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Bemisia tabaci, the tobacco whitefly, is one of the most notorious agricultural sucking
insect pests that severely damage a series of crops worldwide. Throughout China, B.
tabaci threatens agricultural production with increasing cases of resistance to commonly
used insecticides, prompting the widespread use of cyantraniliprole as an alternative to
control hemipteran pests. Here, we found overexpression of the CYP4G68 gene
conferring cyantraniliprole resistance using quantitative real-time PCR (qPCR) and
RNA interference (RNAi) in one lab-selected resistant strain CYAN-R (to about 80-
fold higher than control). Furthermore, we measured levels of resistance to
cyantraniliprole in whiteflies with 18 field-sampled populations across China and then
confirmed that, among them, 14 field-sampled populations showed low-to-high
resistance to cyantraniliprole compared with the susceptible strain. We measured
CYP4G68 expression in the 14 field populations, and the results of qPCR and RNAi
indicated that in two of these populations, Haikou andWuhan, significant overexpression
of CYP4G68 contributed to the development of field-evolved resistance to
cyantraniliprole. These results indicate the need to facilitate strategies of
management to delay the evolution of resistance to cyantraniliprole and control of
whiteflies more sustainably, and to prevent overuse of insecticides in the environment
through rational application practices.
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INTRODUCTION

Bemisia tabaci, the tobacco whitefly, is a destructive sucking pest that devastates the production of
economically important and horticultural crops worldwide. The tobacco whitefly is invasive in many
locations and reported to infect over 700 species of plants (Wang et al., 2017; Horowitz et al., 2020).
In addition to damaging plants by sucking, B. tabaci transmits over 200 plant viruses in the process of
feeding (Wei et al., 2017). In recent decades, B. tabaci has been controlled via the application of
various widely used chemical agents including organophosphates, carbamates, pyrethroids, insect
growth regulators (pyriproxyfen and buprofezin), and neonicotinoids. However, the management of
whiteflies rests primarily on the extensive usage of chemical agents over the long-term, which has
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caused B. tabaci to develop a high or exceedingly high level of
resistance to various popular chemical agents (Horowitz et al.,
2020). Therefore, widely and heavily applied insecticides will not
be effective for controlling B. tabaci in China.

It has been shown that anthranilic diamides can be used
against a variety of agricultural insect pests efficiently since
they have been introduced to markets around the world
(Jeanguenat, 2013). Apart from excellent insecticidal functions
with lethal concentrations of anthranilic diamides, they also exert
influences on target insect pests at sublethal concentrations and
then result in biological and physiological alterations in the pests
(Huang et al., 2016; Nozad-Bonab et al., 2017; Meng et al., 2020).
Among commercialized insecticides of anthranilic diamide,
cyantraniliprole is a second-generation product and targets a
wide range of agricultural pests from various orders of insects by
acting on their ryanodine receptors (Lahm et al., 2005; Sattelle
et al., 2008; Jeanguenat, 2013). Considering that cyantraniliprole
can be absorbed via roots and stems of the plants, this chemical
agent displays significant insecticidal effects against various
orders of insects such as sucking and chewing pests, in
comparison with first-generation products like flubendiamide
and chlorantraniliprole, which are largely useful for controlling
caterpillars (Foster et al., 2012; Barry et al., 2015; Bielza and
Guillén, 2015; Grávalos et al., 2015; Moreno et al., 2018).
Moreover, it was demonstrated to successfully manage
immature stages and adults of B. tabaci and reduce the
efficiency of transmitting plant viruses (Portillo et al., 2009;
Schuster et al., 2009; (Stansly et al., 2010).

