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The purpose of this paper is to estimate county-level aggregate crop insurance and
reinsurance losses under systematic risk. The effect of dependence risk on losses
assessment and insurance pricing is quantified by establishing joint distribution
functions between county-level yields using different forms of multivariate copulas.
The research also stresses the importance of selecting the appropriate copula form for
estimating losses. This article highlights several significant findings. The estimated
aggregate losses for related counties are not significantly different between the model
assuming dependence (copula-based) and the model assuming independence
(individual) that adheres to the equivalence principle. On the other hand, the
copula-based model has a discernible effect on the estimated Value-at-Risk and
Expected Shortfall for related counties. Additionally, for the different layers of the
Standard Reinsurance Agreement policy, the copula-based model can measure the
aggregate losses more accurately than the individual models. Furthermore, when there
is obvious tail dependence in the related counties’ yields, the vine copula function form,
which provides a more flexible description of the dependence, is more suitable for
quantifying tail risk. As a result, insurers and governments should conduct a more
comprehensive risk assessment of yield dependence when rate-making and allocating
subsidies.
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1 INTRODUCTION

The federal crop insurance program in the United States, which currently provides yield-based
coverage and revenue insurance to help agricultural producers avoid losses due to low crop yields or
lower-than-expected crop prices, is one of the most extensive support programs for agricultural
producers.

Under the federal crop insurance program, producers can purchase insurance policies at a
subsidized rate. These insurance policies compensate producers for current losses caused by either
below-average yields (yield-based coverage) or below-average revenue (revenue-based coverage)
(revenue insurance). Under a Standard Reinsurance Agreement (SRA), policies are sold through
private insurance companies. USDA’s Risk Management Agency (RMA) subsidized the policy
premium and a portion of the companies’ administrative and operating expenses and shares in the
companies’ underwriting gains and losses. Premium subsidy rates have increased in recent decades
for a variety of policy types so that producers typically pay only about 40% of their premiums. It cost
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the federal government $5 billion in 2016 and nearly $9 billion on
an annual average basis over the last 5 years.

Many studies cast doubt on the government’s support for crop
insurance schemes, claiming that the substantial subsidies offered
to farmers and insurance corporations would result in a variety of
inefficiencies in the aggregate economy (Smith and Goodwin,
1996; Goodwin and Vado, 2007; Goodwin and Smith, 2013;
Smith, 2011). Otherwise, proponents of such schemes argue
that agricultural damage from possible systemic risks such as
droughts and floods is too great for commercial insurers and
reinsurers to cover adequately (Miranda and Glauber, 1997;
Coble et al., 2003).

Crop insurance policies are designed to protect against income
losses caused by fluctuations in crop prices and yields. Premium
pricing for such contracts is an actuarial issue that involves
describing the joint distribution of prices and yields (Coble
et al., 2010). A density function of crop yields under proper
information circumstances must be determined as part of the
actuarial fair pricing procedure. Unlike most other types of
insurance, crop insurance lacks the necessary information to
accurately estimate the likelihood and magnitude of losses.
One of the most significant issues is a lack of relevant data.
Today’s standard method regresses historical yield time series
data and then uses the predicted and adjusted residuals to
estimate a crop yield conditional density function. Numerous
studies have been conducted to determine the marginal
distribution of yields. For example, Atwood, Shaik, and Watts
(2003) argue that calculating trends with short-term panel data
biases the analysis in a Type II direction, failing to reject
normality when the underlying distribution is nonnormal.
This research reveals that yield parameterization can influence
crop insurance payouts. Unchecked yield distribution
specifications may result in economic inaccuracies in crop
insurance rating and expected payouts (Sherrick et al., 2004).
Goodwin et al. (2000) compared price risk estimation and
insurance rates and used specification tests to analyze
distributional assumptions. The reality that the best-fitting
distribution in-sample is not necessarily the best choice out-
of-sample is critical for determining crop yield distributions.
Woodard and Sherrick (2011) present a method for estimating
flexible and efficient mixed models using cross-validation that
alleviates many of these model selection difficulties. Nelson and
Preckel (1989) proposed the conditional beta distribution as a
parameterized model for the probability distribution of
agricultural output by a two-stage maximum likelihood
estimation method.

In addition, inaccurate predictions and inferences of a
parametric may result from incorrect distributional choices.
Due to these restrictions, nonparametric approaches for
estimating yield distributions have been developed (Goodwin
and Ker, 1998). Tolhurst and Ker (2015) propose estimating crop
yields using mixtures with embedded trend functions to account
for potentially different technical development rates. When
distinct trend functions are incorporated into mixture
components, projected conditional yield densities differ from
those derived from detrended data. The focus of these
researches has been on estimating the marginal distribution of

crop yields and determining whether an optimal marginal
distribution can be established. Even though years of research
have failed to determine which distribution provides the most
accurate yield estimate, the current trend is toward employing
more flexible parameter distributions that accommodate for
skewness and excess kurtosis (Ramsey and Goodwin, 2019).

For the discussion of utilizing the copula function to measure
the dependence of variables in contract design and pricing for
government revenue insurance, Ramsey et al. (2019) conclude
that the economic impact of copula choice on pricing for
individual policies was minor, and changes in marginal
distributions significantly influence rates. At the moment, the
revenue insurance pricing model makes two assumptions
regarding the structure of the dependence. The first
assumption is that the Gaussian copula accurately captures the
relationship between price and yield, and the second is that the
Gaussian copula function is deterministic for each state (Ramsey
et al., 2019). The second implication is that crop insurance rate
determination ignores the county-level yield dependence, which
may result in some mistakes or omissions of systemic risk.

Because yield risk is spatially correlated, a measure of the
spatial dependence of yield is required. The empirical
investigation has indicated that the systemic risk tends to be
much greater when extreme weather circumstances such as
drought occur (e.g., Goodwin, 2001). Quantifying the degree
of systemic risk is critical for addressing public policy issues
regarding the need for large crop insurance subsidies, especially
relevant given the reliance on county-level yield hazards. For
example, Wang and Zhang (2003) use spatial statistics to
investigate the efficiency of risk pooling for crop insurance in
the presence of correlation. When modeling the insured losses
dependence structure, the size of the buffer load is determined by
the value-at-risk (VaR) of aggregate losses between states (Xu
et al., 2010, Okhrin et al., 2012). Goodwin and Hungerford (2015)
use a variety of copula models to assess the degree to which
weather and natural disaster risks in agriculture are systemic and
state-dependent. Their findings indicate that the approach taken
to quantify multiple, correlated sources of risk may have
significant implications for the accurate measurement of
portfolio risks. Studies have also argued for improved pricing
accuracy based on yield data from surrounding counties and that
the dependent yield information can make insurance pricing
more accurate when the dependency structure is known (Racine
and Ker, 2006; Zhu, Goodwin, and Ghosh, 2014).

