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Disturbances such as fire play a critical role in forest ecosystems. However,

anthropogenic fires can profoundly impact forests to the point of destabilizing

ecosystems. In addition, fires have legacy effects on environments which may

be observed in forests for decades after the fire is extinguished. Thus,

understanding the extent of historic fires in a landscape is vital to

understanding current forest structure and ecological processes (e.g.,

carbon sequestration capacity and provision of habitat) and, therefore,

essential for informing land-management decisions. However, little work has

been done to map forest fires pre 1980s due to the challenges of interpreting

imagery from the 1970s-era Landsat Multispectral Scanner (MSS) platform. MSS

imagery is distinguished from recent satellite missions through lower temporal,

spatial, and spectral resolutions. Recent advances in image processing have

brought the goal of high-quality MSS classifications within reach. In this study,

we use deep learning, specifically UNet (a fully convolutional neural network

(CNN)), to detect historic forest fires in MSS imagery for the forest-dominated

regions of Quebec, Canada. While other studies have applied deep learning to

present-day satellite data for land cover classification, hardly any work has

specifically applied deep learning to MSS data for fire detection. We trained our

UNetmodel on 206MSS images that were labelled by applying thresholds to the

Burned Area Index inside polygons drawn by the authors around burned areas.

We then used the trained model to label burns in 5104 MSS images that were

compiled to generate annual burned area maps. Our results identified (with a

95% confidence interval) 3503.95 ± 484.90 km2 of burns not previously

reported in any database; this represents a 35.30 ± 3.94% increase in the

total known burned area across the forest-dominated regions of Quebec

between 1973 and 1982.
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1 Introduction

Forest fires profoundly impact the environment by altering

biogeochemical and hydrological cycles, subsequently impacting

biological communities and how ecosystems function (Bowman

et al., 2009; Bowman et al., 2011). Today, it is commonly

understood that human influence is changing modern fire

regimes (Flannigan et al., 2000; Bowman et al., 2011;

Schaphoff et al., 2016; Hanes et al., 2019). As well,

anthropogenic climate change and fire exist in a positive

feedback loop, as fires destroy forests and release greenhouse

gasses, which increases retained solar radiation and surface

temperatures, which increases evapotranspiration, while the

lack-of forests lowers the ability for water retention, resulting

in more favorable conditions for fires (Clark, 1990; Weber and

Flannigan, 1997; Stocks et al., 1998; Flannigan et al., 2000; Amiro

et al., 2001a; Schaphoff et al., 2016). As it can take an ecosystem

decades to return to pre-disturbance conditions after a fire occurs

(Flannigan et al., 2000; Amiro et al., 2001a; Burton et al., 2007;

Hudiburg et al., 2017), the amount of carbon released by a fire

and how much carbon can be sequestered afterwards is

contingent on the disturbance history of a region (Amiro

et al., 2001a; Balshi et al., 2007). Thus, to understand the state

of a forest, which is crucial for successful ecosystemmanagement,

climate change mitigation, and adaptation, we must first

understand the history of a forest.

The Canadian National Fire Database (CNFDB)

(Canadian Forest Service, 2021) is the primary resource for

studying long term trends in forest fires in Canada and

understanding their impacts on ecosystems. The CNFDB

has spatially explicit records of forest fires across Canada,

including entries as early as 1917 in some regions. Given the

reliance on in-person accounts for historic forest monitoring,

the data from before the 1970s is not complete (Stocks et al.,

2002). Stocks et al. (2002) note that “fires in more remote

northern regions . . . that occurred between 1959 and the mid-

1970s are undoubtedly missing from [the CNFDB]” (2002,

p. g., FFR5-3). The CNFDBmainly includes maps for recorded

fires larger than 200 ha and, for many fires, has only an outline

of the burned area that falsely includes unburned interior

areas. The exclusion of fires smaller than 200 ha and the

inclusion of unburned islands is considered a limitation to

the CNFDB (Amiro et al., 2001b; Stocks et al., 2002; Burton

et al., 2007; Coops et al., 2018; Hanes et al., 2019). In response,

more spatially explicit maps based on the analysis of historical

satellite data have been added to the CNFDB. For example,

Coops et al. (2018) created maps of fires across Canada from

1985 to 2015, based on Landsat Thematic Mapper (LTM) and

Operational Land Imager (OLI) data.

