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The terrestrial water storage anomaly (TWSA) from the previous Gravity Recovery and
Climate Experiment (GRACE) covers a relatively short period (15 years) with several
missing periods. This study explores the boosted regression trees (BRT) and the
artificial neural network (ANN) to reconstruct the TWSA series between 1982 and
2014 over the Yangtze River basin (YRB). Both algorithms are trained with several
hydro-climatic variables (e.g., precipitation, soil moisture, and temperature) and climate
indices for the YRB. The results from this study show that the BRT is capable of
reconstructing TWSA and shows Nash–Sutcliffe efficiency (NSE) of 0.89 and a root-
mean-square error (RMSE) of 18.94 mm during the test stage, outperforming ANN in
about 2.3% and 7.4%, respectively. As a step further, the reliability of this technique in
reconstructing TWSA beyond the GRACE era was also evaluated. Hence, a closed-loop
simulation using the artificial TWSA series over 1982–2014 under the same scenarios for
the actual GRACE data shows that BRT can predict TWSA (NSE of 0.92 and RMSE of
6.93 mm). Again, the BRT outperformed the ANN by approximately 1.1% and 5.3%,
respectively. This study provides a new perspective for reconstructing and filling the gaps
in the GRACE–TWSA series over data-scarce regions, which is desired for hydrological
drought characterization and environmental studies. BRT offers such an opportunity for
the GRACE Follow-On mission to predict 11 months of missing TWSA data by relying on a
limited number of predictive variables, hence being adjudged to be more economical than
the ANN.
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1 INTRODUCTION

The terrestrial water storage anomaly (TWSA) from the
observations of the preceding Gravity Recovery and Climate
Experiment (GRACE) and the contemporary follow-one
(GRACE-FO) missions is the sum of the water stored as
snow/ice, surface waters, soil moisture, groundwater, and
biomass. It is assumed to be concentrated on a virtual layer of
water thickness at the Earth’s surface (Ferreira et al., 2020b).
TWSA is a critical component of the hydrologic cycle, and thus,
an instrumental dataset that underpins our understanding of
water availability on different spatial scales and how its variability
is affected by climate change and anthropogenic activities.
Consequently, the monthly fields of TWSA have been used
globally in hydrological studies to provide essential outcomes
such as identifying key drivers of land water storage across the
globe (Rodell et al., 2018). For example, a GRACE hydrological
assessment over North India, as was undertaken by Rodell et al.
(2009), highlighted the unsustainable consumption of
groundwater for irrigation and other anthropogenic uses.
While this assessment was revisited by Long et al. (2016), the
combined impacts of climate variability and human water
management on freshwater stocks across several continents
have been detailed (see, e.g., Ahmed et al., 2014; Ndehedehe
and Ferreira, 2020). Also notable is the work of Reager et al.
(2014), who investigated the suitability of GRACE observations to
infer the flood potential of various river basins at a lead time of
several months. Indeed, GRACE applications are varied and
transdisciplinary. This includes the possibility of estimating
the evapotranspiration (Rodell et al., 2004a), river discharge
(Syed et al., 2005) over data-poor regions, estimating water
mass changes over permafrost regions (Velicogna et al., 2012),
and data assimilations to improve the outputs of hydrological
models (Zaitchik et al., 2008). Despite the importance of the
TWSA datasets retrieved from the GRACE mission in
hydrological studies, the relatively short period of
approximately 20 years which contain a 11-month gap
between the GRACE and GRACE-FO missions pose a
challenge to an accurate assessment of key hydrological
metrics. In particular, several gaps due to the lack of reliable
measurements constrain the full potential of TWSA in, for
example, drought studies and understanding the pace of
climate change (e.g., Vishwakarma, 2020).

Several studies have attempted to reconstruct the TWSA series
to cover long-term periods relying on different methods. For
instance, Li et al. (2021) incorporated machine learning, analysis
of time series, with techniques of statistical decomposition to
globally reconstruct TWSA fields from 1979 to 2020. Wang et al.
(2021) combined the GRACE data with soil moisture,
precipitation, evapotranspiration, and temperature to
reconstruct a long-term TWSA based on an extended short-
term memory model. A simple linear version combining TWSA
above the Amazon together with sea surface temperature (SST)
indices has additionally been proposed (de Linage et al., 2014).
Utilizing GRACE-derived TWSA and in situ river discharge data,
Becker et al. (2011) applied a principal component analysis,
which makes a linear and steady time-series supposition, to

reconstruct GRACE–TWSA from 1980 to 2008 over the
Amazon Basin. Other approaches include the use of an
autoregressive model with the independent component
analysis to predict TWSA in West Africa incorporating
precipitation records and SST indices (Forootan et al., 2014b).
However, this autoregressive version assumes a constant status of
TWSA over the area and the prediction accuracy decreases after a
2-year forecast length. The water balance approach has also been
applied to increase the TWSA series back to 1980 (cf. Yin et al.,
2019). This approach uses multi-source datasets as inputs in the
terrestrial water budget equation. All examples mentioned here
require the use of mathematical models. It must be mentioned
that the formulation of these techniques, which is primarily based
on experimental datasets, and the rise in performance, has
frequently been undertaken by way of increased model
complexity, and the manner that they come to decisions,
makes them a pattern/machine learning recognition problem
(Wilby et al., 2003).

