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The total-sky direct solar radiation at Earth’s surface (SRS) not only has an

important impact on the earth’s climate and ecology, but also is a crucial

parameter for solar photovoltaic power. SRS determines whether photovoltaic

power plants can be built in the region and directly affects the efficiency of

photovoltaic power generation. Therefore, the spatial and temporal distribution

characteristics of SRS have a very important guiding significance for the

construction of photovoltaic power stations. This study discusses the

temporal and spatial characteristics of SRS and its influencing factors in

China during 1961–2020 using ERA5 data and the empirical orthogonal

function (EOF), rotated empirical orthogonal function (REOF), and ensemble

empirical model decomposition (EEMD)methods. Our investigation reveals that

the high-value SRS center is located on the southwestern Tibetan Plateau, while

the low-value center occurs on the northeastern Yunnan–Guizhou Plateau and

in the Sichuan Basin. Seasonal variability in SRS means that maximum values

occur uniformly in summer, followed sequentially by spring, autumn, and

winter. The spatial distribution of the leading SRS EOF mode exhibits a

dipole pattern between the southern Tibetan Plateau and other regions.

Combined with the time series, SRS in China underwent an interdecadal

transition around the year 2000. The regression analysis shows that this

pattern is mainly affected by surface air temperature, total precipitation,

relative humidity and cloud cover. The time series evolution of SRS primarily

reflects the interannual variability in annual-mean and four seasons; the

variance contributions of decadal variability and secular trend are minor

through the EEMD. The REOF separates Chinese SRS into 11 central regions,

the top 5 being the western Tibetan Plateau, western Northwest China, the

eastern Tibetan Plateau, northern Xinjiang, and North China. The relationship

between SRS and meteorological parameters shows that SRS is positively

correlated with surface air temperature and wind speed but negatively

correlated with total precipitation, relative humidity, low and total cloud

cover, and aerosol concentrations.
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Introduction

Solar radiation is the dominant source of energy received by

Earth’s surface, where it not only constitutes a valuable source of

renewable energy for use by humans but also plays a driving role

in global climate (Dickinson and Cheremisinoff, 1980; Yan et al.,

2014; Huang et al., 2017). Climate change is closely related to the

solar radiation reaching Earth’s surface; changes in insolation

directly affect surface temperature, and in turn evaporation,

hydrology, human living environments, and ecosystem.

Consequently, spatial and temporal variability in solar

radiation also influences the distribution of all climate-related

resources (Wu et al., 2009; You et al., 2013; Wang, 2015; Jin et al.,

2019; Zhang et al., 2020). As the primary energy source for

biological, physical, and chemical processes at Earth’s surface,

solar radiation plays a central role in local climate and the

development of plant communities and forms a key parameter

in numerical models simulating the land surface, hydrology,

ecology, climate, and environment. Ultimately, a robust

understanding of solar radiation is vital to these research

fields (Meza and Varas, 2000; Winslow et al., 2001; Zhou

et al., 2012; Blanka et al., 2017; Huang et al., 2017; Guan

et al., 2018). To support the development and utilization of

solar energy resources, it is first necessary to critically assess the

distribution and variability of solar energy resources (Xu et al.,

2010). As an essential input parameter for net primary

productivity of vegetation, the accuracy and quantitative

evaluation of solar radiation can help refine our knowledge of

regional and global carbon cycles (Zhang et al., 2020).

To accurately evaluate the nature of solar energy resources

throughout China, we first need to understand the spatial and

temporal distribution characteristics of solar radiation (He et al.,

2003; Huang et al., 2017). In their study of regional insolation

characteristics, Wen et al. (2008) employed ground radiation

observational data collected by 122 radiation stations throughout

China between 1961 and 2000 to study the regional

characteristics of solar radiation in China. Similarly, Li et al.

explored spatial and temporal variability in surface solar

radiation, and the factors influencing this variability, in China

for the period 2003–2012. The results of both studies indicate

that insolation is highest on the Tibetan Plateau and lowest in the

Sichuan Basin, and suggest that the receipt of solar radiation in

China is impacted by both seasonal and interannual variations.