The historical record of fires can be extended back an

additional decade using Landsat Multispectral Scanner (MSS)

imagery. Problematically, MSS data has a limited spatial,

spectral, and temporal resolution in comparison to current

satellite missions such as Landsat 8 and Sentinel-2. The

coarser spatial resolution of MSS imagery (60 m) makes it

challenging to accurately identify fire borders as larger pixels

are more likely to contain a mixture of both burned and

unburned land. The lower spectral resolution means less

information per pixel than current data. Critically, MSS

images do not have a short-wave infrared band commonly

used for fire classification (Holden et al., 2005). Finally, unlike

today, when multiple satellites are operating simultaneously

and data gaps in one instrument’s time series can be

augmented with images from other satellite missions, the

MSS image collection is the only freely-accessible global

Earth observation dataset that exists for the 1970s. In

addition, as there are only a few MSS images available for a

typical growing season, low-quality imagery must be included

to construct a time series based on MSS images.

Neural networks may overcome some of the challenges

associated with interpreting MSS imagery as they can encode

more complex relationships than traditional image analysis

techniques. Therefore, they may be less susceptible to some of

the noise and sensor artifacts present in MSS images as well as

the differences in brightness and saturation between MSS

images. Moreover, because convolutional neural networks

(CNNs) explicitly use spatial relationships among pixels,

they may circumvent the limitation of having only four

bands by using information from surrounding pixels.

Previously, researchers have used deep learning to map

forest disturbances in modern remote sensing data (Ortega

Adarme et al., 2020; Belenguer-Plomer et al., 2021; Maretto

et al., 2021; Zhang et al., 2021). Work has also been done

mapping forest disturbances in Landsat MSS imagery using

non-deep learning methods (Gaveau et al., 2007; Renó et al.,

2011; Vogeler et al., 2020). However, we do not know of

previous work that specifically applied deep learning to map

forest fires in Landsat MSS data.

Given the above, we propose using deep learning to

augment the CNFDB by creating maps of forest fires in

Quebec, Canada, based on MSS imagery. The objective of

this study is to expand the number of fires explicitly mapped

in the CNFDB, and not to replace the existing CNFDB dataset.

To achieve this objective we developed MSS image

preprocessing steps, a deep learning model that classifies

MSS images into six land cover classifications, and time-

series classification steps to create maps of burned areas.

2 Materials and methods

The goal of this study is to augment the historical records

of forest fires in Canada. To achieve this goal, we use Landsat

Multispectral Scanner (MSS) imagery and a deep learning

model to create maps of forest fires over the forest-dominated

ecozones of Quebec, Canada for the years 1973–1982.
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2.1 Study region

For this study, we created maps of historic fires in the forest-

dominated ecozones of Quebec. Forest-dominated ecozone

boundaries were derived from the Canada Committee on

Ecological Land Classification (CCELC) and the Agriculture

and Agrifood Canada (AAFC) Ecological Stratification

Working Group ecozones (Ecological Stratification Working

Group, 1995) and are visualized in Figure 1. Four forest-

dominated ecozones overlap with Quebec; 1) the Taiga Shield

(forested with shrublands and meadows), 2) the Hudson Plains

(predominantly forested with wetlands), 3) the Boreal Shield

(forested), and 4) the Atlantic Maritime (forested with some

agricultural and built-up areas) (Ecological Stratification

Working Group, 1995). These ecozones contain a mix of

conifers and deciduous species (Ecological Stratification

Working Group, 1995).

We created maps of forest fires in these ecozones for the years

1973–1982. Although (MSS) data is available from 1972 on, burn

scars are detectable in MSS images for some years after a fire

occurs, so we would have no way of determining if burns detected

in 1972 are from fires that occurred in 1972 or earlier. We ended

the study period in 1982 (even though MSS images continued to

be acquired after 1982) because Landsat 4 (the first Landsat

mission to carry a non-MSS sensor) was launched in 1982.