There is no mathematical model that can efficiently describe
hydrological phenomena (cf. Mukhopadhyay, 2003). However,
algorithms that make supposition(s) of the time-series with
adaptive abilities provide an excellent alternative to predict the
TWSA fields over a region. Consequently, many studies have
explored the feasibility of artificial neural networks (ANNs) to
reconstruct the TWSA series due to their ability to model linear
and non-linear systems based on learning and prediction
algorithms (Ahmed et al., 2019). ANN extracts complex
relationships between model inputs and targets and builds
complex and non-linear relationships that are robust as a
forecasting tool for hydrological variables. For instance,
extended TWSA time- series using an ANN approach to
examine the long-term hydrological properties of TWSA have
been investigated by several authors (see, e.g., Long et al., 2014;
Zhang et al., 2016; Mukherjee and Ramachandran, 2018; Ferreira
et al., 2019; Ahmed et al., 2019; Chen et al., 2019, and references
therein). Overall, these studies agreed that the ANN’s
performance improved when climatic observations were
integrated with the GRACE–TWSA datasets. Nevertheless, this
might be a disadvantage since the accuracy of the reconstruction
depends a lot on data availability, especially for architectures with
many layers. For many regions and river basins, this might
impose limitations in using ANN. As a result, economical
methods that can still faithfully reconstruct actual observations
would be preferable, especially over data-poor regions. The
present study proposes the use of a new approach, the boosted
regression tree (BRT) technique to reconstruct the TWSA series.

The BRT technique depends on the insights and
methodologies of both statistical and machine-learning
approaches. This method varies mainly from conventional
regression strategies, which produce a single excellent model,
rather than utilizing the boosting approach to adaptively combine
a large number of several simple tree models to improve the
predictive process (Elith et al., 2006; Leathwick et al., 2006;
Leathwick et al., 2008). The boosting process utilized in BRT
locates its origins within machine learning (Schapire, 2003).
However, posterior evolutions within the society of statistics
re-explain it as a developed type of regression (Friedman

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9175452

Dannouf et al. On the Reconstruction of GRACE-TWSA Using BRT

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


et al., 2000). BRT has many vital benefits of tree-based strategies:
1) it could be used with an assortment type of response (binomial,
Gaussian, and Poisson) through specifying the distribution of the
error and the link function; 2) it contains a probabilistic or
random component, which improves predictive performance,
decreasing the definitive model variance through the use of
just a random data subset to adequate every new tree
(Friedman, 2002); 3) the algorithm automatically detects the
best fit; 4) the model shows the impact of each predictor on
the reconstruction after accounting for their overall
contributions; and 5) the algorithm is robust and unaffected
by missing values and outliers (Abeare, 2009). Fitting numerous
trees in BRT overcomes the most significant obstacle of single tree
models (i.e., their comparatively weak prediction achievement).
BRT models are complicated; however, they can be concise in
forms which provide a robust hydrological perception. Thereby,
BRT is suitable for many environmental applications as well.

The main aim of this study is to evaluate the use of BRT to
reconstruct the TWSA series of the Yangtze River basin (YRB),
China. So far, BRT has been used only in groundwater level
prognosis (Rahman et al., 2020; Sharafati et al., 2020) and, as far
as we know, this study presents the first application of BRT to fill
the missing gaps in the GRACE-derived TWSA. Furthermore, a
comparison of the performance of BRT and ANN techniques has
not been attempted in recent few studies that focused on TWSA
reconstruction. Therefore, the focus of this study is to generate a
continuous and uninterrupted TWSA series and develop a robust
predictive technique that can backcast TWSA to address the
hydrological and environmental problems over a given river
basin. Furthermore, this study compares BRT outputs with
those from a non-linear–autoregressive neural network with
exogenous inputs (NARX) to define the most accurate
method. Due to the nature of GRACE–TWSA, it has a
statistical and physical relationship with the hydro-climatic
variables (e.g., precipitation and soil moisture). For instance,
Mo et al. (2016) found a strong correlation between
precipitation and TWSA in southern China. Also, the
availability of TWSA affects evapotranspiration and runoff
(ibid). Ma et al. (2017) indicated that GRACE observations
and Climate Change Initiative Soil Moisture could be used as
significant indices of the spatial allocation of the drought
procedure and its effect on the environment and local
communities. This could improve water resource management
and the early detection and monitoring of droughts.
Consequently, the present study also uses a comprehensive
and different data spectrum, replicating the dynamics in the
energy and water cycles that affect TWSA for training the
network over the YRB. Hence, the performance of the BRT
model is the focus of the analyses, whilst also assessing the
relative importance of the predictors used to reconstruct
the TWSA.

2 STUDY AREA

The Yangtze River is the longest in Asia, with a length of approx.
6,397 km. It flows from the Tibetan Plateau and runs through

Qinghai, then turns south to Sichuan and Tibet; after that, it
reaches Yunnan, Chongqing, and continues to Hubei, Hunan,
running through Jiangxi, Anhui, and Jiangsu, and then emptying
into the East China Sea near Shanghai. Its basin (hereafter YRB),
extends for about 3,200 km from west to east and more than
1,000 km from north to south and drains an area of 1.8 × 106 km2,
nearly one-fifth of the total land area of China (Figure 1). The
YRB has succumbed to considerable modifications in climate and
land cover/use, including the largest hydroelectric power station
in the world (Three Gorges Dam—TGD). The TGD’s reservoir is
the most vital anthropogenic feature in the YRB. It extends for
2.3 km with 185 m in height.