Due to long-term and excessive applications of insecticides, it
has been well indicated that among most conventional chemical
agents, a growing number of them became inefficacious for
controlling agricultural insect pests (Palumbo et al., 2001). In
the field applications in China, the heavy dependence on chemical
agents for controlling insect pests contributed to more and more
resistance cases to various classes of chemical agents that were
significantly effective against B. tabaci. In particular,
neonicotinoids are highly effective for whitefly control, but
resistance to neonicotinoids has been widely reported in
whiteflies from several geographic regions across China, which
has led to serious control failures (Wang et al., 2010; Yang et al.,
2013; Zheng et al., 2017; Zheng et al., 2021). Based on this
situation, resistance to neonicotinoids has been investigated,
and mechanisms of resistance were demonstrated gradually in
China (Yang et al., 2020; Yang et al., 2021; Du et al., 2021; Liang
et al., 2022). Not surprisingly, although it has been shown that
cyantraniliprole could be one powerful alternative to popular
chemical agents, field-evolved cyantraniliprole resistance in B.
tabaci has been reported in China (Wang et al., 2018), and it has
been reported that inAphis gossypii, UGTs and P450s are possibly
related with resistance to cyantraniliprole (Zeng et al., 2021).

In our previous work, a baseline of susceptibility to
cyantraniliprole in China was established and five field-
collected populations with moderate cyantraniliprole resistance
were detected (Wang et al., 2018). Based on the above results,
high cyantraniliprole resistance was observed in the SX
population (138.4-fold) after successive selection (Wang et al.,
2019). By crossing and successive backcrossing between SX and

the susceptible population, one near-isogenic line of the CYAN-R
strain was developed that showed 63.317-fold cyantraniliprole
resistance compared to the control (Wang et al., 2020a). In the
current work, we carried out lab experiments to select the CYAN-
R strains with cyantraniliprole, generation by generation, to
obtain stable cyantraniliprole resistance (80.8-fold) and found
overexpression of the CYP4G68 gene conferring cyantraniliprole
resistance in the use of qPCR and RNAi in the CYAN-R strain.
Then, in 2021, we established the baseline of susceptibilities to
cyantraniliprole in 18 field-sampled populations from China and
demonstrated that most of the field-sampled populations of B.
tabaci showed various levels of cyantraniliprole resistance.
Furthermore, expression levels of CYP4G68 were measured in
14 field populations, and the results of qPCR and RNAi indicated
that in two of the populations, Haikou and Wuhan, significant
overexpression of CYP4G68 contributed to the development of
field-evolved resistance to cyantraniliprole. These results provide
new insights for the cognition of P450-associated insecticide
resistance and are solid evidence for putting forward
appropriate tactics for the sustainable management of
whiteflies without the overuse of insecticides.

MATERIALS AND METHODS

Insects and Chemicals
The CYAN-R strain of B. tabaci with cyantraniliprole resistance
and the MED-S susceptible strain were recorded previously
(Wang et al., 2020a), and all field-collected populations used
in this work were recorded before (Wang et al., 2022). All used
populations were raised on a plant of cotton without exposure to
insecticides in the chamber with a temperature of 26 ± 1°C,
relative humidity of 55 ± 5%, and photoperiod of 16 h light: 8 h
dark. About 300 adults of B. tabaciwere collected at random from
each of the lab-reared and field-collected populations for
identification of cryptic species according to the reported
approach (Luo et al., 2002), and all of the tested ones were
confirmed as Mediterranean cryptic species. All chemical
agents utilized were analytically standardized, and
cyantraniliprole (Sigma Aldrich, CAS# 736994-63-1, catalog#
32372-25MG), triton X-100 (Sigma Aldrich, CAS# 9002-93-1,
catalog# 93443-100 ML), and dimethyl sulfoxide (Sigma Aldrich,
CAS# 67-68-5, catalog# D8418-500 ML) were bought from Sigma
Aldrich, Shanghai, China.

Bioassays
Based on our previously reported approach (Wang et al., 2018),
leaf-dipping bioassays were carried out with whitefly adults from
each of the tested populations. Cotton discs with a 2-cm diameter
were soaked for about 20 s in the water (control) or the specific
working concentration, and after air-drying, they were moved
into test tubes with plug caps, respectively. After that, 25–35
whitefly adults were sampled and moved into each of the test
tubes at random, and all the test tubes were kept in the chamber
for 48 h and then mortality was checked. The CYAN-R
cyantraniliprole resistance strain was screened with
cyantraniliprole for 15 successive generations, every generation
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of B. tabaci adults were put through the selection with a median
lethal concentration of cyantraniliprole. F1 offspring adults of
18 field-sampled populations from nine provinces of China were
used for bioassay to monitor the levels of resistance to
cyantraniliprole in China.

