cyanobacterial blooms at Chaohu Lake.

FIGURE 1
Location of Chaohu Lake and sampling sites.
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2 Study area and datasets

2.1 Study area

Chaohu Lake is in the central part of Anhui Province, China,

on the north bank of the lower reaches of the Yangtze River. The

lake is 61.7 km long and 12.47 km wide, with an area of

769.55 km2 (Figure 1). The average water level is ~8.37 m,

and the average water depth is~2.89 m. The eutrophication in

Chaohu Lake has intensified in recent years because of pesticide

and the nonpoint source pollution of farmland around the lake

and the discharge of domestic sewage and industrial wastewater

from surrounding cities and towns (Huang et al., 2020; Guo et al.,

2022). Under the comprehensive influence of environmental

factors such as nitrogen and phosphorus concentrations,

temperature, wind speed, and wind direction, in the water

body, cyanobacterial blooms frequently appear in Chaohu

Lake from the end of May to the beginning of October every

year with dense blooms concentrated in the northwest area of the

lake (Zhao et al., 2018). The frequency and duration of

cyanobacterial blooms in Chaohu Lake have been increasing

since the 1980s, with the beginning of bloom time gradually

becoming earlier and the affected area broadening (Tang et al.,

2017).

2.2 Field measurement

In this study, four field surveys were conducted in Chaohu

Lake in different seasons in 2019–2021. The survey dates were:

27 December 2019; 25 June 2020; 3 November 2020; and

25 March 2021; moreover, a total of 138 water samples were

collected (Figure 1). The water samples were obtained and

measured in situ from 09:00 to 14:00 (Beijing time), and the

time difference with the corresponding remote sensing image was

maintained in 3 h. One-Liter water samples with a maximum

depth of 30 cm were collected at each sampling site using brown

plastic bottles, and the geographical location of each sample was

recorded using a Trimble Juno five Global Positioning System

[GPS] receiver. As per the water surface measurement method

proposed by Tang et al. (2004), the reflectance spectra of the

water surface with wavelengths of 400–1,020 nm were also

collected using an AvaField-1 spectrometer made in

Netherlands, with observation azimuth and zenith angles of

135° and 40°, respectively. The following remote sensing

parameters were measured: the upward radiances from water

surface (Lu), scattered light from the sky (Lsky), and the

downward solar radiation on a standard plate (Lp). Then the

measured remote sensing reflectance (Rrs) was calculated by

formula (1).

Rrs � Lu − ρLsky

πLp/ρp (1)

where Lu represents the radiance measured above the water

surface; Lsky represents the radiance of the sky measured at a

zenith angle of 45°; ρp represents the reflectance of the standard
plate; Lp represents the downward radiation above the plate; ρ
represents the dimensionless air–water reflection, with a constant

value of 0.025.

The water samples were brought to the laboratory under

refrigerated conditions (4°C), filtered, and measured for PC

concentration; the sampling was performed in 24 h to prevent

the decomposition of water pigments. UV-vis spectrophotometry

was used to determine the PC concentrations in the water

samples, based on the absorption spectral properties of PC at

500–700 nm (Pyo et al., 2017). This method is commonly used to

determine PC concentration in water in laboratories, because it

does not require chemical reagents, avoids secondary pollution,

requires little pretreatment of water samples, enables rapid

detection, and meets the requirements of online detection.

The PC concentration was calculated using formula (2) which

improved based on the methods proposed by Pang et al. (2014).

Cpc � 1000[(A615 − A750) − 0.474(A652 − A750)
5.34

] V1

V2
(2)

Where, A615, A652, A750 represent the measured absorbance of

water samples at 615 nm, 652 and 750 nm, respectively, shown in

Supplementary Table S1. V1 represents the original water sample

volume, and V2 represents the water sample volume after fixed

capacity to 15 ml.

2.3 Remote sensing image obtained and
preprocessing

The National Aeronautics and Space Administration

[NASA] Ocean Water Color website (https://oceancolor.gsfc.

nasa.gov/) provides the Rrs products (MODIS/Aqua) for

surface water, which are usually used for remote sensing

estimation of water color parameters such as ocean turbidity

and chlorophyll concentration (Bian et al., 2013; Jiang et al.,

2020); however, affected by the turbid water of Chaohu Lake,

MODIS/Aqua Rrs products lacked the valid Rrs values on the

four sampling dates. Therefore, MOD09GA reflectance product

was used to replace the MODIS/Aqua Rrs product in this paper,

which provide daily surface reflectance images from bands B1-

B7, with spatial resolution of 500 m. Its projection type is

sinusoidal. Each pixel contains the most probable reflectance

observations for the whole day, considering the effects of a high

observation coverage, low viewing angles, absence of clouds and

cloud shadows, and aerosol concentrations (Tang et al., 2013;

Breunig et al., 2016). In accordance with the sampling dates,

MOD09GA products acquired on the four survey dates were

obtained from the LAADS DAAC website (https://ladsweb.

modaps.eosdis.nasa.gov/) in this paper. Then, the projection
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conversion ofMOD09GA product was carried out by theMODIS

Reprojection Tool software, and the reflectance image was

extracted in the Environment for Visualizing Images [ENVI]

software to obtain the Rrs values in the B1-B7 band.