The Yangtze River is very famous and has a significant role in
China’s development of its economy, agriculture, tourism,
transportation, culture, etc. Albeit for climate and water
resource fields, the Qingling Mountain and Huaihe River are
the more commonly recognized borders between northern and
southern China. The Yangtze River is also perceived as the
north–south boundary, at least from a cultural perspective.
The climate in the north of the Yangtze River is dry with low
temperatures and light rain, whereas, in the south, the climate is
humid and warmwith sufficient rainfall. Climate variation, floods
and drought events, and irrigation have profoundly affected the
water resources, bringing significant impacts on humans and
nature. Three severe catastrophic floods happened in the YRB in
1931, 1956, and 1998. Although catastrophic floods like these
have not happened in the YRB since the beginning of the 21st
century, the YRB has faced a lot of medium and small floods. For
instance, eight drought events have been identified in the YRB
during the GRACE era, with three major droughts occurring in
2004, 2006, and 2011 (Sun et al., 2018).

3 MATERIALS AND METHODS

3.1 Datasets
3.1.1 Global Precipitation Climatology Centre
Precipitation
The Global Precipitation Climatology Centre (GPCC) was
established in 1989 at the request of the World Meteorological
Organization (WMO). The National Meteorological Service of
Germany runs it as a German contribution to the World Climate
Research Program. GPCC’s delegation is the worldwide analysis
of monthly and daily precipitation on the Earth’s land surface
based on in situ rain gauge data.

The monthly GPCC data, specifically, the GPCC–MP, gridded
at a spatial resolution of 1° were used in this study due to its long-
term record. The series starts from 1982, offering sufficient data
for long-time period studies, and is based on the monthly records
acquired by the Global Telecommunication System (GTS) of the
WMO from about 7,000 to 9,000 stations (after high-level quality
control). Generally, the GPCC–MP is known as the best in situ
and GTS-based monthly land–surface precipitation reference
product publicly available. To ensure the consistency of the
time-series and reveal errors in the station metadata, the
harmonization of station metadata and a sophisticated quality
control is critical for GPCC to integrate several datasets. The data
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were retrieved from an online database, and further information
is available at Schneider et al. (2013). The particular choice for
this product is supported by the assessment and investigations
carried out by Yu et al. (2020) over mainland China.

3.1.2 ERA-Interim Data System
To model the response of TWSA to evapotranspiration and
temperature changes, instantaneous moisture flux (IE,
equivalent to evapotranspiration), surface temperature (soil
temperature level 1—SMTL1), soil temperature level 2/3/4
(SMTL2, SMTL3, and SMTL4), and 2-meter temperature
(T2m) fields were retrieved from the ERA-Interim data
system. These datasets were all obtained at a monthly
temporal interval and gridded at a spatial resolution of 1°. The
long-term consistency was the motivation to select the ERA-
Interim reanalysis data for this study (cf. Forootan et al., 2014a).

3.1.3 GLDAS–Noah and GLDAS–Variable Infiltration
Capacity
Soil moisture (the aggregate of all the layers from 0 to 2m in depth),
canopy, and snow storages from Global Land Data Assimilation
Systems (GLDAS, Rodell et al., 2004b) driven by Noah in its version
2, which covers the period from 1948 to 2015, was used in this study
as a predictor. We choose these data due to their availability over
long periods. GLDAS–Noah version 2 datasets consist of 1° gridded
data with a temporal resolution of 1 month.

For evaluating the performance of the BRT and ANN models,
a closed-loop simulation using “independent” TWSA datasets
from the GLDAS drive Variable Infiltration Capacity (VIC) land
surface model L4, version 2, was considered. The GLDAS–VIC
monthly product consists of 1° gridded data covering the period
1948 to 2015. These data were chosen due to their availability over
long periods. Moreover, the GLDAS–VIC model creates the
simulation outcomes that are nearest to the in situ data, and it
additionally has the lowest dispersions and bias error values
compared with other GLDAS streams.

3.1.4 Climate Indices
To model the response of YRB to the ENSO phenomenon,
Bivariate ENSO Time-series (BEST, cf. Smith and
Sardeshmukh, 2000), which is derived from the Southern
Oscillation Index (SOI) and Niño 3.4 was used. The BEST
index incorporates the oceanic (Niño 3.4) and atmospheric
(SOI) components of ENSO processes into a particular field,
and therefore, gives a more accurate description of the
phenomenon. The time-series of worldwide temperature
anomalies was also utilized to simulate the impact of global
warming on TWSA variability, as shown by Dong et al.
(2019). Over the YRB, it has been shown that the correlation
between the eco-flow metrics and selected de-trended climate
indices is strong, particularly for the synchronous Northern
Hemisphere and Indian Ocean Dipole indices, as further
explained by Dong et al. (2019). Moreover, these authors
(ibid) indicated that the seasonal streamflow correlated more
with selected climate indices than the annual streamflow.
Thereby, the reconstruction of TWSA over the YRB also needs
to consider such climate indices as predictors.

3.1.5 Gravity Recovery and Climate
Experiment–Terrestrial Water Storage Anomaly Series
The GRACE-derived TWSA datasets used on this study are the
so-called Level-3 products (Landerer and Swenson, 2012). They
comprise monthly gridded values at a spatial resolution of 1°-by-
1° based on the spherical harmonic coefficients provided by the
Center for Space Research (CSR). All details regarding the
processing procedures and caveats are available in the
company publication by Landerer and Swenson (2012). Albeit
TWSA fields were synthesized at a spatial resolution of 1°-by-1°,
they are still limited to the nominal resolution of GRACE, which
is 3°-by-3°. Nevertheless, scaling factors such as those computed
by Landerer and Swenson (2012) can be used to improve the
spatial resolution of GRACE–TWSA to 1°-by-1°. The scale factor
used is the one computed by Long et al. (2015). To this end, the

FIGURE 1 | Location map of the Yangtze River basin, China, and its main surface waters. Source: adapted from Ferreira et al. (2020a).
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TWSAmonthly grids refer to a temporal baseline of 2004–2009 at
which the mean was subtracted.