Meanwhile, Yang et al. (2007) analyzed monthly averaged total

radiation data from sixty stations in mainland China between

1961 and 2002. They observed that most stations reported a

declining trend over the 40-year period, with the decline being

significantly greater in eastern regions than in the west. More

recently, Tao et al. (2016) proposed that spatial variability in

seasonal trends of total solar radiation varies considerably

throughout China, and Qi et al., 2014, Qi et al. (2015)

implicated aerosol pollution arising from urbanization and

industrialization in the observed insolation decrease. As the

primary factor is the dispersal of atmospheric pollutants, wind

plays a central role in the impact of tropospheric haze on

insolation levels. This relationship supports the model that air

pollution is an increasingly important driver of changes in

surface solar radiation, especially in eastern China.

Climatically, Shen and Wang, 2011 reported that observed

changes in surface solar radiation have played a significant

role in climate change in southeast China over the past

50 years. Where radiation increased, average surface air

temperatures have also risen, and vice versa.

A key limitation of the existing body of research is that

most studies are based on short time series of comparatively

low temporal and spatial resolution. At present, there are few

studies of Chinese insolation spanning more than a few

decades and utilizing high-resolution radiation data. To

help address this shortcoming, we utilized total-sky direct

solar radiation data derived from ERA5 reanalysis for the

period 1961–2020 to 1) analyze the spatial and temporal

distribution characteristics of solar radiation throughout

China and 2) identify the factors influencing these

characteristics. Our overarching goal in this research is to

deliver valuable new insight into the effective development of

solar energy resources in China and scientific support for the

siting of photovoltaic power stations, both of which are vital to

growing the viability of clean energy, helping China

achieve carbon neutrality, and slowing the rate of global

warming.

Data and methods

Data

ERA5 is the most up to date set of global atmospheric, land,

and oceanic reanalysis products derived from the European

Centre for Medium-Range Weather Forecasts (Hersbach et al.,

2020). In this paper, we used ERA5monthly total-sky direct solar

radiation at the surface (SRS) data, with a spatial resolution of

0.25° × 0.25°, for the period 1961–2020. Specifically, these data are

used to represent atmospheric forcing in the land surface model

and thus have key applications in regional climate assessment,

agriculture, and solar energy resources. Zhang et al. (2021)

evaluated ERA5 surface-received solar radiation data on

multiple spatio-temporal scales and demonstrated the

suitability of this dataset for mainland China.
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Methods

We applied linear least-squares regression to analyze trends

in SRS variability, and the empirical orthogonal function (EOF)

to evaluate SRS temporal and spatial variation characteristics. In

addition, we used ensemble empirical model decomposition

(EEMD) to decompose the SRS time series into specific

oscillation components for various timescales (Wu and

Huang, 2009) and the rotated empirical orthogonal function

(REOF) to divide spatial distribution characteristics for China.

Finally, the spatial distribution of the correlation between SRS

and other meteorological variables affords a means for assessing

the influence of each variable on SRS in different regions.

The EOF method is an effective tool for decomposing

climatic variable fields into a space field and time period, and

the EOF method has been widely used in climate diagnosis

(Dommenget and Latif, 2002; Fan et al., 2011; Li and Xie,

2014; Zuo et al., 2018; Qiao et al., 2022). Building on EOF,

REOF applies rotation technology to also realize the climate

variable field. Rotation serves to reveal typical spatial structures

that can reflect not only changes among different regions, but

also the relevant distribution of those regions. REOF is a widely

FIGURE 1
Spatial distribution of SRS (W/m2) climate states in China during the period 1961–2020. (A) is annual-mean, (B) is spring, (C) is summer, (D) is
autumn, and (E) is winter.
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used method for investigating meteorological elements in

different regions (Li et al., 1997; Zhang et al., 2016).