Therefore, we have access to higher quality images than MSS

images after 1982. Because our methods rely on having a time

series of classifications to detect fires properly, we classified MSS

images through the end of 1984.

2.2 Landsat multispectal scanner

The images in this study were acquired by the Landsat

Multispectral Scanner (MSS) platform. The MSS platform was

the first global Earth monitoring satellite and the sole instrument

in operation during the 1970s. Each MSS image has four bands:

visible green (0.5 − 0.6 μm), visible red (0.6 − 0.7 μm), near-

infrared 1 (0.7–0.8μm), and near-infrared 2 (0.8 − 1.1 μm)

(National Aeronautics and Space Administration (NASA).

MSS images are re-sampled to a spatial resolution of 60 m by

60 m, have a radiometric resolution of 6 bits, and have a revisit

period (i.e. best case temporal resolution) of 18 days (Landsat

1–3) or 16 days (Landsat 4 and 5) (NASA). The above

specifications mean that MSS images have lower spectral,

spatial, radiometric, and temporal resolution than modern

systems (e.g., Landsat 8 and Sentinel-2). Moreover, many MSS

images are also misregistered or corrupted with noise, further

limiting the amount of usable MSS data.

2.3 Image preprocessing

We considered for inclusion in this study all MSS images

from 1972–1984 acquired between the 120th and 270th Day-of-

Year (approximately May 1st to September 31st) that overlap

with the forest-dominated ecozones of Quebec, have cloud cover

less than or equal to 35% (to permit a reasonable starting sample

size), and geometric root-mean-square error less than 0.5 pixels

(to minimize the use of misregistered images). A total of

5752 images were initially selected. Through visual inspection,

642 images were removed for either 1) being misregistered, 2)

having higher cloud cover than indicated by their metadata, or 3)

if they had too many sensor artifacts to be usable.

The remaining MSS images were converted to top-of-

atmosphere reflectance images following the process outlined

in Braaten et al. (2015). To help distinguish burns, we calculated

the Normalized Difference Vegetation Index (NDVI) (Rouse

et al., 1973), tasseled cap angle (Powell et al., 2010), Burned

Area Index (BAI) (Chuvieco et al., 2002), and the normalized

difference between the green and red bands to help detect cloud

shadows (Braaten et al., 2015). As the BAI does not have an upper

bound, we clamped all BAI values to be less than 800 (i.e., we

set all values greater than 800 to 800). 800 was determined to be a

reasonable upper bound through trial and error. After clamping,

the BAI was normalized to 0–1. The clamping and normalization

were applied to the BAI to allow comparison between BAI values

and the other indices. Finally, to minimize differences in

brightness between images, each image was normalized by

subtracting the median value per band (or band index) from

each band. We performed all data inspection, gathering, and

preprocessing in Google Earth Engine (Gorelick et al., 2017).

2.4 Model

The model used in this study is UNet (Ronneberger et al.,

2015), a fully convolutional neural network (CNN) designed

FIGURE 1
Forest dominated ecozones of Quebec.
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initially for image segmentation (i.e., assigning labels to each

pixel in an image). The model was implemented in TensorFlow

(Abadi et al., 2015) and trained on the Google Cloud Platform.

Our model has six classes: 1) “none” (for pixels that lie off the

edge ofMSS images whose band values are zero), 2) “un-burned”,

3) “burned”, 4) “water”, 5) “cloud shadow”, and 6) “cloud”. We

included multiple non-burned classes in the model because our

experiments showed that explicitly separating the un-burned

classes caused the model to confuse water and cloud shadow

for burns less frequently.

2.4.1 Training and testing data
We created a training dataset from 206 MSS images that

were selected from the entire study region and time period.