The temporal timemean was also removed from the respective
datasets (Sections 3.1.1–3.1.4) for the period 2004–2009.
Figure 2 shows the correlation coefficient between TWSA and
the predictors described in the aforementioned sub-sections.
Overall, there is a good correspondence between TWSA and
SM (0.887), and TWSA and P (0.612).

3.2 Methods
The methodological approach implemented in this study consists
of the steps summarized in Figure 3 and is further described in
the following sub-sections.

3.2.1 Boosted Regression Tree
BRT, also known as stochastic gradient boosting, is one of many
techniques that aims to enhance the performance and precision of
the prediction of a single model by fitting several models and
combining them to get the best prediction. The ability of the BRT
method to enhance precision is based on the assumption that it is
more straightforward to find and average many rough prediction
rules other than to obtain a single high-precision prediction rule

FIGURE 2 | Pearson correlation coefficients (PCCs) between TWSA and
the predictors described at Sections 3.1.1–3.1.4.

FIGURE 3 | Flowchart of the primary process steps to reconstruct the GRACE-derived terrestrial water storage anomaly (TWSA) based on BRT and ANN (NARX)
algorithms. The flowchart also shows the steps necessary for evaluating the reliability of the reconstructions using GLDAS–VIC-simulated TWSA.
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(Schapire, 2003). BRT is an effective technique because it
combines two approaches: regression trees, which are from the
classification and the regression tree (decision tree) set of models,
and boosting builds, which combines a group of models (Elith
et al., 2008).

3.2.1.1 Regression Tree
The regression tree is created through a bilateral iterative division,
a repeated operation that divides the data into branches or
segmentations. After that, it resumes by splitting every branch
into smaller sets as the process moves up every branch.

Initially, all records in the training set (the priory categorized
records that are utilized to define the tree structure) are collected
into the same partition. The algorithm then begins allocating the
data into the first two segments, utilizing each potential bilateral
division on each field. Then, the algorithm selects the split that
minimizes the sum of the squared deviations from the mean in
two separate segmentations. After that, this splitting base is
utilized in each of the new partitions. This procedure will
continue until every node amounts to the minimal node size
set by the user and becomes a leaf node. (That is, when the sum of
the squared deviations from the average in a node is zero, that
node is deemed a leaf node even if it does not amount to the
minimal size). All randomly selected subsets contain a similar
number of data points, and the points are chosen from the entire
data set. For example, Figure 4 shows two predictor variables X1

and X2, which might be surface temperature and precipitation,
and the response Y, the mean adult weight of types. Areas Y1, Y2,
and so on, are leaves, and t1, t2, and so forth are the dividing
points.

3.2.1.2 Boosting the Regression Tree—Boosted Regression
Tree
Boosting is a technique that integrates the weak learners output
(regression trees) to provide a stronger and amended predictive
overall performance. Wherefore, the definitive model (BRT)

would be a combination of several individual regression trees,
fitted in a forward step-wise approach (Elith et al., 2008).

An efficient design for fitting a single decision tree is to grow a
bigger tree. Afterward, one can prune it by collapsing the weakest
links identified through cross-validation (Hastie et al., 2009).

Boosting is a numerical development approach to lessen the
loss function through adding a new tree in each step that
substantially lessens the loss function. The initial regression
tree in BRT maximally lessens the loss function for the chosen
tree size. Then, for every next step, the concentration is on the
residuals: on variance in the response that the model has still not
illustrated. The mean squared error (MSE) is a measure of the
goodness of suitability. It computes the squared distance among
an estimator and the anticipated parameter, which is given by:

L θ( ) � ∑
i

yi − ŷi( )2, (1)

where L is the training loss function, θ is the parameters, and y is
the prediction made from the training data (input X); ŷ is the
prediction given by

ŷi � ∑
j

θjXij. (2)

In boosting, models are fitted iteratively to the training
records, gradually utilizing proper techniques to emphasize the
observations modeled badly by using the current series of trees.
Boosting algorithms differ in quantifying the shortage of
suitability and deciding on the settings for the following
repetition.

The BRT method has four essential features that have been
applied in this study. They are:

1. The process is random (it contains a probabilistic or random
factor). This random process enhances the predictive
performance and lessens the variance of the definitive
model, utilizing just a random subset of records to every

FIGURE 4 | (A) shows a single regression tree with a response Y, in which X1 and X2 are two predictor variables, and t1, t2, etc. are split points. (B) shows the
regression tree’s prediction surface. Source: Adapted from (Hastie et al., 2009, p. 306).
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new suitable tree (Friedman, 2002). This means that if a
random seed is not set initially, the final models will be
totally different at each run.

2. The consecutive model-fitting procedure builds on pre-fitted
trees and concentrates more and more on predicting the most
challenging observations. This differentiates the operation
from one where a big tree is fitted to the data-series. Even
so, if the ideal match was one tree, it might possibly be fitted
through a sum of similar shrunken versions of itself in a
boosted model.