Expression Patterns of
Detoxification-Related P450s
Based on previous publications concerning insecticide resistance
associated with P450 genes in B. tabaci (Wang Q et al., 2020;
Zhou et al., 2020), 12 candidate P450s (CYP6DZ4, CYP6CM1,
CYP4G68, CYP6CX4, CYP6DW2, CYP303A1, CYP4C64,
CYP6DZ7, CYP6CX1v1, CYP6CX3, CYP6CX5, and CYP6DW3)
were picked out and set as candidates for the analysis of gene
expression. For each tested population, total RNA was extracted
from 100 adults of B. tabaci collected at random from each tested
populations, and on the basis of our reported approach (Wang
et al., 2020c), qPCR was carried out, and two reference genes, EF-
1α and TUB1α, were selected for the normalization. All sequences
of primers are listed in Supplementary Table S1.

Silencing of CYP6DW2 and CYP4G68
Silencing of CYP6DW2 and CYP4G68 was conducted,
respectively, to confirm the function of CYP6DW2 and
CYP4G68 in whiteflies via RNA interference (RNAi) based on
the method recorded before (Wei et al., 2018). The double-
stranded RNA (dsRNA) was synthesized using a T7 RiboMAX
Express RNAi kit (Promega, Madison, WI, United States), and
the primer sequences are listed in Supplementary Table S1.
Adult B. tabaci were fed dsRNAs targeting enhanced green
fluorescent protein (dsEGFP), or CYP6DW2 (dsCYP6DW2),
or CYP4G68 (dsCYP4G68) for 48 h, and concentrations of

dsCYP6DW2, dsCYP4G68, and dsEGFP were 0.5 μg μL−1, and
the artificial diet solution contained 30% sucrose (w/v) and 5%
yeast extract.

Data Analysis
Data of bioassays were analyzed using PoloPlus software (2003).
Resistance ratio (RR) of each of the tested chemical agents was
determined by dividing the median lethal concentration of the
tested field-sampled population by the median lethal
concentration of the susceptible population. Values of RR were
utilized to display grades of insecticide resistance, and Student’s
t-test and one-way ANOVA followed by Tukey’s HSD for
multiple comparisons were performed to analyze statistical
significance (p < 0.05) in SPSS software (SPSS Inc., Chicago,
IL, United States).

RESULTS

Cyantraniliprole Resistance Selection
Cyantraniliprole resistance in the resistant CYAN-R strain of B.
tabaci was continuously selected for 15 generations. According to
the values of LC50, there was no considerable increase from G0 to
G15 (Table 1), but the resistance ratio (RR) was increased from
50.0-fold at G0 to 80.8-fold at G15. Specifically, the resistant strain
of B. tabaci developed resistance rapidly from G0 to G9 (RR from
55.0- to 70.2-fold) and then remained steady after G9, with RRs
around 80-fold.

Monitoring Resistance to Cyantraniliprole in
China
Baseline of susceptibilities to cyantraniliprole was constructed in
the basis of 18 field-sampled populations from nine provinces
across China in the year of 2021 (Table 2). Compared to the
susceptible population MED-S, 14 of the 18 field-collected
populations displayed low-to-high levels of resistance to
cyantraniliprole with RRs ranging from 5.0- to 59.6-fold (LC50

from 8.521 to 101.474 mg L−1).