Due to the requirement of balanced classes in the training data

and because the total burned area is small relative to the total

study area, a random sampling procedure to select the images

included in the training data would likely not have included

enough burned pixels. Instead, the 206 training images were

selected by looking for images that contained visible burns

while also representing the variety of MSS image qualities,

cloud covers, and land covers expected within the study

region. The “burned” class was labelled by finding image-

specific thresholds of the BAI inside user-drawn polygons

around all burn scars visible in the training images. Pixels

were labelled as “water” using a threshold of the NDVI inside

the bounds of the maximum extent of water in the Joint

Research Centre (JRC) Global Surface Water dataset (Pekel

et al., 2016). “Cloud” and “cloud shadow” classes were labelled

using the MSS Clearview Mask (Braaten et al., 2015). All

remaining unlabelled pixels were labelled as “un-burned” if

they were over an MSS image or “none” if they were outside

the bounds of the MSS image.

60 patches of 256x256 pixels centered on a random pixel

labelled as burned and 20 patches centered on a random pixel

labelled as any non-burn class were sampled from each of the

206 images in our training dataset for a total of 16,408 patches.

During training, we used standard data augmentation techniques

such as random cropping (to patches with a size of

128x128 pixels), random flips, and random rotations to

increase the size of the training dataset. During model

development, 25% of the patches sampled from each image

were held out of the training dataset and instead used to

validate the model (see Section 3.1).

We classified 5104 MSS images using a version of the

model trained on the complete training dataset to generate the

final maps of fires in Quebec between 1973 and 1982. We

applied the same preprocessing steps to each image before

giving them to the model, except each image was exported as

128x128 pixel patches (58.9 km2) with an overlap of 16 pixels

between adjacent patches to reduce edge artifacts in the

model’s output. Data augmentation steps were skipped in

the generation of the final map.

2.5 Postprocessing

During postprocessing, we first gave all pixels whose band

values were all zero or that were in agricultural and built-up

regions (as determined by the Copernicus Global Land Cover

map (Buchhorn et al., 2020)) the class “none”. We then reduced

the six classes down to three classes: 1) “valid burns” from the

“burned” class; 2) “valid non-burns” from the “un-burned” and

“water” classes; and 3) “invalid” from the “none”, “cloud

shadow”, and “cloud” classes. We then masked all pixels

classified as “invalid”. Finally, we combined the model outputs

into a time series of classifications per pixel to remove false

positives and then used object-based methods to combine groups

of pixels into fires and removed all fires smaller than 40 ha. We

set the minimum fire size to 40 ha, as fires smaller than this were

indistinguishable from noise by visual inspection. Individual

burn pixels were then assigned a burn date based on the

observation date of the first burn in the time series.

Two types of false positive errors appeared in the raw outputs

from the model: single-instance errors (most often caused by

misclassified clouds and cloud shadows) and persistent errors

(most often caused by misclassified bare land in the northern

regions of Quebec and misclassified wetlands in the southern

regions of Quebec). We removed single instance errors by

removing all burn observations that did not have a sequence

of at least four consecutive “valid burn” classifications. We

removed the persistent errors by removing any pixels labelled

as “valid burns” in more than 6 years. We set these thresholds

through trial and error. As the goal of this work is to augment an

existing database of fires, we tuned these thresholds towards

including fewer false positives at the expense of including more

false negatives. These thresholds work well for our study region

and purpose, but depend on the regrowth rate of vegetation after

a disturbance which in turn likely depends on the region and type

of disturbance, therefore applications of our methodology to

other regions or disturbance types will likely require that these

thresholds be re-tuned.

2.6 Assessment of model and final burned
area map

To assess the UNet model, a version of the model was trained

on 75% of the patches randomly selected from each of the

206 training images and then assessed on the 25% of the

patches that were never given to the model during training.

Note that a version of the model trained on the complete training

dataset was used to generate the final burned area maps.

To assess the final burned area maps we followed the

guidelines outlined in Olofsson et al. (2014); Stehman, (2014);

Olofsson et al. (2020). In order to compare our burned area map

against the existing maps of forest fires in Quebec (from the

CNFDB and the Quebec Forest Fire database (MFFP, 2021a;
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MFFP, 2021b)) we sampled reference points from 4 strata: the

area marked as burned by neither our map nor the existing fire

databases (i.e. agreed non-burns); the area marked as burned by

the existing fire databases, but unburned in our map (i.e. missed

burns); the area marked as burned by our map, but unburned in

the existing fire databases (i.e. new burns); and the area marked

as burned in both our map and the existing fire databases (i.e.

agreed burns). Because the total area marked as burned

represents less than 2% of the total study area we anticipated

receiving high error of omission rates due to the stratification

procedure as outlined in Olofsson et al. (2020), we therefore

introduced a buffer strata class as recommended by Olofsson

et al. (2020). Our buffer class had a size of four pixels: two pixels

buffered out from the burn class boundary and two pixels

buffered in from the burn class boundary. This gave us a total

of eight strata: each of the original four strata inside the buffer

and each of the original four strata outside of the buffer. The sizes

of each strata are shown in Table 1.