The EEMD method is a relatively new, self-adaptive time

series analysis technique that is suitable for analyzing nonlinear

and non-stationary datasets (e.g., climate data). Specifically,

EEMD decomposes a complex time series into finite

oscillation components on different time scales, thereby

permitting the analysis of meteorological elements. The

advantage of EEMD is that, rather than relying on other

functions, time series decomposition is based on the adaptive

filtering of the data themselves. By adding an appropriate degree

of white noise to the original data to simulate multiple

observation scenarios, and through multiple calculations,

realistic results can be derived from the ensemble average

(Qian et al., 2012). In recent years, the EEMD method has

been applied widely in climate change research (Franzke 2010;

Qian et al., 2011; Gao et al., 2015; Cornes et al., 2017; Zhang et al.,

2018; Zuo et al., 2018; Thomas et al., 2020). In the current study,

we employed EEMD to analyze SRS time series throughout

China.

Results

SRS variation characteristics on multiple
time scales

To explore the spatial distribution characteristics of SRS in

China, we analyzed the climatic state of SRS (W/m2; Figure 1) for

the period 1961–2020 from ERA5 monthly dataset. According to

the annual-mean SRS (Figure 1A), the highest SRS values occur

in western China, with a maximum over the southwest Tibetan

Plateau, whereas the lowest values occur in the east and are

centered on the northeastern Yunnan–Guizhou Plateau and in

the Sichuan Basin. With an average elevation of >4,000 m, the

Tibetan Plateau is the highest in the world. We note that

maximum SRS values coincide with the highest parts of this

plateau, where the thin, dry nature of the air column results in

high atmospheric transparency and minimal scattering of

incoming shortwave radiation. The Tibetan Plateau also

experiences generally clear conditions, thereby enhancing the

receipt of solar radiation. In contrast, the Yunnan–Guizhou

Plateau and Sichuan Basin experience a monsoonal climate

that, during the rainy season, results in high rainfall, cloudy

days, and less direct sunshine, all of which serve to reduce surface

insolation.

To explore the spatial distribution of SRS characteristics

further (Figures 1B–E), we next defined the mean value for

December–February as winter, the mean March–May value as

spring, the mean June–August value as summer, and the mean

September–November value as autumn. Recognizing that the

spatial distribution of SRS during different seasons is broadly

similar to the annual-mean, there are nonetheless several clear

differences among them. On the whole, summer exhibits the

highest SRS value, followed by spring, autumn, and

winter. This general pattern confirms that the receipt of

solar radiation at the surface is greatest in summer and

weakest in winter, reflecting China’s position in the

Northern Hemisphere. We also note that during both

spring and summer, SRS in northwest China increased

considerably relative to the annual-mean. In summertime

especially, the center of maximum values underwent a

significant expansion and northward shift, a pattern that

was accompanied by drought and generally clear sky over

northwest China.

We used least-squares linear regression to analyze trends

in SRS (W/m2/decade) between 1961 and 2020 (Figure 2). In

terms of annual-mean SRS, positive trends occurred in

Northeast China, North China, Southwest China, South

China, and Xinjiang, with a high value center located in

Yunnan. Conversely, the Tibetan Plateau exhibited a

generally negative trend; the low value center is located in

central Sichuan. SRS trends vary considerably by season. In

spring, SRS increases over most parts of China except the

Tibetan Plateau, with the highest values observed in North

China, eastern Central China, and Eastern China. During

summer, SRS declines throughout most regions, with the

exception of northeast China, Hebei, northern Xinjiang,

Yunnan, and South China. The lowest value centers

during that season are located primarily on the northwest

Tibetan Plateau and in East China. SRS trends in autumn and

winter are weak, with the highest values centered on Yunnan.

Overall, the degree of variability among SRS trends is

greatest in spring and summer, with significant springtime

increases in eastern China followed by decreasing trends in

most areas during summer. We note that the Tibetan Plateau,

with the highest overall SRS values, exhibits negative trends

in both spring and summer. Meanwhile, SRS trends in

Yunnan and Northeast China were positive in all four

seasons.