The critical challenge of estimating and pricing the loss risk
of a portfolio of crop insurance policies has attracted
significant attention. The same component that creates
dependencies between yields in different locations in crop
yield modeling can also lead to systematic risk in a crop
insurance portfolio. To model a portfolio of county-level
contracts, we must consider the inter-dependencies between
the portfolio’s county-level yields. A copula can be used in the
yield model to estimate the dependence’s losses, and then the
contract can be priced actuarially based on the mean of the loss
distribution. The copula function that represents the
dependence of random variables and generates the
distribution of random variables must be estimated in
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modeling this yield structure. Goodwin and Hungerford
(2015) propose that RMA may use the deterministic
Gaussian copula assumption to fit the dependent structure
of price and yield when the data sample is small and the effects
of different copula function forms on rate-making are
negligible.

So far as we know, no objective criterion exists to compare the
accuracy of copula-based approaches to those that do not account
for yield dependence. Moreover, no research has been undertaken
to ascertain the efficacy of the copula-based approach for crop
insurance indemnity in the presence of systemic risk. This
research aims to determine the extent to which systematic risk
directly or indirectly affects indemnification by developing
aggregate losses models for county-level yields using various
copula forms. We are particularly interested in the tail risk of
the losses distribution, as the possibility of experiencing large
losses is critical for getting reinsurance funds and subsidies. We
also measure the tail risk here by simulating the aggregate losses’
VaR and Expected Shortfall (ES). Stochastic simulation
approaches can calculate the aggregate losses, ES, and VaR
using the estimated copula functions and marginal
distributions of county-level yields. By comparing the
simulation results, we could determine whether the pricing
model with a dependence assumption is more effective than
the individual model with no dependence assumption.

This research conducts an empirical study of the efficacy of
risk measurement in two particular areas. We test the
effectiveness of the estimation approach for crop insurance
indemnity of risk portfolio based on copula-based and
individual models. Then, we examine the accuracy of those
two models for the aggregate losses assessment at various
layers of SRA policy. We conclude that, compared to the
individual models, the copula-based models have a negligible
effect on estimating aggregate losses under the equivalence
principle while beating the individual models in estimating
VaR and ES values. Otherwise, the copula-based models have
significant consequences for appropriately estimating portfolio
risk at various layers of SRA policy at various layers of SRA policy.
The Vine copula function approach, which allows for a more
flexible definition of dependence risk, is more suitable for loss
measurement in crop insurance when the tail dependence can be
captured.

The rest of the paper is structured in the following. Section 2
provides an overview of the data sources. Section 3 discusses
using copula functions as the Vine copula in modeling county-
level dependent risk, the model-building procedure, and the
effectiveness assessment. In Section 4, this approach is used to
county-level data sets of the United States to conduct empirical
analysis, and the findings are reported. The paper is ended by
exploring the effectiveness of copula-based models for estimating
dependent risk in crop insurance.

2 DATA SOURCES

We obtain the average county-level corn yield per acre from the
US Department of Agriculture’s National Agricultural Statistics

Service (NASS) (USDA). SRA established three state-based
reinsurance pools1. Because our objective is to quantify yield
dependence under systemic risk for each group, we restrict our
analysis to the rainfed region of the United States (east of the
100th meridian) from 1977 to 2007. Our model consists of three
states (Illinois (IL), Indiana (IN), and Iowa (IA) in Group 1,
Alabama (AL), Arkansas (AR), and Florida (FL) in Group 2, and
Pennsylvania (PA), New Jersey (NJ), and Maryland (MD) in
Group 3) each with three related counties. As a result, the data
sets include the aggregated yields of 27 counties (Figure 1).
Notably, we randomly select the counties in each state, which
either contain adjoining or nonadjacent counties, to test the
effectiveness of the copula-based model for losses estimation
in different situations.

Each county’s raw yields were detrended using robust
regression procedures similar to those used in RMA. The
regression method we use, M-estimation, is a more
generalization of MM-estimation (Huber, 1973). Finger (2010)
notes that the errors associated with this detrending method are
likely to be small or moderate in magnitude.

3 METHODOLOGY

3.1 The Methods for Measuring Aggregate
Losses
The SRA decides the government’s losses/gain split with Approved
Insurance Providers (AIPs, the RMA’s designation for insurance
companies), which means that the government will bear all
unaffordable underwriting losses. The FCIC provides both
proportional and non-proportional reinsurance under the present
SRA. Insurance companies are permitted to commercially reinsure
any portion of their liability that has not been ceded to the FCIC, as
long as they disclose all facts in their operations plan. The SRA’s non-
proportional reinsurance provision reduces insurers’ liability exposure
on their retained book of business. The FCIC’s share of losses on an
insurer’s retained book of business varies with each fund and is
contingent on the insurer’s losses ratio. The state losses ratio of an
individual AIP determines theAlP’s gain/losses share. Each state fund’s
losses ratio is determined separately2. The FCIC employs a graded
structure in which insurers are held accountable for diminishing
percentages of eventual net losses as their losses ratio improve.

Under the SRA, a company’s retention levels and potential
gain/losses are greatest when policies are placed in the
Commercial Fund and lowest in the Assigned Risk Fund.

1“State Group 1” means Illinois, Indiana, Iowa, Minnesota, and Nebraska. “State
Group 2” means Alabama, Arizona, Arkansas, California, Colorado, Florida,
Georgia, Idaho, Kansas, Kentucky, Louisiana, Michigan, Missouri, Mississippi,
Montana, North Carolina, North Dakota, New Mexico, Ohio, Oklahoma, Oregon,
South Carolina, South Dakota, Tennessee, Texas, Virginia, Washington, and
Wisconsin. “State Group 3” means Alaska, Connecticut, Delaware, Hawaii,
Maine, Massachusetts, Maryland, Nevada, New Hampshire, New Jersey, New
York, Pennsylvania, Rhode Island, Utah, Vermont, West Virginia, and Wyoming.
2The losses ratio that determines the AIP percent share of the underwriting results
is based on their entire state book of insurance, i.e. it is the combined losses ratio for
all crops and all contracts for the state.
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FCIC receives 80% of the premium and associated liability in the
Assigned Risk Fund, while the company retains 20%. Companies
must keep a minimum of 30% (and may retain up to 100%) of the
premium and associated liabilities in the commercial fund. FCIC
pays increasing shares of indemnities from the liability retained
by the company, based on the company’s state-level losses ratio
(indemnities divided by total premium) in the fund, with FCIC
paying the total losses once the losses ratio surpasses 5.0. The
proportions of income and losses that fall to private insurance
companies vary significantly by the fund (as shown in Table 1).
For Assigned Risk policies, for example, the highest potential
underwriting losses is 16.5 percent (0.6*7.5 + 0.6*6.0 + 2.8*3) of
company-retained premium. However, the company’s potential
for underwriting gains on policies put in the Assigned Risk Fund
is likewise relatively small, as11.4 percent of retained premium at
most. In comparison, on policies put in the Commercial Fund,
Group 1 might earn up to 34.75 percent of the retained premium
on Commercial Fund policies. However, the downside risks are

also greater, and the maximum permissible underwriting losses is
94 percent of the retained premium.