The OLCI sensor is a medium-resolution imaging

spectrometer aboard the Sentinel-3A and Sentinel-3B

satellites. It has the features of the MERIS sensor and sets up

multiple bands in the red-to-near-infrared wavelength region for

the sensitive detection of phytoplankton spectral features (Yan

et al., 2018). Sentinel-3 OLCI images acquired on the four survey

dates were downloaded from the ESA website (https://scihub.

copernicus.eu/). Then, the Case 2 Regional Coast Color [C2RCC]

algorithm in Sentinel Application Platform [SNAP] software,

which has been proved accurate and reliable to use with MSI and

OLCI images and obtain the optical water features (Kaire et al.,

2017; Uudeberg et al., 2019), was used to radiometrically correct

the OLCI images, and the Rrs images were extracted using ENVI.

2.4 Construction and accuracy evaluation
of PC concentration retrieval models

ML regression models can capture the rich features of input

variables by constructing neural networks with complex

structures to fit nonlinear relationships between input and

output variables (Ruescas et al., 2018; Huang et al., 2019). In

this study, we analyzed the sensitive spectral bands or band

combinations of PC concentration. Then, based on the measured

PC concentrations in Chaohu Lake and the remote sensing

images acquired on four survey dates, we developed various

PC concentration retrieval models for MODIS and OLCI images

using various machine learning regression algorithms, namely,

RF, extreme random tree [ERT], KNN, support vector regression

[SVR], GBT, and deep neural network [DNN], and determined

the best PC concentration retrieval models via accuracy

evaluation.

In ML modeling, grid search is used to determine the key

parameters of each model to improve the fitting accuracy and

prevent overfitting (Li et al., 2014; Erten et al., 2021). The

accuracy of the constructed model was evaluated via K-fold

cross-validation (Kokkinos and Margaritis, 2018). The samples

were sorted and randomly divided into K pieces, K-1 pieces were

obtained as the training dataset, and one piece served as the

validation dataset. Finally, the validation accuracy results of K

times were averaged. This procedure was implemented using the

Keras and Scikit-learn libraries in Python.

3 PC concentration retrieval models
for MODIS and OLCI images

Existing atmospheric correction algorithms are unsuitable

for MODIS images in inland water (Zhou et al., 2009). Moreover,

the spatial scale conversion from field measurement to satellite

observation will further increase the error of the PC retrieval

value (Lehmann et al., 2021). Therefore, we adopt the retrieval

method based on the measured PC concentration and the Rrs

from remote sensing images to improve the accuracy of the PC

concentration retrieval model.

3.1 Sensitive spectral bands of PC
concentration in water

As per the central wavelength settings of the bands in the

MODIS and OLCI sensors, the correlation analysis was

conducted between the measured PC concentrations and

the bands or band combinations of water remote sensing

reflectance (Rrs) to explore the sensitive spectral bands of

PC concentration in Chaohu Lake. For the MODIS sensor, the

correlation coefficient (R) between PC concentration and the

Rrs in bands one and four was >0.65. These two bands were

combined with other bands, and the band combinations with

the highest correlations were selected as the sensitive spectral

bands of PC concentration for MODIS image (Table 1).

Because PC concentration in water has strong absorption

characteristics at 620 nm, bands 6-12 of OLCI sensor are

usually used to retrieve PC concentration (Yan et al., 2018;

Ogashawara, 2019). For the OLCI sensor, the correlation

coefficient between the measured PC concentration in

water and the Rrs was the highest in band 7, with a central

wavelength of 620 nm. This band was combined with bands 6-

12, and correlation analysis was performed between the

various bands and measured PC concentration. The band

combinations with correlation coefficients of >0.5 were

selected as the sensitive spectral bands of PC concentration

for OLCI image (Table 2).