Given a target standard error for the overall accuracy of 0.01,

the strata sizes shown in Table 1, and an assumed user’s accuracy

of 0.95 for the agreed non-burn outside buffer strata and 0.6 for

the remaining strata Olofsson et al. (2014) recommends a

reference point sample size of 498 points. We allocated

50 points to each of the strata and the remaining 98 points to

the agreed non-burn outside buffer strata. Because 148 points

was well below what proportionally allocating the points would

recommend for the agreed non-burn outside buffer strata we

then sampled an additional 200 points from that strata. During

assessment, the assessors assigned a confidence between zero and

five to their assessment and only reference points with a

confidence greater than or equal to three were included in the

final assessment. The final number of reference points for each

strata is listed in Table 1. The points were sampled equally from

each year of the study period within each strata, but due to the

low number of points within each year we only report accuracy

and area estimates for the entire study period.

Two assessors worked to assign the true class of each

reference point by visually inspecting the time series of MSS

images overlapping each point. The assessors dated burns in the

reference points with the date when the first image showing the

point as burned was acquired. We consider the map and the

reference to be in agreement only if both were labelled as burned

in the year that the reference point was sampled from or both

were not burned in the year that the reference point was sampled

from. Note that a significant limitation of this accuracy

assessment is that the only data available to assign classes to

the reference points is the same data used to generate our map as

the only dataset that exists during our study period is

Landsat MSS.

Because our map classes and strata classes are different, we

calculated the unbiased burned area estimates and the unbiased

estimates of the overall, user’s and producer’s accuracies

following the procedure outlined in Stehman, (2014). The

overall, user’s, and producer’s accuracies are provided along

with their 95% confidence intervals calculated as ± 1.96 times

the standard error of the accuracy.

To compare our map against the existing databases we

calculated error matrices and accuracies for our map as well

as for the existing databases. We also calculated error matrices

and accuracies for a map created by taking the union of the

burned area in our map and the existing databases.

3 Results

3.1 UNet results

As can be seen in Table 2, before applying postprocessing,

our UNet model achieves an overall accuracy of 95.42% and has

producers and users accuracies greater than 90% in all but the

cloud and cloud shadow classes. Because only images where the

majority of the image could be annotated by hand were included

in the training/testing data, the accuracies in Table 2 represent on

optimistic assessment of the model as images that would be

difficult to annotate by hand had to be included in the full set of

images used to generate the final maps in order to achieve

TABLE 1 Strata size and reference point allocation.

Strata Mapped size (pixels) Number
of reference points

Agreed non-burn outside buffer 344,003,735 348

Agreed non-burn inside buffer 1,732,648 47

Missed burn outside buffer 1,336,376 47

Missed burn inside buffer 1,082,585 35

New burn outside buffer 42,306 49

New burn inside buffer 1,161,768 46

Agreed burn outside buffer 75,209 50

Agreed burn inside buffer 1,288,847 46

Frontiers in Environmental Science frontiersin.org05

Boothman and Cardille 10.3389/fenvs.2022.914493

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.914493


TABLE 2 UNet Model Error Matrix based on a 75/25 train/test split of hand labelled MSS images.