The main problem addressed here is evaluating the
effectiveness of measuring insurance payment methods based
on the dependence risk model. We must determine whether there
is any potential for dependence between the portfolio’s county-
level yields, and this dependence could be captured in the
insurance losses model to reflect the more accurate fair rates.
Then, from a reinsurance perspective, losses evaluation exposed
to systematic risk is crucial for determining underwriting terms.
Risk assessment at various layers enables us to determine the
effect of yield dependence on rate-making.

Crop insurance rate-making involves the simultaneous
distribution of prices and yields. To keep things simple, we
will focus exclusively on the indemnity under systemic risk
and ignore the volatility of the corn price. The indemnity for
county i , indemi, for the area yield insurance contract that
guarantees the coverage level, say λŷi, (Ker and Coble 2003) is:

indemi � Pr(yi < λŷi)(λŷi − E[(yi

∣∣∣∣yi < λŷi)]) (1)
Where yi is the realized yield, ŷi is the predicted yield in county i
expected yield, and λ is a coverage level between 0 and 1. In this
study, we focus on λ � 0.9, which is the most commonly selected
coverage level, and it accounts for 95% of the policies (Ker,
Tolhurst, and Liu, 2015). Using Eq. 1, we can calculate the
aggregate losses based on the copula-based and individual
models for the related counties portfolio.

The objective of reinsurance is to provide protection for
aggregate losses L that exceed some trigger level T based on
the level of losses that the insurer can absorb. By contract design,
once the aggregate losses exceed this trigger, the reinsurance pays
some fixed proportion of aggregate losses L usually up to some
predetermined cap C on the reinsurer’s exposure. Therefore, if
losses are less than the trigger, the contract pays nothing. The

FIGURE 1 | The selected states and counties for Group 1, Group 2 and Group 3.

TABLE 1 | Shares of underwriting gains and losses to insurance companies under
the 2021 Standard Reinsurance Agreement.

Losses ratio Reinsurance fund

Assigned risk Commercial fund

Percentage of losses/Gain
Losses Group 1 Group 2 Group 3
1.0–1.6 7.5 65 42.5 42.5
1.6–2.2 6.0 45.0 40.0 40.0
2.2–5.0 3.0 10.0 5.0 5.0
>5.0 0.0 0.0 0.0 0.0

Gains
0.65–1.0 22.5 75.0 97.5 97.5
0.5–0.65 13.5 40.0 40.0 40.0
<0.5 3.0 5.0 5.0 5.0
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contract pays out L − T if losses fall in the range between the
trigger and the cap. If losses exceed the cap, the contract pays out
the difference between the cap and the trigger, C − T. Using this
basic structure, one can specify the payout of a layer (a, b] of
payout, denoted by Pay[a,b] of the reinsurance as follows:

Pay[a,b] � Max [0, Min(L − T, C − T)] (2)
Therefore, a layer contract covers part of the losses between

trigger level T and predetermined cap C, with the maximum
payout limited to the difference b − a. It is also referred to as an
excess of losses (XOL) insurance policy. The reinsurance
program of SRA is based on a modified version of the XOL
insurance policy, which covers a certain percentage of the
standard layer policy. However, based on minimizing the
moral hazard and adverse-selection problems associated
with writing company reinsurance. The payout function on
these XOL contracts would also be a function of aggregate
losses for the different groups. Thus, the expected payout of the
contract has the form δPay[a,b], 0< δ < 1 representing the
payout proportion, which depends on the contract. Under
the SRA program, there are three different coverage layers:
losses ratios between 1.00–1.60, 1.60–2.20, and 2.20–5.00,
separately.

Other than estimating the aggregate losses for the regular
contract and SRA layers contract, we also estimate the VaR of the
aggregate losses, which can be applied to measure the systemic
risk inherent to an insurance portfolio. The VaR of aggregate
losses for the risk portfolio in each State is:

VaRAL(α) � inf
⎧⎨⎩al: P⎛⎝∑3

i�1L(yi)> al⎞⎠≤ α
⎫⎬⎭ (3)

Herein L(yi) denotes the losses of county i in the state, which
depends on the yield yi in each county. And 1 − α is the
confidence level, the α � 0.1 at here, it means that 90% of
losses are less than the VaR value.

We also consider Expected Shortfall, which measures the
average losses over the VaR value. ES takes the average of all
the losses greater than the VaR value. Since it is an expectation
calculated by integrating over an entire region, it is a much more
robust statistic compared to VaR, which is just a single value.

3.2 Simulation of Aggregate Losses Using
Copulas
We use the copula-based models to measure the dependence
between county-level yields for aggregate losses quantification.
Due to the “curse of dimension” associated with an excessive
number of variables, a yield portfolio including three counties
from each of the nine states is chosen for testing for simplicity and
practical reasons. The data sets, which cover the yields of three
counties in nine states, are summarized in Table 2. We can find
that county Allamakee in Group 1 and county Clay in Group
2 has obvious leptokurtic distribution, and most of the counties
have negative skewness. Figure 1 shows the geographical location
of the selected counties in each state. The counties in AR, NJ, and

MD are adjacent to each other, and the state AL, FL, PA has the
most scattered counties portfolio.

Copulas are very flexible with regard to representing the
dependent structure of variables. The copula function’s
fundamental concept is to link the marginal distribution to the
joint distribution (Sklar, 1959), avoiding direct estimation of the
multivariate distribution function and fitting the multivariate
distribution function using parametric or non-parametric
methods to estimate the marginal distributions of the variables
independently. Copulas have grown in popularity in recent years
and have been used to a variety of financial difficulties
(Embrechts et al., 1999; Cherubini et al., 2004). They have also
been used extensively in agricultural economics, mostly to model
spatial dependence in yields or the dependence of random
variables in crop revenue insurance, margin insurance, and
whole-farm insurance (Vedenov and Power, 2008; Zhu et al.,
2008; Bozic et al., 2014; Bulut and J. Collins, 2014; Ahmed and
Serra, 2015; Goodwin and Hungerford, 2015; Feng and Hayes,
2016).