To investigate SRS stability between 1961 and 2020, we

analyzed the spatial distribution of the SRS standard deviation

(W/m2; Figure 3). Our results show that the annual-mean

standard deviation decreases gradually from southeast to

northwest, a pattern that is mirrored by all four seasonal

trends. The center of maximum SRS standard deviation is

located generally in Eastern China during spring and summer,

but shifts towards Southern China during summer and autumn.

This behavior indicates that SRS in Southeast China exhibits a

greater degree of variability relative to SRS in northwest and

northeast regions, a pattern that is consistent with the respective

meteorologic and climatic characteristics of each regions. For

instance, occupying a relatively interior position, Northwest

China is largely unaffected by monsoon circulation and

consequently experiences dry, sunny conditions and minor

variability in the receipt of solar radiation. Southeast China, in
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contrast, is dominated by the East Asian monsoon, which brings

heavy rainfall and results in a greater degree of insolation

variability.

Using EOF, we decomposed annual-mean and seasonal SRS

values for the 1961–2020 study period to explore spatio-temporal

variations throughout China, with a specific focus on the first two

modes (Figure 4). For annual-mean SRS, the explained variances

of the first and second modes are 26.4 and 11.9%, respectively.

The spatial distribution of the first EOF mode exhibits a dipole

pattern between the southern Tibetan Plateau and other regions,

with the center of highest values located in Central China.

Combined with the time period to the first mode, it can be

seen that the first mode is mainly reflected in the interdecadal

variation characteristics, and SRS in China showed an obvious

interdecadal transition around year 2000, when the periodicity

changed from its negative to positive phase. In other words, with

the exception of the southern Tibetan Plateau, most of China was

dominated by negative anomalies prior to 2000, after which the

opposite pattern was established. The spatial distribution of the

second EOF mode is bounded by 32°N, with the negative phase

dominating the southeast region and positive phase elsewhere.

This time series primarily reflects interannual variability.

Figures 4B–E depicts the results of EOF analysis of SRS

during different seasons. During spring, the explained variances

of the first and second EOF modes are 29.8 and 12.4%,

respectively. Moreover, the spatial distribution of first mode

exhibits a “negative–positive–negative” tripole pattern

extending from northeast to southwest, by which Northeast

(Heilongjiang, Inner Mongolia) and Southwest China (Tibet,

Sichuan, Yunnan) experience the negative phase, while other

FIGURE 2
Same as in Figure 1, but for trends in SRS (W/m2/decade). (A) is annual-mean, (B) is spring, (C) is summer, (D) is autumn, and (E) is winter.
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regions experience the positive phase. The corresponding high-

value centers are expansive and include most of Central and

Eastern China. During spring, the time period of the first mode

exhibits an obvious interdecadal transition around the year 2000,

when the negative phase was replaced by the positive phase. The

spatial distribution of the second mode reveals a similar

springtime tripole pattern but in reverse

(“positive–negative–positive”). In this mode, the majority of

North China, central and northern East China, central and

northern Central China, and northern Northwest China

experience the negative phase, while the remaining regions are

largely positive. The time period of the second mode is similar to

that of the first mode, including the marked transition around the

year 2000.

During summer, the explained variances of the first and

second EOF modes are 17.4 and 13.7%, respectively. These

values are the smallest of the four seasons, indicating that the

corresponding SRS mode is more complex and changeable in

summer. As is evident from the spatial distribution of EOF1,

the negative phase dominates in southwest Tibet, southeast

coastal areas, and North China, whereas other regions are

characterized by the positive phase. We also note that the time

FIGURE 3
Same as in Figure 1, but for the standard deviation of SRS (W/m2). (A) is annual-mean, (B) is spring, (C) is summer, (D) is autumn, and (E) is winter.
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period of variability is interannual. The spatial distribution of