3. Two critical parameters that are required to be set by the user:
a. Tree complexity (TC): this parameter specifies the split

number in each tree. A TC value of 1 produces trees with
just one split, meaning that the version ignores interactions
among environmental variables. A TC value of 2 produces
two splits and so forth.

b. Learning rate (LR—also known as the shrinkage
parameter): A number between 0 and 1 identifies the
rate that the algorithm has to converge and defines the
contribution of every tree to the growth model. LR is
inversely related to the number of repetitions needed for
the algorithm to complete; since the value of LR is slight,
numerous trees are created.

Together, these two parameters TC and LR define the number
of trees needed for an optimum prediction. The aim is to find the
combination of parameters that lead to the minimal error for the
predictions. As a general rule, it is advisable to utilize a collection
of tree complexity and learning rate values that produces a model
containing a minimum of 1,000 trees. The optimum “TC” and
“LR” values are contingent on the magnitude of the dataset, e.g.,
for datasets with less than 500 occurrence points (or epochs, as it
is the case in this study). It is preferable to design simple trees
(“TC” = 2 or 3) with learning rates sufficiently small to allow the
model to reach the minimum of 1,000 trees.

4. Prediction from the BRT technique is simple; however,
interpretation needs tools to identify which interactions and
variables are important, and to visualize fitted functions (Elith
et al., 2008).

The prediction in this study was achieved using the following
predictors: precipitation (P), surface temperature (SMTL1), soil
temperature (level 2/3/4) (SMTL2, SMTL3, SMTL4), surface air
pressure (SP), soil moisture (SM), 2-meter temperature (T2m),
instantaneous moisture flux (IE), and climate indices (CI).
Figure 2 shows the correlation among them as well as
with TWSA.

One of the BRT algorithm advantages is the easiness with
which the influence of the predictors may be evaluated and largely
disregards uninformative predictors while preparing trees.

Regularization is necessary for BRT due to its sequential model
fitting, which lets trees to be added till the data are completely
overfitted. This overfitting results in a poor performance on
accurate data. BRT regularization includes the LR,
optimization of tree number (NT), and TC altogether. The
aim is to find the combination of parameters (LR, NT, and

TC) that performs the minimal predictive error. BRT’s
regularization and shrinkage are done using the Lasso method
(most minor absolute shrinkage and selection operator). The
Lasso method shrinks several coefficients and fixes others to 0,
and it attempts to keep the good features of both subset selection
and ridge regression.

3.2.2 Non-linear Autoregressive Neural Network With
Exogenous Inputs—NARX
In this study, we used the NARX in the network design. NARX is
an artificial neural network that also includes repetitive feedback
from many network layers to the input layer (Ardalani-Farsa and
Zolfaghari, 2010). Many researchers have vastly utilized it to
model non-linear prediction processes (Ahmed et al., 2019;
Ferreira et al., 2019). The NARX architecture predicts a signal
via regressing the initial output signal values and the initial values
of an independent (exogenous) input signal.

In this study, the NARX reconstruction model utilized
18 hidden layers. (Hereafter, NARX will be addressed simply
as ANN.) These layers were adjusted by using a Bayesian
regularization back propagation learning rule. The sigmoid
transfer function was also utilized. The independent inputs
consist of the same predictors that were used in BRT. After
preparing the needed exogenous variables, the network was
trained using the training period from April 2002 to
November 2014. In the network designing, 70% of the data
were used for training the network, 10% to validate and stop
the training prior to overfitting, and 20% for testing (utilized as
independent data). We trained the network with an open
loop. After training and testing the network, the outputs from
the ANNwere validated using the metrics shown in Section 3.2.3.
After that, the trained network was used to reconstruct the
GRACE–TWSA from March 2002 to January 1982.

3.2.3 Assessment and Performance Measures
To assess the reliability of the BRT, and due to the lack of
GRACE–TWSA, the reconstruction process was also validated
via creating an akin network to predict TWSA from
GLDAS–VIC, which is talented with a long-period time-series
(1948–2015). This network was trained to predict
GLDAS–VIC–TWSA (GLDAS–TWSABRT) from April 2002 to
November 2014, after that, the trained network was utilized to
backcast TWSA from March 2002 to January 1982. The
reconstructed GLDAS–VIC time series from (March 2002 to
January 1982) and the authentic datasets were utilized to validate
the outputs from the BRT.

Likewise, to assess the reliability of ANN in reconstructing the
long-period TWSA, GLDAS–VIC was utilized in a “closed-loop”
simulation to evaluate the goodness of the extended TWSA series
from March 2002 to January 1982. The networks were trained
with the same predictors (exogenous variables) as those of
GRACE–TWSA (Figure 3) for the same duration (April
2002 to November 2014). Afterward, the network was used to
predict GLDAS–VIC TWSA (GLDAS-TWSAANN) from January
1982 to March 2002, and the outcomes were compared to the
original GLDAS–VIC TWSA dataset. The same process was
repeated for BRT reconstruction.
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The performance of the reconstructed TWSA series was
determined using the Nash–Sutcliffe efficiency (NSE)
coefficient, and the root-mean-square error (RMSE) given as
(e.g., Moriasi et al., 2007):

NSE � 1 − ∑t
i�1 TWSAobs,i − TWSArec,i( )2∑t
i�1 TWSAobs,i − TWSAobs( )2 , (3)

and

RMSE �
�������������������������
1
t
∑t
i�1

TWSAobs,i − TWSArec,i( )2
√√

, (4)

respectively.
The Pearson’s correlation coefficient (PCC), given as:

PCC � ∑t
i�1 TWSArec,i − TWSArec( ) TWSAobs,i − TWSAobs( )�����������������������∑t

i�1 TWSArec,i − TWSArec( )2√ ������������������������∑t
i�1 TWSAobs,i − TWSAobs( )2√ , (5)

was used to describe the degree of collinearity between the
simulated and observed data.