3.2 Construction of PC concentration
retrieval models for MODIS images

The sensitive spectral bands in Table 1 were selected as the

input variables of the PC concentration retrieval model for the

MODIS images to prevent the model from over-fitting and

ensure retrieval efficiency. Based on the measured PC

concentration in Chaohu Lake and the sensitive spectral

bands of the MODIS images acquired on the days of

sampling, the ML regression algorithms in Section 2.4 were

used to establish PC concentration retrieval models for

MODIS images, and the models’ accuracies were confirmed

via six-fold cross-validation. In the modeling based on the

measured datasets, the samples are sorted in ascending order

by the PC concentration values, and then randomly divided

into six pieces. Five pieces were used as the training dataset

and one piece developed the validation dataset. The average
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values were obtained to determine the training and validation

accuracies of the different retrieval models. Table 3 shows the

four PC concentration retrieval models with the highest

accuracies.

Among the above PC concentration retrieval models, the

RF and the KNN regression models had low validation

accuracies, and the DNN regression model suffered from

severe overfitting. Therefore, the GBT regression model was

the optimal PC concentration retrieval model suitable for

MODIS images. Then, we obtained the validation dataset in

this model for testing, and compared the estimated PC

concentrations in the validation samples with the measured

concentrations (Figure 2A). The retrieval accuracy of the GBT

regression model in our study was high (R2 = 0.82, RMSE =

TABLE 1 Sensitive spectral bands of PC concentration for MODIS sensor.

Band Correlation coefficient Band combination Correlation coefficient

B1 −0.68 B6×B7 −0.69

B2 −0.56 B3×B7 −0.67

B3 −0.58 B3×B6 −0.67

B4 −0.67 B1×B7 −0.69

B5 −0.56 B1×B6 −0.68

B6 −0.59 B2×B7 −0.67

B7 −0.53 B4×B7 −0.67

TABLE 2 Sensitive spectral bands of PC concentration for OLCI sensor.

Band Correlation coefficient Band combination Correlation coefficient

B6 −0.47 (B7−B9)/(B7+B9) −0.51

B7 −0.54 (B7−B10)/(B7+B10) −0.54

B8 −0.41 (B7−B12)/(B7+B12) −0.53

B9 −0.37 (1/B7−1/B8)×B11 0.51

B10 −0.38 (1/B7−1/B9)×B8 0.54

B11 −0.35 (1/B7−1/B9)×B10 0.53

B12 0.085 (1/B7−1/B9)×B11 0.57

B7+B6 −0.53 (1/B7−1/B10)×B8 0.54

B7−B8 −0.61 (1/B7−1/B10)×B9 0.54

B7−B9 −0.64 (1/B7−1/B10)×B11 0.58

B7−B10 −0.63 (1/B7−1/B10)×B12 0.55

B7−B12 −0.65 (1/B8−1/B9)×B7 0.58

B7/(B6+B11) −0.62 (1/B8−1/B10)×B7 0.58

B7/(B6+B12) −0.66

TABLE 3 Accuracy evaluation of PC concentration retrieval models for MODIS images.

Retrieval model Training accuracy (N = 115) Validation accuracy (N = 23)

R2 RMSE (μg/L) R2 RMSE (μg/L)

RF regression 0.93 114.58 0.74 75.07

KNN regression 0.53 287.87 0.73 68.24

DNN regression 0.99 32.35 0.88 76.20

GBT regression 0.93 57.03 0.82 61.90
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61.90 μg/L, MAPE = 45.57%), which was higher than that of

the hybrid empirical orthogonal function (EOF) model

constructed in Chaohu Lake by Tao et al. (2017), and the

corresponding sample points were mostly distributed close to

the 1:1 line, which indicated that the developed GBT

regression model was suitable for the remote sensing

retrieval of PC concentration in water from the MODIS

images.

3.3 Construction of PC concentration
retrieval models for OLCI images

For the Sentinel three OLCI images, the sensitive spectral

bands in Table 2 were used as the input variables of the retrieval

models, and the PC concentrations measured on the image

capture dates were used as the dependent variable to develop

the retrieval models of the PC concentration in Chaohu Lake

using the ML regression algorithms in Section 2.4. The

accuracies of the PC concentration retrieval models were

evaluated via six-fold cross-validation. Table 4 shows the

four PC concentration retrieval models with the highest

accuracies.

Among the four machine learning regression algorithms,

the GBT regression model was the optimal PC concentration

retrieval model for the OLCI images, with R2, RMSE, and

MAPE values reaching 0.86, 45.44 μg/L, and 36.5%,

respectively. This is because GBT regression trains different

weak learners by multiple iterations and assigns corresponding

weights to these learners to generate strong learners (Huang

et al., 2018), i.e., those that have high cross-validation accuracy

on the treatment of small samples and are, more capable of

handling low-dimensional and nonlinear datasets (Schonlau,

2005).