summertime EOF2 exhibits a meridional dipole pattern, and

the time period is mainly characterized by interdecadal

variation. There was an obvious shift from the positive to

negative phase occurred around 1998. During autumn, the

explained variance of the first and second EOF modes are

26.9 and 16.1%, respectively. The spatial distribution of the

first mode reveals that, with the notable exception of Tibet,

China experiences a generally positive phase with positive

centers located in Hunan and Jiangxi. The autumn time period

in EOF1 is dominated by interannual variability. The spatial

distribution of the second mode displays a

northeast–southwest “positive–negative–positive” tripole

pattern, and the time period is mainly interannual. The

explained variances of the first and second EOF mode in

winter are 36.4 and 13.9%, respectively, and are the highest

FIGURE 4
EOF decomposition of SRS in China from 1961 to 2020. (A) is annual-mean, (B) is spring, (C) is summer, (D) is autumn, and (E) is winter.
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values of the four seasons. Our results indicate that the spatial

distribution of the first mode is largely positive phase, and the

time period is interannual variation. The spatial distribution

of the second mode exhibits a “negative–position–negative”

tripole pattern from northeast to southwest, and the time

period is primarily interannual.

FIGURE 5
EEMDdecomposition of SRS time series throughout China from 1961 to 2020. (A) is annual-mean, (B) is spring, (C) is summer, (D) is autumn, and
(E) is winter.
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The EEMDmethod is used to decompose the SRS time series

into specific oscillation components on different time scales

(Figure 5 and Table 1). Here, the annual-mean and seasonal

time series can be decomposed into four intrinsic mode functions

(IMFs) and a residual secular trend (ST). For both the annual-

mean and seasonal IMF1, the periods are 2–3 years, and the

variance contributions (33.0%–56.3%) that are greatest with

other IMFs and ST. This outcome indicates that the Chinese

SRS time series are dominated by a 2–3-years variability, and also

that the amplitude of summertime IMF1 increased significantly

after 1990. Both the annual-mean and four-season series exhibit

similar periods in IMFs and ST, namely 5–15 years under IMF2,

10–15 years under IMF3, and 21–32 years under IMF4. Of these,

the variance contribution of IMF4 accounts for the smallest

proportion in all time scales. In terms of the interdecadal

change characteristics, we note that the annual-mean, spring,

summer, and autumn series all display phase changes from

negative phase to positive phase during the period 1995–2000,

consistent with the interdecadal EOF transition described above.

Meanwhile, ST exhibits a long-term trend in both annual-mean

and four-season time series, with relatively minor variance

contributions. Both the annual-mean and autumn ST reveal a

long-term increasing trend, whereas the summer ST is relatively

weak. During spring and winter, ST exhibited an initial decrease

and subsequent increase, with a clear phase transition from

negative to positive in 2000. Finally, results of the EEMD

method confirm that SRS time series for China display a

predominantly interannual variability (at least between 1961-

2020), consistent with the periodicity of the principal EOF mode.

Meteorological factors influencing SRS

Representing the total direct solar radiation received at

Earth’s surface, SRS is impacted not only by seasonal

insolation variability and solar activity but also by weather

conditions (e.g., cloud cover and atmospheric transparency).

Therefore, we conducted correlation analyses between annual-

mean SRS and key meteorological factors, namely surface air

temperature (SAT), surface air pressure, total precipitation,

relative humidity, low cloud cover, total cloud cover, 10-m

wind speed, and aerosol content, to establish which factors

exert the strongest influence on SRS in various regions.

Figure 6 displays the spatial distribution of correlation

coefficients between annual mean SRS and each

meteorological element. We note that, although solar radiation

is directly impacted by aerosols, the ERA5 dataset does not

include aerosol variables (e.g., aerosol optical thickness,

atmospheric turbidity). To circumvent this limitation, we

calculated the clear sky index:

((clear− skysolarradiationatsurface− solarradiationatsurface)
/clear− sky solarradiationatsurface)

To quantify the absorption and scattering of solar radiation

by clouds and aerosols. To minimize the influence of clouds, we

calculated the partial correlation between this ratio and SRS to

eliminate total cloud cover, thereby obtaining the SRS-aerosol

correlation distribution (Figure 6H).