In Eqs 3–5, the variables are as follow: t represents the length
of the time series of TWSA (that is, the total number of months
considered in the evaluation), TWSArec is the resulting
reconstructed TWSA series based on BRT or ANN, TWSAobs

is the observed TWSA based on GRACE data, and TWSAobs is the
mean value of the observed TWSA series.

FIGURE 5 | (A,B) show the training stage of the prediction of the TWSA series for the YRB based on BRT and ANN, respectively. (C,D) show the test stage of the
TWSA series of the YRB based on BRT and ANN, respectively. (E,F) show the predictors’ importance in both BRT and ANN methods, respectively.
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4 RESULTS

4.1 Terrestrial Water Storage Anomaly’s
Reconstruction Using the Boosted
Regression Tree and Artificial Neural
Network
We partitioned the data into training and testing sets using 80%
of the data randomly assigned to the training set, and 20% of the
data randomly assigned as the testing set (we got the best results
with this partitioning percentage). After several trial attempts to
find the appropriate values of the parameters to obtain an optimal
accuracy of the TWSA prediction, it was found that the TC =
5 and LR = 0.0035 with 2,000 trees provided the best results over
the YRB. The number of trees after the regularization and
shrinkage was 200. Figures 5A,C show the fitting against
training and testing data for TWSA, respectively. Hence,
inspecting the reconstructed values from the testing step, we
found an overall agreement with the actual values of the TWSA
series for the specificmonths (Figure 5C). The deviation residuals
are used as a loss function to assess the reconstruction, which in
terms of RMSE has a value of 18.94 mm. Furthermore, the NSE
coefficient based on the comparison between the actual and
reconstructed TWSA series in the testing step (Figure 5C)
presents a value of approximately 0.89 and a PCC of 0.95
(Table 1).

Likewise, the ANN was used in this study to reconstruct
GRACE–TWSA backward from March 2002 to January
1982 precisely in the same way as BRT. In an open loop, the
network was trained and tested from April 2002 to November
2014. The optimal ANN model used to backcast GRACE–TWSA
over the YRB was chosen from all possible combinations of
neurons and delays. Figures 5B, D show the time-series
response during the training and the test stages, respectively.
Upon training and testing the network, the results show that the
accuracy of the network in terms of RMSE value is 20.34 mm
(Table 1). This shows an underperformance of the ANN-
reconstructed series of about 6.9% in terms of the BRT-based
reconstruction. Furthermore, the NSE presents a value of
approximately 0.87, and the PCC shows a value of 0.93
(Table 1), slightly lower than those based on the BRT
evaluation (Table 1).

The relative importance of the predictors used in the BRT
model shows that soil moisture (SM) is the most important
variable in TWSA reconstruction over the YRB showing a
relative contribution of about 81.9%. Conversely, soil
temperature level 2 (SMTL2) has the lowest importance, with
a contribution of about 1.0%. Likewise, Figure 5F indicates the
relative importance of the input variables (predictor importance)

of the predictors used in the ANNmodel. It can be seen that most
of the variables present relative contributions between 11% and
14% (Figure 5F). SM usually shows a significantly positive
correlation with variations of regional TWSA (Figure 2).
However, SM presents the lowest contribution with a relative
weight of 3.1% for the overall reconstruction of the TWSA series
over YRB; the same holds for the instantaneous moisture flux
(IE), 6.8%, and T2m, 3.9%. However, ANN models may be
complicated, and deciding which predictor is more valuable
can be difficult without further experiments, which is beyond
the scope of the present work.

The reconstructed TWSA time-series covering the 32 years
from January 1982 to December 2014 based on the respective
training for BRT and ANN as described previously were
undertaken (Figure 6). The missing values are seen in the
original GRACE–TWSA series (Figure 6) and were also
provisioned in the reconstruction. The overall behaviors of
the maximum and minimum amplitudes over the backcasted
period (January 1982 to March 2002) are consistent with the
observed data period (actual) covering the period from April
2002 to December 2014. As already mentioned and presented
in Figures 5A, C, the overall match between reconstructed and
the actual TWSA series is seen for BRT-based results
(Figure 6). Generally, ANN-based results overestimate the
high (e.g., early 2014) and low amplitudes (e.g., middle 2004).
Its high RMSE value of 20.34 mm confirms these discrepancies
compared to BRT (18.94 mm) from April 2002 to December
2014 (Table 1).

Likewise, from January 1982 to March 2002, the ANN-
reconstructed TWSA series generally presented amplitudes
higher than those based on the BRT algorithm. Nevertheless,
the BRT-reconstructed TWSA series showed higher amplitudes;
for example, in the middle 1987 and 1989 periods. Notably, the
lower amplitudes of TWSA are from 1990 to 1994, which could be
associated with a mild drought during this period. Nevertheless,
whatever could be the use and application of the GRACE–TWSA
reconstructed time-series (Figure 6), assessing the algorithms are
still necessary since there is no observed TWSA over the
backcasted period (1982–2001). Hence, a simulation is
presented in the following (Section 4.2) to address such a
question.

TABLE 1 | Summary statistics for the reconstructed GRACE–TWSA based on
BRT and ANN during the validation stage using 20% of the whole time series.