Then, the validation dataset was brought in the GBT

regression retrieval model for the OLCI images to evaluate

the model’s accuracy, and the retrieved PC concentrations of

the validation samples were compared with the measured

FIGURE 2
Comparison of retrieved PC concentrations (using GBT regression model) and measured concentrations. (A)MODIS images; (B)OLCI images.

TABLE 4 Accuracy evaluation of PC concentration retrieval models for OLCI images.

Retrieval model Training accuracy (N = 115) Validation accuracy (N = 23)

R2 RMSE (μg/L) R2 RMSE (μg/L)

RF regression 0.92 39.22 0.79 55.37

KNN regression 0.97 22.78 0.81 42.74

DNN regression 0.76 77.19 0.68 65

GBT regression 0.96 18.23 0.86 45.44

Frontiers in Environmental Science frontiersin.org07

Wang et al. 10.3389/fenvs.2022.922505

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.922505


values (Figure 2B). The GBT regression model for OLCI

images had a higher retrieval accuracy than that for

MODIS images, mainly because the latter’s band setting

does not cover the PC feature absorption band of 620 nm.

The accuracy of the developed GBT regression model in our

study (R2 = 0.86, RMSE = 45.44 μg/L, MAPE = 63.5%) is

slightly lower than the RF regression model built by Miao et al.

(2018). The reason may be that the validation samples we

selected are from different seasons, the PC concentration

values of which range much wider (36–457 μg/L). The

validation samples in Figure 3B were mostly distributed

around the 1:1 line, although there was a slight

underestimation at higher PC concentrations (>200 μg/L)
and overestimation at lower PC concentrations (<50 μg/L).
Thus, the developed GBT regression retrieval model was

suitable for the remote sensing retrieval of PC

concentration in water from the OLCI images.

The MODIS and OLCI images used in this study can

provide the data source for monitoring PC concentration in

water; however, there is still a lack of an ideal atmospheric

correction algorithm for inland water (Miao et al., 2018; Yang

et al., 2022). In this study, various atmospheric correction

algorithms have been attempted to correct the water images.

Among them, the C2RCC algorithm has high accuracy for the

atmospheric correction of OLCI images, however, there is still

a certain error. In particular, MOD09GA reflectance

product contains the reflected energy from water surface,

which caused the accuracy of the Rrs values inland water is

not high. In addition, due to the spatial heterogeneity of PC

concentrations in water bodies, the spatial scale

difference between the field measurements and satellite

observations in this study is also an important factor

negatively affecting the performance of PC concentration

retrieval models.

4 Comparison of PC concentrations
retrieved from MODIS and OLCI
images

4.1 Spatial consistency of remote sensing
retrieval of PC concentrations

The PC concentration retrieval models established above using

GBT regression were applied to the MODIS and OLCI images

acquired on 25 June 2020 (for Bloom period) and 3 November 2020

(for No-bloom period), and the corresponding PC concentration

retrieval maps in Chaohu Lake for these two periods were obtained

(Figures 3, 4). As shown in Figures 3, 4, the PC concentrations in the

bloom and no-bloom periods ranged from 37.77 to 586.15 μg/L, and

their spatial distribution patterns were similar. In the bloom period,

the PC concentrations in the central part of the lake were lower than

those in other regions, and the difference between the MODIS and

OLCI images was not significant. The PC concentrations in the

northwestern and southeastern parts of the lake were higher than

those in other areas, and the spatial heterogeneity caused by wind

and waves was large, thus resulting in considerable differences

between these two images. In the No-bloom period, the PC

concentrations in the eastern and central parts of the lake were

lower than those in other regions, and the differences between the

MODIS and OLCI images were not significant. The PC

concentrations in the northwestern and southeastern parts of the

lake were higher than those in other areas, and the large spatial

variability led to the substantial variations between these two images.

For additional analysis of the spatial consistency of the retrieved

concentrations, the PC concentration values retrieved from the

MODIS and OLCI images acquired on 25 June 2020, and

3 November 2020, were obtained pixel by pixel, and the

correlation between the two images was analyzed. As shown in

Figure 5, the correlation coefficient between the PC concentrations

FIGURE 3
Retrieved PC concentrations in Chaohu Lake based on MODIS and OLCI images (2020-06-25). (A) MODIS image; (B) OLCI image.
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retrieved from the MODIS and OLCI images on 25 June 2020, was

~0.67, and the RMSE was ~86.88 μg/L. The correlation between the

PC concentrations retrieved from these two images on 3 November

2020, was higher, with a correlation coefficient of ~0.7 and an RMSE

of ~54.06 μg/L. This phenomenon was related to the PC

concentrations in Chaohu Lake and their spatial variability in

different periods (Tang et al., 2017; Zhao et al., 2018). The

higher PC concentration and larger spatial variability in the

bloom period led to the lower correlation. However, the PC

concentration in the no-bloom period decreased with

temperature, and the spatial variability was smaller, thus resulting

in higher correlation.