Let F be a joint distribution function with univariate marginal
distribution functions F1 , . . . , Fd. Then there exists a copula
function C: [0, 1]d → [0, 1] such that

F(x1, . . . , xd) � C(F1(x1), . . . , Fd(xd)), (4)
where x1, . . . , xd ∈ R are random variables. By inversion of the
joint distribution in Eq. 4, the copula function can be written as

C(u1, . . . , ud) � F(F−1
1 (u1), . . . , F−1

d (ud)), (5)
where F−1

1 , . . . , F−1
d are 1-dimensional quantile functions and

u1, . . . , udϵ[0, 1]. The copula function is parameterized by a
vector ρ consisting of dependence parameters. Given that the
copula is itself a joint distribution function, it satisfies all of the
criteria for a joint distribution function.

The copula function’s fundamental properties are symmetry
and tail dependency (Li and Genton, 2013). Insurance company
and financial experts are often interested in the tail characteristic,
since they represent the degree to which a portfolio’s losses occur
in the worst-case scenario (Nelsen, 1999). Tail dependency is an
asymptotic concept, and an asymmetric copula function
distribution might have either lower or upper dependence,
depending on the empirical phenomenon being described. The
coefficient of upper-tail dependence is defined as follows:

λU � lim
u→1

Pr(U1 ≥ u|U2 ≥ u) � lim
μ→1

1 − 2u + C(u, u)
1 − u

, (6)

While the lower-tail dependence coefficient is defined as:

λL � lim
u→0

Pr(U1 ≤ u|U2 ≤ u) � lim
μ→0

C(u, u)
u

, (7)

Copulas exhibit tail dependence if the respective coefficients in
Eqs 6, 7 are nonzero, and when the tail dependence coefficient is
close to 1, large values of the variables occur together.

The copula family chosen is inherently a decision of theoretical
tail dependence. The parametric estimating procedure in an
empirical investigation involves an a priori assumption about
the data sets’ relationship. The five most often used parametric
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copulas (Gaussian, t, Gumbel, Clayton, and Frank) and their
various rotations may capture a wide range of bivariate
dependent behavior. However, for aggregate losses of coverage
yields greater than two counties, the archimedean copula
(Gumbel, Clayton, and Frank) cannot accurately simulate
multivariate dependence due to its single parameter. In
addition to elliptical copulas, the vine and hierarchical copulas
can also capture multivariate dependence.

By combining pair-wise copulas, the vine copula enables much
more flexibility in multivariate modeling (Bedford and Cooke,
2002; Kurowicka and Cooke, 2006). According to Aas et al.
(2009), the factored form of a joint multivariate density
function for a set of k random variables is:

f(x1, x2, . . . , xk) � fk(xk) · f(xk−1|xk) · f(xk−2|xk−1, xk) . . .
· f(x1|x2, . . . , xk).

(8)
This density is unique for a given ordering of variables. The joint

density can also be expressed in terms of a copula function, as:

f(x1, x2, . . . , xk) � c1...k(F1(x1), . . . , Fk(xk)) ·∏k
i�1

fi(xi). (9)

Joe (1996) shown that each term in Eq. 9may be decomposed into
the product of a pair-wise copula and a conditional marginal density:

f(x|υ) � cx,υk|υ−k(F(x|υ−k), F(υk|υ−k)) · f(x|υ−k). (10)
Aas et al. (2009) described how to represent a multivariate

density as a product of pair-wise copulas. The vine copula
functions are best described as a set of “trees,” with each
variable’s distribution represented by conditional distributions
at a higher tree level. Bedford and Cooke (2002) presented a
“regular vine” representation that enables considerable flexibility
in representing multivariate densities in terms of pair-wise copula
combinations. Kurowicka and Cooke (2006) identified two
distinct types of vine copulas, dubbed the “C-vine” and the
“D-vine.” When variables have a particular ordering, a D-vine
is appropriate, whereas a C-vine is good when variables may be
arranged according to their effect on other variables (Aas et al.,
2009).

Following Goodwin and Hungerford (2015), we establish
county-level yield dependence models using elliptical copulas
(Gaussian, t) and vine copulas. To begin, we estimated the
corresponding Gaussian and t-copula from detrended county-
level crop yield data using the empirical marginal distribution
approach. Goodwin and Hungerford (2015) point out that this
approach results in less variability than estimation methods based
on parametric marginal distributions. We need to estimate three
separate coefficients for the Gaussian and t-copula dependence
models since each state has three random variables representing
county-level yield. Additionally, the t-copula must estimate the

TABLE 2 | Summary statistics of average county-level yield (bushel per acre) of corn, by counties.

Group State Observations Summary statistics of crop yield

County Years Min. Median Max. Std.Dev CV3 Skewness Kurtosis

Group 1 IL Adams 30 85.72 151.91 199.96 24.3110 0.1620 −0.5094 3.1834
Alexander 30 93.68 140.60 178.00 22.4498 0.1631 −0.3542 2.4093
Bond 30 69.72 133.41 173.96 23.3853 0.1780 −0.5013 2.9523

IN Adams 30 102.0 151.9 171.1 17.1990 0.1164 −0.8245 2.9605
Allen 30 119.3 156.8 170.3 13.0258 0.0859 −0.8696 2.7811
Bartholomew 30 96.42 149.68 178.92 20.5502 0.1387 −0.6109 2.5246

IA Adair 30 99.97 152.71 187.06 20.0485 0.1350 −0.6756 2.9488
Adams 30 99.82 145.33 174.26 20.9762 0.1476 −0.6395 2.2976
Allamakee 30 97.54 159.71 180.71 17.7399 0.1132 −1.8518 6.5536

Group 2 AL Autauga 30 40.00 80.12 126.62 21.5820 0.2740 0.0680 2.3087
Cherokee 30 35.00 92.09 147.96 28.0576 0.2896 0.0100 2.1373
Colbert 30 68.38 104.17 167.62 26.6857 0.2444 0.4541 2.0615

AR Clay 30 73.68 154.01 179.02 21.5321 0.1439 −1.4126 5.8428
Craighead 30 68.68 140.55 184.00 26.0007 0.1897 −0.4766 2.8372
Greene 30 68.68 138.50 172.00 20.3717 0.1522 −1.0445 4.5724