Product RMSE [mm] NSE [unitless] PCC [unitless]

GRACE-TWSABRT 18.94 0.89 0.95
GRACE-TWSAANN 20.34 0.87 0.93

FIGURE 6 | Time series of TWSA predicted by the BRT and ANN
(1982–2014) and those observed (April 2002–December 2014).
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4.2 Assessment of the Boosted Regression
Tree and Artificial Neural Network for
Reconstructing the Terrestrial Water
Storage Anomaly—A “Closed-Loop”
Simulation
The aim of this experiment was two-fold: 1) to evaluate the
performance of the BRT and ANN, and 2) to assess the reliability
of the reconstructed series over the period of 1982–2002.

A simulation of TWSA was implemented within a closed-loop
process to estimate the goodness of the reconstructed TWSA
series from 2002 to 1982. The simulations of TWSA are based on
the water-storage compartments available in GLDAS–VIC
covering the period from January 1982 to December 2014
(Section 3.1). The GLDAS–VIC-simulated TWSA series was
split into two parts: one from April 2002 to November 2014,
just like the GRACE datasets, and another from January 1982 to
March 2002 (the period to be reconstructed). The latter is used
only for assessment purposes.

First, BRT reconstruction was carried out using the same
predictors as described in Section 3.1, with the only difference
being the replacement of GRACE–TWSA (April 2002–November
2014) by the GLDAS–VIC–TWSA (April 2002–November 2014).
All the predictors were not taken from GLDAS–VIC, thereby
being an independent evaluation. Second, as with BRT, the
reconstruction using the ANN–NARX based on
GLDAS–VIC–TWSA was also carried out. Figure 7 shows the
reconstructed TWSA time-series based on BRT and ANN
(GLDAS–TWSABRT and GLDAS–TWSAANN) as well as the
original GLDAS–TWSA series (GLDAS–TWSAobs).

The overall behaviors of the maximum and minimum
amplitudes over the backcasted period (1982–2001) by the BRT
method (GLDAS–TWSABRT) are more consistent with the observed
data amplitudes (GLDAS–TWSAobs) in comparison with those
amplitudes based on ANN (GLDAS–TWSAANN, see Figure 7).
Specifically, the GLDAS–TWSAANN series generally underestimate
themaximumpeaks, whereas the low peaks seem to agree with those
based on BRT and the observed values.

In the assessment process and during the training and testing
stages using GLDAS–VIC–TWSA over the period from April
2002 to November 2014, the BRT network performance presents

an RMSE value of 5.68 mm, NSE value of 0.94, and PCC value of
0.97 (Table 2). Furthermore, applying ANN to predict
GLDAS–VIC–TWSA over the period April 2002 to November
2014, the performance of ANN presents an RMSE value of
5.72 mm, NSE value of 0.94, and the PCC of 0.97 (Table 2). A
marginal improvement in terms of RMSE of approximately 0.7%
was found for BRT for the testing stage.

Nevertheless, a validation to assess the reliability of BRT and
ANN algorithms to reconstruct GLDAS–VIC–TWSA over the
period January 1982–March 2002 was carried out. Contrary to
what was done with GRACE–TWSA, the GLDAS–VIC–TWSA
series can be used to validate the reconstructed values since they
are available over the desired period. Overall, the results of the
BRT indicate more reliability with a performance better than
ANN with an RMSE value of 6.93 mm, NSE value of 0.92, and
PCC value of 0.96 (Table 2). At the same time, the results of ANN
present a value of RMSE of 7.30 mm, NSE of 0.91, and PCC of
0.96 (Table 2).

5 DISCUSSION

Predictions gained from modeling and simulations are now
considered an important goal of environmental studies, as
they underpin important decisions by hydrologists and
engineers, which can help inform on policy. With this in
mind, the principal focus of this study was to reconstruct the
actual time series of GRACE–TWSA backward from 2014 to 1982
(32 years). The reconstruction of the GRACE-derived TWSA
over the YRB used BRT and ANN (represented by NARX)
algorithms. Consequently, the contributions of the present
work are 1) validating the BRT algorithm, given that errors
are within a tolerable range such as the GRACE uncertainty
range, and 2) providing an extended time-series that support
studies such as droughts. Although several studies have
considered the potential of TWSA reconstruction over the
YRB (e.g., Zhang et al., 2016), none has considered the use of
BRT to reconstruct TWSA.

First, BRT was used to reconstruct GRACE–TWSA over the
YRB, where 80% of the data were utilized for training, whereas the
remaining 20% of the data were utilized for testing the network.
Notably, this partitioning of data was selected after several trials
to get the best accuracy. The model was constructed based on its
physical relationships with ten hydro-climatic variables (the
predictors). These variables are: precipitation (P), surface
temperature (SMTL1), soil temperature (level 2/3/4) (SMTL2,
SMTL3, SMTL4), surface air pressure (SP), soil moisture (SM), 2-
meter temperature (T2m), instantaneous moisture flux (IE), and
climate indices (CI). This network’s results showed an RMSE
value of 18.94 mm, NSE value of 0.89, and PCC value of 0.95. This
shows the consistency of the reconstructed (predicted) and the
observed (actual) TWSA series (Figures 5A,C). Second, ANN
was trained precisely in the same way as BRT, in which the
performance of the series indicated a slight underperformance of
about 7.4%, 2.2%, and 2.1%, respectively, in terms of RMSE, NSE,
and PCC (cf. Table 1). Both methods present RMSE values within
GRACE’s overall accuracy of about 20–30 mm over most river

FIGURE 7 | Reconstructed time series of GLDAS–TWSA; the blue line is
the original GLDAS–TWSA time series (observation), the red line is the
GLDAS–TWSA time series as estimated by BRT, and the green line is the
GLDAS–TWSA time series as estimated by ANN.
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basins (Scanlon et al., 2016). Although the data used in this study
were of coarse spatial resolution (1°-by-1°), they were valuable to
prove the effectiveness of both algorithms for prediction with an
acceptable accuracy.