As individual meteorological factors can exhibit considerable

spatial heterogeneity, the impact of specific elements on SRS is

regionally variable. For instance, although SAT and SRS are

positively correlated in most regions, with the strongest

correlation on the Yunnan–Guizhou Plateau and in Xinjiang,

we also observed a weak (do not pass the 95% significance test.)

negative correlation between the two over parts of the Tibetan

Plateau. Consequently, we infer that SRS is highly sensitive to

SAT on the Yunnan–Guizhou Plateau and in Xinjiang, but

relatively insensitive to this factor on the Tibetan Plateau. For

all regions, the correlation between surface pressure and SRS is

weak; only minor areas (e.g., Yunnan and central Inner

Mongolia) pass the 95% significance test, indicating that air

pressure has little influence on SRS. In contrast, total

precipitation, relative humidity, low cloud cover, and total

cloud cover all exhibit significant negative correlations with

SRS. These factors typically correspond to cloudier conditions

with reduced atmospheric transparency, leading to an inverse

relationship between SRS and these meteorological elements.

Whereas the influence on SRS of total precipitation is broadly

uniform throughout China, the relative humidity in Yunnan, low

cloud cover in South and Northeast China, and total cloud cover

in Central and Eastern China all result in strong negative

correlations in those regions. With the exception of parts of

Xinjiang, the Tibetan Plateau, and Northeast China, we observed

a positive correlation between wind speed and SRS in most

regions, potentially due to the higher atmospheric

transparency that tends to accompany windy days. Finally, we

note that SRS is negatively correlated (at 95% significance) with

TABLE 1 Periods and variance contributions in different timescales for
the annual-mean and four seasons through the EEMD
decompositions.

IMF1 IMF2 IMF3 IMF4 ST

Annual Period (Year) 2.6 7.5 12.0 29.9 118.3

Variance (%) 33.0 26.1 15.3 8.4 17.2

spring Period (Year) 3.0 6.7 15.0 32.2 60.0

Variance (%) 39.1 11.1 11.3 9.6 28.9

summer Period (Year) 2.6 5.5 10.0 25.7 46.2

Variance (%) 47.7 21.0 15.8 12.7 2.8

autumn Period (Year) 3.2 6.0 10.0 31.2 126.2

Variance (%) 56.3 15.5 12.9 7.0 8.3

winter Period (Year) 2.7 5.5 12.0 21.2 62.3

Variance (%) 50.9 16.4 6.6 4.6 21.5
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FIGURE 6
Spatial distributions of correlation coefficients between SRS andmeteorological elements during the period 1961–2020. (A) is SAT, (B) is surface
pressure, (C) is total precipitation, (D) is relative humidity, (E) is low cloud cover, (F) is total cloud cover, (G) is 10 m wind speed, and (H) is aerosol.
Black dots indicate where a given area passes the 95% significance test.
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FIGURE 7
Meteorological elements regressed upon the normalized time series corresponding to EOF1 of annual-mean SRS. (A) is SAT (°C), (B) is surface
pressure (Pa), (C) is total precipitation (mm), (D) is relative humidity (ratio), (E) is low cloud cover (ratio), (F) is total cloud cover (ratio), (G) is 10 mwind
speed (m/s), and (H) is aerosol (ratio). Black dots indicate where a given area passes the 95% significance test.
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FIGURE 8
(A–L) Spatial distributions of the 12 eigenvector fields obtained from REOF decomposition of SRS between 1961 and 2020. Panel (M) represents
the regional distribution of the first 11 eigenvector fields. Since the 12th eigenvector field is not significant, we determined the regional division from
the first 11. The divided regions are as follows: northern Xinjiang (r1: 43°–49°N, 80°–92°E), western Northwest (r2: 35°–42°N, 75°–97°E), western Tibet
Plateau (r3: 28.5°–33.5°N, 78°–90°E), eastern Tibet Plateau (r4: 28.5°–33°N, 91°–102°E), Yunnan (r5: 21°–27.5°N, 97°–105°E), Loess Plateau (r6:
32°–38°N, 104°–110.5°E), Central China (r7: 24°–31°N, 106°–111°E), Northeast China (r8: 45°–51°N, 120°–133°E), North China (r9: 37°–42°N,
114.5°–123°E), East China (r10: 30.5°–35°N, 112°–120°E), southeast China (r11: 21°–29°N, 112°–120°E).
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aerosols throughout China, confirming that air pollution reduces