FL Escambia 30 64.66 117.38 149.70 22.1617 0.1928 −0.4251 2.3057
Gadsden 30 64.48 96.83 133.06 18.1695 0.1830 0.2534 2.2667
Hamilton 30 73.03 99.24 135.00 14.2299 0.1394 0.4311 3.1189

Group 3 PA Adams 30 63.48 120.13 188.96 27.5589 0.2415 0.0687 3.1202
Armstrong 30 76.44 122.91 155.06 22.9851 0.1890 −0.3821 2.1000
Beaver 30 73.43 124.48 150.75 21.3783 0.1761 −0.6073 2.3726

NJ Burlington 30 61.54 134.41 149.82 21.5385 0.1705 −1.1812 3.9779
Cumberland 30 57.27 127.79 160.06 25.4670 0.2037 −0.7255 3.0111
Gloucester 30 50.27 126.22 153.06 26.7836 0.2221 −0.8964 3.1647

MD Anne arundel 30 86.77 129.01 169.28 22.9579 0.1837 −0.0216 1.7190
Baltimore 30 86.15 137.34 171.18 20.5206 0.1543 −0.5514 2.5109
Calvert 30 52.07 116.12 167.98 26.4296 0.2282 −0.3819 2.7586

3CV is the Coefficient of Variance.
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degree of freedom parameter, which converges gradually to the
Gaussian copula as the degree of freedom grows (the typical cut-
off degree of freedom is 30).

The Gaussian and t-copula maximum likelihood estimation
results for the yield data sets are reported in Table 3. The first
conclusion is that in nine states, the dependencies between
county-level yields are all-powerful, and the data sets from IL,
IN in Group 1, AL in Group 2, NJ, MD in Group 3 exhibit
rather substantial tail dependence. However, the fitted
t-copula has a degree of freedom of more than 30 for
several states, such as IA in Group 1, AR and FL in Group
2, PA in Group 3, indicating that the tail dependence of these
data sets is minor, with essentially no difference from Gaussian
copula. Moreover, the county-level yields negatively depend
on each other for FL in Group 3. As a result, we cannot
determine which copula between Gaussian and t is superior
based on the AIC values of Gaussian and t-copulas since the
better-fitting copula varies between data sets.

We then estimate the R-vine copulas using a sequential
maximum likelihood procedure. Vine copulas are formed of
Gaussian, t, Clayton, Gumbel, and Frank copula and their
rotating type. Maximum spanning trees are used to pick R-vine
trees with respect to certain edge weights. The appropriate
pair-wise copula families are selected according to the Akaike
Information Criteria (using maximum likelihood estimation)
and estimated sequentially (forward selection of trees). The
estimation results and AIC value statistics are presented in
Table 4, and when compared to other vine copula forms
(R-vine and D-vine), this approach selects the C-vine
copula as the dependence structure for all data sets.

Additionally, we perform a Goodness-of-fit (GOF) test on the
fitted results of each portfolio’s various copula functions, and the
results are provided in Table 5. The p-values of the GOF test for
the fitted copula function are more than 0.05 for all analyzed risk
portfolios, indicating that the Gaussian and t-copula assumptions
are not rejected. Table 4 also compares the AIC values of several
copula forms, and we see that the C-vine copula’s AIC values are
much fewer than those of the Gaussian and t-copula for each
portfolio, indicating that the C-vine copula is favored over the
Gaussian and t-copula.

Then, we need to fit the yield marginal distribution to simulate
crop yield losses based on the determined copula-based model.
Compared to using a non-parametric marginal distribution to fit
the yield distribution, we choose a parametric marginal
distribution since it can give an explicit explanation. We
estimate the parametric distribution individually for each
county yield and then combine it with the copula-based
copula model to generate random variables. Numerous
parametric distributions have been used to model yield
distributions in crop insurance, and we fit the yield using a
two-component mixture normal and a Weibull. The
distribution hypothesis test and AIC values for the county
yield data sets are provided in Table 6. As predicted, the
Weibull and mixture normal distribution hypotheses are both
accepted.

After all, the aggregate losses are fitted based on the estimated
copula function and marginal distribution using the approaches
outlined above. We emphasize the likelihood of significant
indemnity resulting from systemic risk in county-level risk
portfolios. Notably, we do not adjust the portfolio for

TABLE 3 | Elliptical (Normal and t) copula estimation results for the nine datasets.

IL IN IA

Parameter Normal t Normal t Normal t
ρ12 0.6862 0.6162 0.8228 0.7254 0.8937 0.8949
ρ13 0.7757 0.8209 0.8706 0.8223 0.7301 0.7263
ρ23 0.5843 0.5818 0.7710 0.6494 0.7637 0.7596
df NA 2.7526 NA 1.6125 NA 33.8831
AIC −33.0568 −36.4327 −62.0138 −61.3223 −59.8349 −57.8301

AL AR FL

Parameter Normal t Normal t Normal t
ρ12 0.7816 0.7869 0.9011 0.9003 0.7020 0.6996
ρ13 0.5671 0.6060 0.8705 0.8692 −0.4843 −0.4819
ρ23 0.7963 0.7914 0.9042 0.9035 −0.4731 −0.4708
df NA 5.2821 NA 37.0054 NA 138.7882
AIC −44.8526 −44.0452 −87.7323 −85.5402 −17.3834 −15.2785

PA NJ MD

Parameter Normal t Normal t Normal t
ρ12 0.5176 0.5187 0.8104 0.8014 0.7328 0.7751
ρ13 0.4244 0.4265 0.8312 0.8211 0.8926 0.9069
ρ23 0.8463 0.8455 0.9211 0.9280 0.7510 0.7582
df NA 94.9907 NA 4.5455 NA 3.9828
AIC −34.2009 −32.1208 −77.2285 −77.7075 −58.7623 −62.0529

Note: where 1, 2 and 3 indicate the three selected county, respectively. The estimation method to be used to estimate the dependence parameter is the inversion of Kendall’s tau
estimator, and df is the degree of freedom.
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variations in exposure (i.e., various amounts of acreage) between
counties and hence assume that all counties have the same level of
corn acreage, then we can adjust the total losses by aggregating
the average county-level yield losses per acre for each portfolio.
Additional loading factors that account for administrative costs
are disregarded.

3.3 The Efficacy Tests of Copula-Based
Models
TheAIC criteria and p-value can only be used to determine the fitted
copula’s goodness-of-fit (Goodwin andHungerford, 2015). To assess
the efficacy of the copula-based model on the accuracy of losses

assessment and insurance pricing, we design a simulation
experiment using the Mean Squared Error (MSE), which
quantifies the difference between the copula-based model’s
estimated losses and the “true” losses as defined by Harri et al.
(2011). Ker et al. (2016), Yvette Zhang (2017). and Yi et al. (2020)
have all employed the MSE measure in the context of agricultural
commodity hedging.