4.2 Spatial differences in retrieved PC
concentrations

The relative errors between the concentrations retrieved from the

images were calculated using the raster calculator tool of ArcGIS to

examined spatial differences between the retrieved PC concentrations.

FIGURE 4
Retrieved PC concentrations in Chaohu Lake based on MODIS and OLCI images (2020-11-03). (A) MODIS image; (B) OLCI image.

FIGURE 5
Correlation analysis of PC concentrations retrieved from MODIS and OLCI images (A) 2020-06-25; (B) 2020-11-03.
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As shown in Figure 6, the relative errors between the PC

concentrations retrieved from the MODIS and OLCI images

acquired on 25 June 2020, were mostly <40%. The central area of

the western part and the eastern part of Chaohu Lake exhibited

large discrepancies. However, the relative errors between the

retrieved concentrations from the MODIS and OLCI images

acquired on 3 November 2020, were mostly <70%, and large

differences were primarily observed in the central area of the

western part of the lake and the whole eastern part. This

phenomenon was primarily attributed to the poor retrieval

accuracy of the proposed PC concentration retrieval model in

cyanobacterial bloom areas. The relative error between the PC

concentrations retrieved from the MODIS and OLCI images

acquired in the no-bloom period was larger than that in the

bloom period, which may be attributed to the lower PC

concentration in Chaohu Lake in autumn.

Furthermore, for MODIS images, there is currently no ideal

atmospheric correction algorithm to obtain high-precision Rrs

values for inland water bodies (Zhou et al., 2009; Vanhellemont

and Ruddic, 2018; Yang et al., 2022). The MOD09GA reflectance

product used in our paper includes the reflected radiation from

the water surface, and the accuracy of Rrs values is not high,

resulting in the lower PC concentration retrieval in water based

on the MODIS image, which caused certain errors were expected

to arise in the retrieved PC concentrations from MODIS and

OLCI images acquired on the same day.

5 Conclusion

In this study, PC concentration retrieval models suitable for

MODIS and OLCI images were constructed using ML regression

methods, and their accuracies were evaluated. The optimal PC

concentration retrieval model were then applied to MODIS and

OLCI images acquired on the same days to examine the consistency

and spatial differences of the retrieved concentrations. The sensitive

spectral wavelength of PC concentration in water was 560–680 nm,

which corresponded to bands one and four of the MODIS sensor

and bands six to eight of the OLCI sensor. The PC concentration

retrieval model using GBT regression exhibited the best accuracy for

both images (MODIS:R2 = 0.82, RMSE= 61.9 μg/L;OLCI:R2 = 0.86,

RMSE = 45.44 μg/L), thus providing a new idea for the remote

sensing retrieval of water quality parameters in lakes and reservoirs.

The retrieved PC concentrations from theMODIS andOLCI images

had a high spatial consistency, demonstrating that the spatial

distribution of PC concentration in most regions of Chaohu Lake

was consistent. The correlation coefficient between the two images

exceeded 0.7, with a mean relative error of 0.293 μg/L.

The above results can serve as a scientific reference for

integrating MODIS and OLCI images into the long-term

monitoring of PC concentration dynamics in inland water.

However, the two retrieved PC concentration products in water

differs substantially with high PC concentrations, because the

MODIS sensor lacks an indicative band for PC concentration

and lacks an ideal atmospheric correction algorithm to obtain

Rrs in inland water bodies. Currently, spectral matching and

neural network algorithms have been used to simulate the

missing band with a central wavelength of 708 nm in MODIS

sensor to generate the long-term products of cyanobacterial

blooms in lakes and reservoirs (Wynne et al., 2021; Zeng and

Binding, 2021). In future work, a spectral shape algorithm will be

proposed to intercalibrate MODIS and OLCI sensors to effectively

generate time-series PC concentration products from 2000 to 2020.

In addition, the other atmospheric correction algorithms (such as

l2gen, 6S) for MODIS images of inland water will be used to obtain

the higher precision Rrs values.
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FIGURE 6
Relative errors of retrieved PC concentrations based on MODIS and OLCI images. (A) 2020-06-25; (B) 2020-11-03.
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