Because the BRT technique is insensitive to multi-
collinearity and outliers, it can fit complicated non-linear
relationships, and it can automatically deal with the
interactive impacts among predictors (Elith et al., 2006; Elith
et al., 2008; Dedman et al., 2017). Hitherto, BRT seems a highly
feasible technique to reconstruct TWSA using only one
predictor like soil moisture (Figure 5E), and that is
reasonable because SM is very similar and highly correlated
with TWSA in the YRB (see Figure 2, and also cf. Ferreira et al.,
2020a). This result also aligns with the finds of Naghibi and
Pourghasemi (2015). They found that BRT used only eight
variables selected from the original data (14 variables). Some
authors also declared that a close model would be more steady
and easier to generalize (Catry et al., 2009; Vilar et al., 2010).
Conversely, ANN-based reconstruction seems to necessitate
more predictors. It used all predictors to achieve the
prediction process and showed that SM got the lowest
contribution in the TWSA prediction (Figure 5F). This
seems to be an obvious advantage of BRT compared to
ANN. One could rely upon only one of the most accurate
datasets (e.g., precipitation) based on remotely sensed or in-
situ measurements to reconstruct TWSA instead of using all
potential predictors (compare Figures 5E,F).

Finally, based on BRT and ANN, the GRACE–TWSA was
backcasted from December 2014 to January 1982 (Figure 6).
However, an important question regarding the suitability of
the extended GRACE–TWSA series is how reliable are
GRACE–TWSA reconstructed series (Figure 6)? In the
absence of the observed TWSA between January 1982 and
March 2002, a closed-loop simulation using TWSA from
GLDAS–VIC to evaluate the reliability of BRT and ANN
was considered. A period equivalent to the GRACE data
(April 2002–November 2014) was used to generate BRT and
ANN and then reconstruct the GLDAS–VIC TWSA till 1982
(Figure 7). Both networks were trained to simulate
GLDAS–VIC TWSA based on their non-linear physical
relationships with the ten hydro-climatic variables. The
BRT results showed a slightly better accuracy than those
based on ANN (Table 2). Overall, BRT and ANN showed
excellent performances with RMSE values of 6.93 and
7.30 mm, respectively. This finding aligns with those from
previous studies (e.g., Pourghasemi and Rahmati, 2018),

which proved that BRT has a better performance than
ANN. Additionally, some studies evaluated several different
machine-learning techniques and found that BRT performed
better than other popular algorithms (see, e.g., Cunningham
et al., 2011; Naghibi and Pourghasemi, 2015; Nolan et al., 2015;
Naghibi et al., 2016, for an exhaustive comparison of BRT with
other algorithms applied to different subjects). Considering
the ratio between the RMSE of the reconstructed
GRACE–TWSA with those from GLDAS–VIC–TWSA
during the training phases (Tables 1, 2) for the respective
algorithms (BRT and ANN), it is possible to derive scale
factors to infer the respective RMSEs of GRACE–TWSA of
23.10 and 25.96 mm, respectively. Again, such accuracies are
akin to that of the GRACE era TWSA. Hence, this indicates
that the temporal series shown in Figure 6 can be used in
hydrological studies such as hydrological drought
characterizations and the assessment of long-term changes
of TWSA. This could be the subject of a separate study.

6 CONCLUSION

In the case of long-term studies (e.g., drought and flood
assessments), TWSA from GRACE and GRACE-FO
missions cover a relatively short period of approximately
20 years. This means that it cannot be effectively applied
for impact assessments from droughts and floods, and
deduce long-term water availability over the YRB. To
address this limitation, this study compared two machine-
learning approaches over the YRB to predict and reconstruct
the TWSA back to 1982. To this end, boosted regression tree
(BRT), a popular machine learning algorithm that increases
the model’s accuracy, was used to reconstruct
GRACE–TWSA. BRT is a robust algorithm that works very
well with large datasets or when there are many hydro-
climatic variables compared to the number of observations.
They are also very robust in circumventing problems
associated with missing values and outliers. This study
found that BRT and artificial neural network (ANN,
represented by a non-linear-autoregressive neural network
with exogenous inputs—NARX) methods appeared robust
enough to sufficiently reconstruct GRACE–TWSA over the
YRB with accuracy akin to the GRACE dataset. The validation
results of both techniques indicated that the BRT technique is
a more reliable and “economic” model to reconstruct TWSA
over the YRB. That is, the most correlated predictors, in our

TABLE 2 | Summary statistics for the reconstructed GLDAS–VIC–TWSA based on BRT and ANN during the training stage and validation. The validation refers to the
comparison between the reconstructed series and those observed in Figure 7, that is, the closed-loop simulation.

Product Stage RMSE [mm] NSE [unitless] PCC [unitless]

GLDAS-TWSABRT Training 5.68 0.94 0.97
Validation 6.93 0.92 0.96

GLDAS-TWSAANN Training 5.72 0.94 0.97
Validation 7.30 0.91 0.96
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case, soil moisture and precipitation, could be enough to
reconstruct the TWSA time-series. Hence, the method is
highly recommended for study areas where only a few
datasets are available as predictive variables (e.g., soil
moisture and/or precipitation).
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