We use nonparametric kernel techniques to estimate county-level
yield density functions for each portfolio in the 9 states, highlighting
that these densities account for county-level yield dependence. Then,
assuming that these densities accurately represent the “true” density
function, we can generate dependent data samples from these
densities. To create data sets based on these “true” densities, an
aggregate of 500 samples of sizes n= 30 and n= 50 is drawn from the
“true” distributions for each county-level data set. Themean squared
error (MSE) in calculating aggregate losses compared to “true”
aggregate losses is used to evaluate the effectiveness of pricing.
Premiums are derived for each sample using a Monte Carlo
approach based on the individual model with the non-
dependence assumption and an estimated copula-based model
(Gaussian, t, and C-vine copula). The Weibull and mixture
normal distributions obtained in Section 3 are used to fit the
yield distributions of the individual and copula-based models.
The following equation is used to obtain their appropriate MSE:

MSE(L) � 1
500

∑500

i�1 [π̂i − π(L)]2 (11)

Where π is the “true” losses, and π̂i is the corresponding estimate
in the ith experiment. The MSE is calculated by comparing the
estimated aggregate losses from the various models to the “true”
aggregate losses in each state. The primary role of this simulation
experiment is to determine if the copula-based model has an
effect on losses measurement by comparing the estimated losses
for these two types of models (individual and copula-based) to the
“true” losses. We ensure consistency with this large sample size. It
makes our estimate consistent and produces the correct result on
average.

4 EMPIRICAL RESULTS AND DISCUSSION

Using the procedure outlined in Section 3, we collect yield data sets
from three counties in each selected states for three groups. We

TABLE 4 | Vine copula estimation results of data sets in each state.

Factorization Copula family Parameter 1 Parameter 2

IL C1 ,C2 Survival Gumbel 1.83 NA
C3 ,C1 t 0.81 2.00
C3 ,C2|C1 Clayton 0.40 NA
C-Vine AIC −39.62

IN C1 ,C2 Survival Gumbel 2.61 NA
C3 ,C1 Gumbel 3.15 NA
C3 ,C2|C1 Normal 0.22 NA
C-Vine AIC −67.91

IA C2 ,C1 Survival Gumbel 3.33 NA
C3 ,C2 Survival Gumbel 2.18 NA
C3 ,C1|C2 Survival Gumbel 0.25 NA
C-Vine AIC −62.34

AL C2 ,C1 Survival Gumbel 2.36 NA
C3 ,C2 Gumbel 2.43 NA
C3 ,C1|C2 Normal −0.06 NA
C-Vine AIC −48.71

AR C2 ,C1 Normal 0.90 NA
C3 ,C2 Normal 0.90 NA
C3 ,C1|C2 Clayton 0.53 NA
C-Vine AIC −88.4839

FL C1 ,C2 Normal 0.70 NA
C3 ,C1 Normal −0.48 NA
C3 ,C2|C1 Rotated Gumbel (90°) −1.14 NA
C-Vine AIC −17.4168

PA C2 ,C1 Frank 3.69 NA
C3 ,C2 Frank 9.37 NA
C3 ,C1|C2 Normal −0.07 NA
C-Vine AIC −36.6100

NJ C3 ,C1 Survival Gumbel 2.63 NA
C3 ,C2 Survival Gumbel 4.11 NA
C2 ,C1|C3 Normal 0.25 NA
C-Vine AIC −82.7749

MD C3 ,C1 Survival Clayton 5.12 NA
C3 ,C2 Survival Clayton 2.25 NA
C2 ,C1|C3 Gumbel 1.33 NA
C-Vine AIC −78.7577

Note: where 1, 2 and 3 indicate whether the yields of three counties in each state,
respectively. Using the inversion of Kendall’s tau estimator to estimate the dependence
parameter.

TABLE 5 | GOF test results of the data sets in different states.

State Gaussian t C-vine

p-value AIC p-value AIC AIC

IL 0.6628 −33.0568 0.8257 −36.4327 −39.6190
IN 0.3641 −62.0138 0.1444 −61.3223 −67.9088
IA 0.3032 −59.8349 0.2692 −57.8301 −62.3418
AL 0.3601 −44.8526 0.6089 −44.0452 −48.7106
AR 0.3521 −87.7323 0.3212 −85.5402 −88.4839
FL 0.3561 −17.3834 0.3611 −15.2785 −17.4168
PA 0.1164 −34.2009 0.0894 −32.1208 −36.6100
NJ 0.9286 −77.2285 0.9356 −77.7075 −82.7749
MD 0.1703 −58.7623 0.5420 −62.05290 −78.7577
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estimate SRA policy losses using the random numbers generated by
each fitted model. Then we examine if the tail dependency of yield
risks affects the aggregate indemnity of crop insurance, such as joint
losses due to severe weather occurrences. The asymmetric lower-tail
dependency is described by the Rotated Gumbel (180°) and Clayton
copulas, which are used to define pair copulas in vine copula.
Additionally, t-copula exhibits symmetric tail dependency, while
the Gaussian copula does not4.

The MSE of the aggregate losses between the “true” and the
fitted losses (based on the copula and the individual model) is
calculated, emphasizing comparing the differences between
models with and without dependence. The losses distributions
are calculated using 10,000 random samples generated from the
estimated losses model. Notably, we use the Weibull and mixture
normal as the marginal distributions, and the copula model’s
dependence structure varies for each state’s yield data sets. The
following are the findings of this experiment:

The mean value of aggregate yield losses is not sensitive to the
individual or copula-based model in various risk regions and
sample sizes, as shown in Tables 7–9. We can determine that the
copula-based approach has a negligible effect on the unbiased

estimator of aggregate losses accuracy through stochastic
simulations. The aggregate losses density distribution plots for
the states in Figures 2–4 help to explain this conclusion. As seen
in Figures 2–4, the copula-based or individual model may be the
most well-fitting model at different losses layers. Due to the fact
that the fair premium for crop insurance is determined on the
expectation of losses, there is no statistically significant difference
between the copula-based and individual models.

TABLE 6 | Results of Kolmogorov-Smirnov test (at 5% significance level) and the AIC value of the goodness-of-fit test.