SRS. In order to explore the possible causes of the dipole pattern

of annual-mean SRS EOF1 between the southern Tibetan Plateau

and the rest of China (Figure 4A). The relevant meteorological

element fields regressed upon the normalized time series

corresponding to annual-mean SRS EOF1 are analyzed

(Figure 7). The results show that the SAT, total precipitation,

relative humidity, low cloud cover, and total cloud cover had a

similar pattern to the regional pattern of annual-mean SRS EOF1,

which means that the dipole pattern is strongly related to these

elements.

On the basis of these analyses, we conclude that the spatial

distribution of SRS throughout China exhibits considerable

regional differences in climate state, trend, standard deviation,

and spatial EOF mode. Consequently, we utilized REOF to

examine the spatial distribution of SRS in more detail

(Figure 8). According to the REOF variance contribution, the

spatial distribution of Chinese SRS can be subdivided into

11 major radiation regions (see Figure 7M): northern Xinjiang

(r1: 43°–49°N, 80°–92°E), western Northwest China (r2: 35°–42°N,

75°–97°E), western Tibetan Plateau (r3: 28.5°–33.5°N, 78°–90°E),

eastern Tibetan Plateau (r4: 28.5°–33°N, 91°–102°E), Yunnan (r5:

21°–27.5°N, 97°–105°E), Loess Plateau (r6: 32°–38°N,

104°–110.5°E), Central China (r7: 24°–31°N, 106°–111°E),

Northeast China (r8: 45°–51°N, 120°–133°E), North China (r9:

37°–42°N, 114.5°–123°E), East China (r10: 30.5°–35°N,

112°–120°E), and Southeast China (r11: 21°–29°N, 112°–120°E).

Figure 9 compares the annual-mean and seasonal SRS values

for the 11 regions delineated by REOF decomposition. For r1, r2,

r6, r7, r10, and r11, maximum SRS values occur in summer; in r3,

r4, r5, r8, and r9, peak SRS is attained in spring. With the

exception of r5, minimum values for all regions occur in winter.

Viewed as a whole, therefore, peak SRS in China (except for r5)

coincides with the spring–summer warm season and minimum

SRS with winter conditions, a pattern that generally reflects

Northern Hemisphere insolation. Concurrently, we ranked the

annual-mean SRS values for each region, from largest to smallest,

as follows: r3, r2, r4, r1, r9, r5, r6, r10, r11, r8, r7. The higher the

value, the greater the amount of solar radiation received at the

surface, and vice versa.

To refine our understanding of how weather conditions

impact SRS on a regional basis, we analyzed the correlations

between SRS and various meteorological elements in each region

(Table 2). We observed that, for all regions, precipitation, relative

humidity, low cloud cover, total cloud cover, and aerosol all

exhibit significant negative correlations, consistent with the

findings shown in Figure 6. Correlations for both SAT and

SRS are largely positive, with r1, r2, r5, r6, r7, r9, and

r10 passing the 99% significance test. However, correlations

for r3, r4, and r11 are relatively weak, indicating that SRS in

those regions is less impacted by SAT. We observed no

correlation between surface pressure and SRS in any region,

TABLE 2 Correlation coefficients between SRS and meteorological elements in 11 regions in China during 1961-2020. SAT is surface air temperature,
SP is surface pressure, PRE is total precipitation, RH is relative humidity, LC is low cloud cover, TC is total cloud cover,WC is 10 mwind speed, AER
is aerosol. The regions r1-r11 same as in Figure 8.