Label

None Land Burn Water Shadow Cloud User’s

UNet None 692,508 65,358 184 6,948 301 194 0.9047

Land 15,376 18,527,589 523,248 167,293 62,164 15,422 0.9594

Burn 913 196,507 6,849,623 37,031 47,846 4,455 0.9598

Water 1,504 60,333 13,987 3,868,969 11,316 9,411 0.9757

Shadow 197 99,385 52,714 26,143 416,205 6,565 0.6923

Cloud 188 12,614 2,178 19,436 9,398 272,753 0.8616

Producer’s 0.9744 0.9771 0.9204 0.9377 0.7606 0.8833 0.9542

FIGURE 2
Results overview.
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complete spatial and temporal coverage of the study area. The

inclusion of these more difficult to annotate images is why our

post processing steps to remove false positive errors are a

necessary part of our methodology.

3.2 Final map results

An overview of our map compared to the existing fire

databases (a combination of the CNFDB (Canadian Forest

Service, 2021) and the Quebec Forest Fire database (MFFP,

2021a; MFFP, 2021b)) is shown in Figure 2. As expected

many of the fires detected in our map and not listed in the

existing fire databases occur in the central and northern half of

the study area away from populated regions and therefore less

likely to have been identified by the in-person or aerial mapping

methods that were common in the 1970s. Evidence that these

newly detected fires exist is qualitatively shown in Figures 3–6. A

quantitative assessment of our map, the existing database, and

the union of burned areas between the two is shown in

Tables 3–5.

As shown in Tables 3 our map acheives an overall unbiased

accuracy of 99.50 ± 0.0011%. As shown in Tables 3–5 the three

maps only differ when looking at the user’s and producer’s

accuracy of the burn class and are essentially the same from

the perspective of overall accuracy or the non-burned class with

all three maps achieving an overall accuracy and user’s and

producer’s accuracy for the non-burned class over 99%. The

FIGURE 3
Results Detail A. MSS images and model classifications of a newly detected fire, along with a timeline of each model classification for a single
pixel.

FIGURE 4
Results Detail B. MSS images and model classifications of a newly detected fire, along with a timeline of each model classification for a single
pixel.
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FIGURE 5
Results Detail C. MSS images and model classifications of a newly detected fire, along with a timeline of each model classification for a single
pixel.

FIGURE 6
Results Detail D. MSS images and model classifications of a newly detected fire, along with a timeline of each model classification for a single
pixel.

TABLE 3 Error matrix of population pixel count estimates and unbiased accuracies (with 95% confidence interval) of our map based on Stehman,
(2014).

References

Non-burn Burn Total User’s

Our Map Non-Burn 346,704,410 1,450,933 348,155,343 0.9995 ± 0.0010

Burn 288,296 2,279,833 2,568,130 0.8880 ± 0.0604

Total 346,992,707 3,730,766 350,723,473 –

Producer’s 0.9999 ± 0.0004 0.6312 ± 0.0596 — 0.9950 ± 0.0011
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high unbiased overall accuracy for each of the maps is likely due

to the non-burned class representing more than 98% of the study

area and the fact that none of the maps makes many errors in that

class.

The decrease in the unbiased users accuracy of the burn

class between our map (88.80 ± 0.0604%) and the union map

(64.22 ± 0.0586%) likely comes from the existing database

containing fires that are rough polygons drawn around

burns and therefore overestimate the amount of burned area

at the edges of fires and also incorrectly label unburned islands

as burned (see Figures 7, 8). The increase in the unbiased

producers accuracy of the burn class between our map

(63.12 ± 0.0596%) and the union map (84.42 ± 0.0542%)

likely comes from the handful of fires that our model misses,

TABLE 4 Error matrix of population pixel count estimates and unbiased accuracies (with 95% confidence interval) of existing fire databases based on
Stehman, (2014).

References

Non-burn Burn Total User’s

Existing Database Non-Burn 345,414,166 1,526,290 346,940,457 0.9994 ± 0.0008

Burn 1,578,541 2,204,475 3,783,016 0.5858 ± 0.0686

Total 346,992,707 3,730,766 350,723,474 -

Producer’s 0.9994 ± 0.0007 0.5751 ± 0.0510 - 0.9911 ± 0.0011

TABLE 5 Error matrix of population pixel count estimates and unbiased accuracies (with 95% confidence interval) of the union of the burned areas in
our map and the existing fire databases based on Stehman, (2014).