Group
1

IL IN IA

County Weibull Mixture County Weibull Mixture County Weibull Mixture

p-value Adams 0.9921 0.9706 Adams 0.9433 0.9674 Adair 0.4624 0.3968
Alexander 0.9238 0.9647 Allen 0.4586 0.9940 Adams 0.7824 0.8879
Bond 0.9990 0.9995 Bartholomew 0.8015 0.6246 Allamakee 0.7296 0.2401

AIC Adams 278.2256 275.1835 Adams 253.9654 250.2059 Adair 265.0451 260.4891
Alexander 273.6248 271.2883 Allen 236.0602 229.0293 Adams 267.0493 253.3133
Bond 275.6055 271.5169 Bartholomew 266.2210 257.9925 Allamakee 249.0293 244.8312

Group 2 AL AR FL

County Weibull Mixture County Weibull Mixture County Weibull Mixture
p-value Autauga 0.9966 0.9955 Clay 0.8303 0.3127 Escambia 0.9027 0.9524

Cherokee 0.8343 0.9308 Craighead 0.9750 0.7012 Gadsden 0.8805 0.9964
Colbert 0.7330 0.9995 Greene 0.8286 0.9469 Hamilton 0.4201 0.4335

AIC Autauga 272.2961 268.1752 Clay 265.9092 262.5262 Escambia 272.2098 269.4284
Cherokee 287.8535 285.2474 Craighead 282.0591 272.9506 Gadsden 263.8013 258.8797
Colbert 286.2712 277.1186 Greene 264.9158 257.7720 Hamilton 251.5291 237.1732

Group 3 PA NJ MD

County Weibull Mixture County Weibull Mixture County Weibull Mixture
p-value Adams 0.4246 0.4854 Burlington 0.4640 0.8507 Anne arundel 0.6400 0.9909

Armstrong 0.9818 0.9195 Cumberland 0.5786 0.8057 Baltimore 0.7759 0.9861
Beaver 0.8211 0.9900 Gloucester 0.7634 0.4254 Calvert 0.9977 0.9616

AIC Adams 287.7737 281.2121 Burlington 266.1494 255.0774 Anne arundel 276.0907 264.7787
Armstrong 274.4310 269.1059 Cumberland 279.5334 276.3238 Baltimore 266.9404 260.6883
Beaver 268.7325 262.4391 Gloucester 281.9373 282.8471 Calvert 283.5852 280.0709

TABLE 7 | The average Mean Squared Error of aggregate losses for states in
Group 1.

n � 30 n � 50

Weibull Mixture Weibull Mixture

Individual 19.2354 20.7218 13.8076 13.2086
Gaussian 19.2320 20.6700 13.7932 13.3622
t 19.3448 20.8181 13.8149 13.2851
Vine 19.2873 20.7303 13.7933 13.2876

TABLE 8 | The average Mean Squared Error of aggregate losses for states in
Group 2.

n � 30 n � 50

Weibull Mixture Weibull Mixture

Individual 9.1846 8.5403 6.9524 4.9648
Gaussian 9.2053 8.5509 7.0002 4.9989
t 9.2302 8.5746 6.9867 5.0089
Vine 9.2216 8.5578 6.9315 4.9918

4In the later application we take the following copula families into consideration
(some properties are given in brackets): Gaussian (tail-symmetric, no tail
dependence). Student-t (tail-symmetric, tail dependence). Gumbel (tail-
asymmetric, upper tail dependence) and survival Gumbel (tail-asymmetric,
lower tail dependence). Rotated Gumbel by 90°and 270° (tail-asymmetric, no
tail dependence). Frank (tail-symmetric, no tail dependence). Clayton (tail-
asymmetric, lower tail dependence).
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Nonetheless, as shown in Tables 10–12, all copula-based models
estimated higher VaR and ES values than the individual model. In
Groups 1 and 3, the copula-based model’s VaR and ES values are
much greater than those of the individual model. VaR is used to
measure tail risk by determining the maximum possible losses value
for a given probability, and ES takes the average of all the possible
losses greater than the VaR value. By comparing the VaR and ES
values of “true” distribution, we may infer that the copula-based
model is the better-fitting model for VaR and ES values than the
individual model in Groups 1 and 3. On the other hand, there is no
discernible difference in VaR and ES values between the individual
model and the copula-basedmodel in Group 2, whichmay be due to
no obvious tail dependence between the county-level yields in Group
2. It also can be explained in Figure 3 that the individualmodel is the
most well-fitting model around the tail of the losses for Group 2.

Second, consider the payment situations for various layers.
The findings in Tables 13–15 demonstrate that the individual
model’s losses MSE is greater than the copula-based model at
various levels for all three groups, except for the MSE estimated

by using Weibull distribution for the layer of the losses ratio
2.20–5.00 in Group 2. The MSE results reveal that in Groups
1 and 3, the copula-based model may significantly reduce the
MSE of losses compared to the individual model, indicating that
dependence strongly influences this layer’s payment. In Group 2,
however, there is no substantial reduction in the MSE of losses
between the copula-based model and the individual model since
there is no evident tail dependence between the county-level
yields (as shown in Table 4). Thus, when considerable yield
reliance exists in the risk portfolio, the copula-based model beats
the individual model for calculating SRA payments.

Additionally, the losses estimations vary across by using the
various copula models. For example, in Table 13, the measured
losses MSE of data sets with a duration of 30 years and Weibull
distribution based on the Gaussian, t, and C-vine copula models
for the layer of the losses ratio 2.20–5.00 are 7.7005, 7.6656, and
7.2505, respectively. The above findings demonstrate that the
accuracy of the losses estimation for the layer of the losses ratio
2.20–5.00 changes based on the using of various alternative
copula structures, and the C-vine copula surpasses the
Gaussian and t-copula in Group 1, and the reason may be
that the IL, IN and IA states’ dependence structure has the
lower-tail characteristic (survival Gumbel has the upper-tail
properties). In comparison, in Table 14, the measured losses
MSE with a 30-year duration and Weibull distribution based on
Gaussian, t, and C-vine copula models for the layer of 2.20–5.00 is
3.4782, 3.4103, and 3.9801, respectively. While the losses MSE for
the layer of 1.00–1.60 is 4.8743, 4.9417, and 4.3894, respectively.
Thus, adopting the C-vine copula model would result in a more
accurate losses measurement at the layer of the losses ratio

TABLE 9 | The average Mean Squared Error of aggregate losses for states in
Group 3.

n � 30 n � 50

Weibull Mixture Weibull Mixture

Individual 26.0669 22.1998 15.7114 14.5431
Gaussian 26.1958 22.2409 15.7976 14.6718
t 26.2791 22.2665 15.8409 14.7108
Vine 26.1050 22.3048 15.8187 14.6373

FIGURE 2 | The losses density plot for states in Group 1 (Weibull distribution with a duration of 30 years).
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FIGURE 3 | The losses density plot for states in Group 2 (Weibull distribution with a duration of 30 years).