SAT SP PRE RH LC TC WS AER

r1 0.41pp 0.23 −0.72pp −0.73pp −0.81pp −0.80pp −0.07 −0.27

r2 0.37pp −0.01 −0.68pp −0.48pp −0.66pp −0.80pp 0.11 −0.17

r3 −0.03 −0.06 −0.52pp −0.29p −0.50pp −0.75pp 0.47pp −0.16

r4 0.18 −0.03 −0.53pp −0.47pp −0.47pp −0.74pp 0.19 -0.25

r5 0.68pp 0.42pp −0.78pp −0.83pp −0.89pp −0.86pp 0.15 −0.39p

r6 0.37pp −0.14 −0.51pp −0.49pp −0.79pp −0.84pp 0.45pp −0.34p

r7 0.46pp −0.03 −0.52pp −0.67pp −0.83pp −0.85pp 0.28 0.01

r8 0.27p 0.12 −0.75pp −0.74pp −0.83pp −0.77pp 0.01 −0.60pp

r9 0.42pp 0.16 −0.69pp −0.71pp −0.75pp −0.76pp −0.03 −0.34p

r10 0.36pp −0.13 −0.70pp −0.72pp −0.78pp −0.83pp 0.12 −0.28

r11 0.25 0.03 −0.76pp −0.72pp −0.85pp −0.91pp 0.16 −0.17

FIGURE 9
Annual-mean and seasonal SRS for 11 regions between
1961 and 2020. Regions r1–r11 are the same as in Figure 8.
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with the exception of r5.Whereas significant positive correlations

(at 99% significance) exist between wind speed and SRS in r3 and

r6, this relationship returns only weak positive correlations in

other regions, and even a weak negative correlation in r1.

Therefore, although SAT and wind speed both influence SRS,

wind speed only passes the significance test in r3 and r6 regions.

Overall, among the eight meteorological influence factors which

can enhance SRS are SAT and wind speed, but wind speed only

passes the significance test in r3 and r6 regions. Meanwhile, cloud

cover, precipitation, relative humidity, and aerosol are the main

weakening influence factors.

Conclusion

This paper used ERA5 reanalysis to investigate the spatial

and temporal distributions of SRS throughout China for the

period 1961–2020 and to evaluate correlations between SRS and

meteorological factors. From this assessment, we draw the

following conclusions:

1) SRS high value centers are located primarily on the southwest

Tibetan Plateau, whereas the low value center occurs on the

northeast Yunnan–Guizhou Plateau and in the Sichuan

Basin. SRS values are highest in summer, followed by

spring, autumn, and winter. The annual-mean of SRS is

increasing in Northeast China, North China, Southwest

China, South China, and Xinjiang, whereas the Tibetan

Plateau is experiencing a declining trend. SRS trends vary

significantly among the four seasons, being greatest in Eastern

China and lowest in Western China.

2) The spatial distribution of the first mode of EOF indicates

that, between 1961 and 2020, annual-mean SRS on the

southern Tibetan Plateau was anti-phased with that of

other regions. Combined with the time period, the SRS

throughout China underwent a decadal transition around

the year 2000, after which most parts of China experienced

positive SRS anomalies. This pattern is mainly affected by

SAT, total precipitation, relative humidity and cloud cover.

Only the southern part of the Tibetan Plateau was dominated

by negative anomalies. The spatial distribution of the second

mode of EOF reveals a “positive north and negative south”

pattern of annual-mean SRS, with a predominantly

interannual variability. Using the EEMD method, we

found that the temporal evolution of SRS is largely

interannual.

3) By analyzing potential influencing factors, we observed that

SAT and wind speed are both positively correlated with SRS.

In contrast, precipitation, relative humidity, cloud cover, and

aerosol are negatively correlated with SRS, suggesting that,

although SAT and wind speed serve to enhance SRS,

precipitation, relative humidity, cloud cover, and aerosol

weaken SRS. We employed REOF to divide Chinese SRS

into 11 specific regions. For each region, maximum SRS

values occurred in the spring or summer (warm season),

whereas minimum values largely coincide with winter. In

terms of annual-mean SRS, the top five regions (from largest

to smallest) are the western Tibetan Plateau, western

Northwest China, the eastern Tibetan Plateau, northern

Xinjiang, and North China.
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