Expression Profiles of the Selected P450s
and RNA Interference
Compared to the susceptible ones, expression patterns of the 12
candidates (CYP6DZ4, CYP6CM1, CYP4G68, CYP6CX4,
CYP6DW2, CYP303A1, CYP4C64, CYP6DZ7, CYP6CX1v1,
CYP6CX3, CYP6CX5, and CYP6DW3) in CYAN-R were
measured using qPCR. Expressions of CYP6DW2 (increased
4.50-fold) and CYP4G68 (increased 6.52-fold) in CYAN-R
were significantly elevated in comparison with the susceptible
ones (Figure 1). To explore the functions of CYP6DW2 and
CYP4G68 further, dsCYP6DW2 and dsCYP4G68 were made and
fed to adult B. tabaci from the CYAN-R strain to knockdown the
expression of CYP6DW2 and CYP4G68, respectively. After 48 h
of feeding on dsCYP6DW2 and dsCYP4G68, the expression of
CYP6DW2 and CYP4G68 in adult B. tabaci decreased by 41%
(Figure 2A) and 47% (Figure 2C), respectively. After

TABLE 1 | Selection of cyantraniliprole resistance in the CYAN-R strain of Bemisia
tabaci.

Ga Nb LC50

(95%CL)c (mg
L−1)

Slope (±SE) X2 (Df) RRd

0 599 85.487 (70.805–101.269) 1.484 ± 0.138 1.985 (3) 55.0
1 601 73.004 (60.288–90.682) 1.288 ± 0.133 1.211 (3) 47.0
2 593 83.420 (69.848–97.928) 1.587 ± 0.142 2.282 (3) 53.7
3 588 80.207 (66.186–100.322) 1.321 ± 0.136 2.072 (3) 51.6
4 579 94.274 (80.982–108.744) 1.820 ± 0.149 2.446 (3) 48.5
5 594 83.251 (70.446–100.754) 1.559 ± 0.142 1.192 (3) 53.6
6 590 89.523 (72.782–109.232) 1.239 ± 0.133 1.614 (3) 57.6
7 582 92.885 (75.775–110.078) 1.668 ± 0.153 1.879 (3) 59.8
8 603 105.144 (84.521–126.335) 1.435 ± 0.138 1.089 (3) 67.7
9 593 109.064 (83.600–135.258) 1.199 ± 0.134 2.141 (3) 70.2
10 596 117.425 (90.397–145.688) 1.169 ± 0.132 2.050 (3) 75.6
11 594 128.392 (100.653–158.165) 1.187 ± 0.132 1.277 (3) 82.6
12 598 120.752 (94.639–148.269) 1.222 ± 0.132 1.473 (3) 77.7
13 597 126.814 (101.082–153.085) 1.419 ± 0.140 2.348 (3) 81.6
14 599 132.184 (97.337–167.897) 1.069 ± 0.131 2.567 (3) 85.1
15 599 125.566 (93.133–158.609) 1.112 ± 0.132 2.187 (3) 80.8

aGeneration of adults used in the bioassay.
bNumber of tested adults.
cCL, confidence limits.
dRR (resistance ratio) = LC50 of selected generation/LC50 of MED-S (1.554 mg L−1).
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cyantraniliprole selection, feeding on dsCYP4G68 by adults
resulted in considerably higher death rate compared to that of
the dsEGFP control (Figure 2D), and little remarkable increase in
death rate was found with the feeding on dsCYP6DW2 compared
with the control (Figure 2B).

Expression Patterns of CYP4G68 in the
Fourteen Field-Resistant Populations
Relative expression profiles of CYP4G68 in 14 field-collected
cyantraniliprole-resistant populations were established and
compared to MED-S (Figure 3). Among the field-collected

population and the susceptible strain, significant
overexpression of CYP4G68 was observed in WH (3.52-fold),
CS (3.41-fold), HK (4.55-fold), and SY (3.98-fold). In other field-
resistant populations, significant overexpression of CYP4G68 was
not observed.