FIGURE 4 | The losses density plot for states in Group 3 (Weibull distribution with a duration of 30 years).
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between 1.00 and 1.60, and the reason may be that the MD state’s
dependence structure has the upper-tail characteristic (survival
Clayton has the upper-tail properties). From the empirical results
of those two groups, we may conclude that if the portfolio
contains a substantial tail risk, the C-vine copula model, which
provides a more flexible description of yield dependence, is better
suited to measure this layer of losses.

Finally, since systemic risks associated with weather will result
in concurrent agricultural production losses throughout a large
geographic area, for example, the 1988 and 2012 droughts and the

1993 floods in the central and western areas all resulted in
widespread crop yield losses. During times of significant yield
losses caused by natural catastrophes, there may be greater
interdependence between yields in different locations. A
generally concerning scenario is that Gaussian copula has a
tail reliance of zero, which cannot reflect the tail dependence
of risk portfolios as t and vine copula. Nonetheless, the findings of
this paper may lead to an intriguing conclusion. According to the
above empirical results for Groups 1, 2, and 3, the C-vine copula
model can provide a more accurate measurement of losses for
layers with tail risk. In addition, the simulation results based on
the Gaussian copula model may not differ significantly from
those based on the C-vine copula and t-copula mole for the layers
that lack strong tail dependence between counties.

TABLE 10 | The average VaR and ES of aggregate losses for states in Group 1.

n � 30 n � 50

Weibull Mixture Weibull Mixture

VaR “True” distribution 46.9562 48.2575
Individual 26.5994 31.6233 26.9795 32.9377
Gaussian 28.9666 39.1346 29.4282 39.3472
t 28.7839 38.9980 29.2539 39.1394
C-vine 28.9486 39.3872 29.2249 38.6265

ES “True” distribution 79.1993 79.7089
Individual 40.0049 43.5855 40.4974 45.6066
Gaussian 59.0655 66.3426 59.7508 69.1085
t 59.2127 66.5895 59.8756 69.3212
C-vine 60.4425 68.6596 61.3516 71.7302

TABLE 11 | The average VaR and ES of aggregate losses for states in Group 2.

n � 30 n � 50

Weibull Mixture Weibull Mixture

VaR “True” distribution 34.3501 33.7988
Individual 33.9879 28.4978 34.4625 28.9639
Gaussian 34.9967 30.7408 35.3239 30.9064
t 35.128 30.7782 35.3823 30.958
C-vine 35.1499 30.9079 35.5104 30.7988

ES “True” distribution 49.3004 49.1049
Individual 47.1956 39.0047 47.767 39.759
Gaussian 53.8759 45.4534 54.1538 46.2313
t 54.7911 45.9685 54.7368 46.5877
C-vine 53.717 45.3896 54.1409 46.1026

TABLE 12 | The average VaR and ES of aggregate losses for states in Group 3.

n � 30 n � 50

Weibull Mixture Weibull Mixture

VaR “True” distribution 52.4282 52.6927
Individual 41.0873 40.4925 41.8217 40.9976
Gaussian 51.5542 54.1355 52.4565 54.5344
t 51.3275 54.0712 52.3422 54.5641
C-vine 51.4176 53.2053 52.0784 53.4731

ES “True” distribution 76.3729 76.694
Individual 56.6024 54.5455 57.5033 55.4088
Gaussian 85.9036 81.1081 86.9555 82.5066
t 86.5183 81.6033 87.7802 83.1246
C-vine 79.8021 76.1397 80.1034 76.956

TABLE 13 | The average Mean Squared Error of aggregate losses at different
layers for states in Group1.

n � 30 n � 50

Weibull Mixture Weibull Mixture

Losses Ratio Between 100 and 160%
Individual 1.6129 4.0302 1.0581 3.0915
Gaussian 0.9985 1.2076 0.6347 0.7103
t 1.0066 1.2113 0.6465 0.7146
C-vine 1.0370 1.1618 0.6922 0.6980

Losses Ratio Between 160 and 220%
Individual 3.2074 4.1928 2.3939 2.5521
Gaussian 2.0057 1.9788 1.4758 1.1166
t 2.0144 1.9765 1.4949 1.1218
C-vine 1.9763 1.9117 1.4836 1.1275

Losses Ratio Between 220 and 500%
Individual 14.3698 11.9700 13.4862 9.4323
Gaussian 7.7005 6.8211 6.5387 4.3115
t 7.6656 6.7546 6.5470 4.2838
C-vine 7.2505 6.4902 6.1143 4.0955

TABLE 14 | The average Mean Squared Error of aggregate losses at different
layers for states in Group 2.

n � 30 n � 50

Weibull Mixture Weibull Mixture

Losses Ratio Between 100 and 160%
Individual 1.4352 1.5407 1.1887 0.9001
Gaussian 0.9680 1.1981 0.6955 0.7269
t 0.9183 1.1930 0.6697 0.7305
C-vine 1.0249 1.2179 0.7280 0.7339

Losses Ratio Between 160 and 220%
Individual 1.6392 1.9401 1.1451 1.2569
Gaussian 1.1760 1.3799 0.7963 0.8822
t 1.1210 1.3609 0.7766 0.8783
C-vine 1.2244 1.4196 0.8261 0.8903

Losses Ratio Between 220 and 500%
Individual 1.8717 2.3430 1.1887 1.7412
Gaussian 1.9153 1.7647 1.3531 1.1366
t 1.9080 1.7289 1.3648 1.1130
C-vine 1.9296 1.8503 1.3642 1.1674
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5 CONCLUSION

The data sets of crop yield in the neighborhood county are
affected by systemic risks. Accurate modeling of these
systemic risks is essential for determining reliable premium
rates of the publicly-subsidized federal crop insurance
program. This article detects whether the copula-based
models significantly affect losses assessment and insurance
pricing. Specifically, we apply the different copula-based
models to the losses evaluation of crop insurance. The

copulas consider the dependence of yields for adjacent
counties—especially the upper and lower tails of the
distribution.

To put this into perspective, the unbiased estimation of
claims under systemic risk measured by individual and copula-
based methods does not significantly differ. Nevertheless, for
the different layers of SRA policy, the measuring of
dependence significantly impacts aggregate claims. Given
the massive scale of the federal crop insurance program, the
copula-based model will significantly impact crop reinsurance
contracts’ pricing, feasibility, and profitability for the insurers,
the government, and taxpayers. The vine copula provides a
more flexible property in the aggregate losses estimation
process in the regions with obviously estimated tail
dependence.
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