Confirmation of the Role of CYP4G68 in the
Four Field-Resistant Populations
Based on the above results, to further investigate the functions of
CYP4G68 in the four field-resistant populations, dsCYP4G68 was
synthesized and fed to the WH, CS, HK, and SY populations of
adults to silence CYP4G68 in each of the populations. After 48 h
of ingestion of dsCYP4G68, adult B. tabaci displayed decreased
expression of CYP4G68 from 42 to 49% in the four tested
populations (Figures 4A–D). After the cyantraniliprole
treatment, feeding on dsCYP4G68 by adults resulted in a
considerably elevated death rate compared to the dsEGFP
control in WH and HK populations (Figure 4E and
Figure 4G), but little remarkable increase in death rate was
found with the feeding on dsCYP4G68 compared to that of
the control in CS and SY populations (Figure 4F and Figure 4H).

DISCUSSION

Cyantraniliprole has shown excellent efficacy against sucking
insect pests worldwide, but field-evolved cyantraniliprole
resistance in whiteflies has been recorded in China after
several years of extensive application (Wang et al., 2019).
Previously, we established the CYAN-R strain of B. tabaci on
the basis of a field-developed cyantraniliprole-resistant

TABLE 2 | Bioassays of 18 field populations and one susceptible strain of B. tabaci to cyantraniliprole.

Population Na Slope ±SE LC50

(95%FL)b (mg
L−1)

X2 (Df) RRb

MED-S 590 1.337 ± 0.137 1.703 (1.381–2.051) 2.559 (3) —

LY 558 1.421 ± 0.142 7.070 (5.771–8.478) 1.986 (3) 4.2
CY 558 1.295 ± 0.139 4.849 (3.939–6.273) 1.617 (3) 2.8
HD 607 1.913 ± 0.148 4.706 (4.105–5.387) 2.555 (3) 2.8
TZ 600 1.048 ± 0.134 38.052 (25.899–50.023) 1.038 (3) 22.4
WQ 574 1.047 ± 0.133 15.871 (12.521–21.105) 1.207 (3) 9.3
JH 569 1.451 ± 0.142 29.108 (23.397–35.013) 1.600 (3) 17.1
ZJK 566 1.152 ± 0.137 4.848 (3.576–6.135) 1.248 (3) 2.8
BD 582 1.427 ± 0.138 30.835 (25.865–37.205) 2.487 (3) 18.1
ZZ 602 1.261 ± 0.135 22.026 (17.194–27.004) 2.196 (3) 12.9
XZ 596 1.194 ± 0.134 9.034 (7.292–11.750) 1.058 (3) 5.3
JN 584 1.409 ± 0.140 16.186 (13.197–19.381) 1.930 (3) 9.5
TA 593 1.782 ± 0.146 8.521 (7.345–9.844) 1.471 (3) 5.0
WH 592 1.378 ± 0.137 76.642 (63.818–94.437) 1.935 (3) 45.0
XY 583 1.082 ± 0.131 62.890 (50.203–80.686) 1.157 (3) 36.9
CS 573 1.218 ± 0.133 52.089 (42.353–64.292) 1.374 (3) 30.6
YY 593 1.140 ± 0.131 70.357 (56.804–89.825) 1.225 (3) 41.3
HK 597 1.335 ± 0.134 87.995 (72.632–105.840) 2.169 (3) 51.7
SY 577 1.922 ± 0.155 101.474 (87.203–116.694) 1.640 (3) 59.6

aNumber of insects used.
bRR (resistance ratio) = LC50 (field-collected population)/LC50 (MED-S).

FIGURE 1 | Expression profiles of 12 candidate P450 genes.
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population. After that, a series of biochemical assays were
performed, and the results demonstrated that enhanced P450
activities functioned directly in the cyantraniliprole resistance of
the CYAN-R strain (Wang et al., 2020a). Insect pests have been
demonstrated to develop some resistance to other classes of
chemical agents under chronic exposure of selection,
prompting studies to explore mechanisms of resistance (Wang
et al., 2020b; Wang et al., 2020d; Yang et al., 2020; Zeng et al.,
2021). In the current work, continuous cyantraniliprole selections
for 15 generations increased resistance from 55.0-fold to 80.9-fold
in the CYAN-R strain.

The overexpression of P450s mediating metabolic
resistance to various insecticides has been indicated in
many species of insect pests worldwide (Nauen et al.,
2022). In recent reports of insecticide resistance in B.
tabaci, P450-mediated resistance was one of the most
reported mechanisms underlying resistance to several
insecticides including imidacloprid, thiamethoxam,
acetamiprid, and flupyradifurone (Wang et al., 2020c;

Wang Q et al., 2020; Yang et al., 2020; Zhou et al., 2020;
Liang et al., 2022). In the current study, overexpression was
detected for two P450 genes, CYP6DW2 and CYP4G68, in the
CYAN-R strain compared with the susceptible strain.
Similarly, a previous report showed that various levels of
resistance to imidacloprid in field populations of B. tabaci
resulted from the overexpression of CYP4C64 and CYP6CM1,
two P450 genes (Yang et al., 2013). Furthermore, we found
that silencing CYP4G68 resulted in a considerably increased
death rate in adults treated with cyantraniliprole in the
CYAN-R strain, yet silencing CYP6DW2 did not
significantly increase the death rate of adults treated with
cyantraniliprole in the CYAN-R strain. All the findings
demonstrated that CYP4G68 can contribute to increased
cyantraniliprole resistance in whiteflies. In addition to
P450-mediated cyantraniliprole resistance, it has been
demonstrated that the expression of calmodulin and 1,4,5-
trisphosphate receptor can be associated with changed
susceptibility to cyantraniliprole (Guo et al., 2017; Guo

FIGURE 2 | Effects of dsCYP6DW2 on the expression of CYP6DW2 (A) and effects of silencing CYP6DW2 (B) on resistance to cyantraniliprole, and effects of
dsCYP4G68 on the expression of CYP4G68 (C) and effects of silencing CYP4G68 (D) on resistance to cyantraniliprole.
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FIGURE 3 | Expression profiles of CYP4G68 in 14 field-evolved cyantraniliprole-resistant B. tabaci populations from China.

FIGURE 4 | Effects of dsCYP4G68 on the expression of CYP4G68 in populations WH (A), CS (B), HK (C), and SY (D). Effects of silencing CYP4G68 on resistance
to cyantraniliprole in populations WH (E), CS (F), HK (G), and SY (H).
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et al., 2021) and Ca2+-binding protein function in response to
cyantraniliprole exposure through the stabilization of Ca2+

concentration (Guo et al., 2019).
Considering that the use of cyantraniliprole across China has

facilitated reasonable solutions for solving underlying problems
of resistance to popular chemical agent against B. tabaci, it is
essential to understand whether whiteflies have already developed
resistance to cyantraniliprole in the field. Previously, we
monitored the resistance levels of cyantraniliprole against
whiteflies throughout China from 2015 to 2016 and found
only a few field-collected populations showing low resistance
(Wang et al., 2018). In our current work, we monitored the levels
of cyantraniliprole resistance in 18 field-sampled populations
from nine provinces across China in 2021, and found that 14 of
the populations showed low-to-high resistance to
cyantraniliprole, which means field-evolved cyantraniliprole
resistance has escalated in China. Furthermore, we found the
overexpression of CYP4G68 in the cyantraniliprole-resistant
populations, WH, CS, HK, and SY, and confirmed that this
overexpression contributed to resistance in the WH and HK
populations but not in the CS and SY populations. Considering
that CYP4G68 functions in thiamethoxam and imidacloprid
resistance in B. tabaci (Wang Q et al., 2020; Liang et al.,
2022), we surmise that overuse and the long-term application
of neonicotinoids and cyantraniliprole in China may give rise to
the rapid development of resistance associated with
overexpression of CYP4G68. Hence, CYP4G68 can be utilized
for monitoring and managing cyantraniliprole resistance in field-
developed resistant populations. Our current findings supply
novel opinions and understandings concerning possible
functions of P450 genes in cyantraniliprole resistance and
provide more evidence for the further studies of P450s-

associated resistance. Besides, our results could be
instrumental in formulating strategies of pest management for
controlling insect pests sustainably with more environment-
friendly approaches.
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