References

Non-burn Burn Total User’s

Union Non-Burn 345,183,410 552,972 345,736,383 0.9998 ± 0.0007

Burn 1,809,297 3,177,793 4,987,091 0.6422 ± 0.0586

Total 346,992,707 3,730,766 350,723,474 —

Producer’s 0.9993 ± 0.0008 0.8442 ± 0.0542 — 0.9933 ± 0.0011

FIGURE 7
Results Detail E. MSS images and model classifications of a fire detected by our methods and listed in the existing databases, along with a
timeline of each model classification for a single pixel.
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but are listed in the existing databases. Most of these fires are

missed by our methods due to there not being enough clear

observations fo the fires (see Figures 9–11). The increase in the

unbiased producers accuracy of the burn class between the

existing database (57.51 ± 0.0510%) and the union map (84.42 ±

0.0542) is likely due to the many fires that are completely absent

from the existing database primarily in the northern part of the

study region (see Figures 3–6).

Following the procedure outlined in Stehman, (2014) the

unbiased estimate for the total area burned is 13,430.76 ±

390.97 km2. 9,926.81 ± 1,256.48 km2 was already mapped in

the existing fire databases and this work detected 3503.95 ±

484.90 km2 of new burns. This represents an increase in the

known total area burned of 35.30 ± 3.94%. 3232.66 ± 892.29 km2

of burns occurred in the existing fire databases, but not in

our map.

4 Discussion

4.1 Limitations

The main limitations of this work come from the low

temporal resolution of Landsat Multispectral Scanner (MSS)

data which causes fires to be missed in our results completely

and the low spectral and spatial resolution of MSS imagery which

causes the edges of fires to be mapped poorly. Additionally, we

have discovered at least one false positive fire detection in our

results that must be removed by hand before the results can be

included in a fire database (see Figure 13).

Not having enough clear observations of a fire immediately

after the fire occurred is the primary reason behind most of the

burned area in the existing databases that we failed to detect. This

problem is demonstrated in Figures 9–12. In Figure 9, we have

FIGURE 8
Results Detail F. MSS images and model classifications of a fire detected by our methods and listed in the existing databases, along with a
timeline of each model classification for a single pixel.

FIGURE 9
Results Detail G. The only MSS observation of a fire that started on 1981–07-27 from within the study period.
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exactly one observation of the fire during the study period after it

started on 1982–07-27 (according to the CNFDB), and clouds

cover the burn scar in that observation. In Figures 10, 11, 12, we

get three or fewer clear observations of the burns in the 3 years

following their start date, but we require at least four

consecutive observations of a burn to remove false positives

from our results.

Because the goal of this study was to augment the existing fire

databases rather than replace them, we made decisions in the

design of the methodology to limit the number of false positives

at the expense of getting more false negatives. It is also likely that

our methods failed to detect burns that are not in the existing

databases, and given the high amount of burns in the existing

databases that our methods failed to detect, there is likely still a

significant number of fires that remain unmapped in the study

region. Therefore, the total burned area from the combination of

our results and the existing databases should be considered a

lower limit on the actual total burned area.

The other main source of discrepancy between the burned

area reported in the existing databases and the burned area

reported by our methods comes from the accumulation of

slight differences in the shape, edges, and unburned islands

between our maps of a fire and the maps of the same fire in the

databases. As mentioned in Amiro et al. (2001b), Stocks et al.

(2002) the CNFDB incorrectly includes unburned islands in

the burned area for some fires, we suspect that this inclusion is

part of the cause of the large amount of known burned area

that our methods failed to detect. Additionally, the low spatial

resolution of MSS pixels means that many pixels around the

edges of burns will contain both burned and unburned land.

This mixing of actual classes within a pixel, combined with the

low spectral resolution of MSS pixels, makes classifying pixels

along the edges of burned regions as burnt or unburnt error-

prone. Any two methods of making these classifications are

likely to have disagreements in those pixels. These kinds of

errors can be seen in Figures 7, 8.

FIGURE 10
Results Detail H. Every Usable MSS image and UNet classification of a fire that started 1981–07-13 according to the CNFDB, but was only
partially detected by our methodology.
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The low temporal resolution of MSS data also affects our

ability to assign dates to burns. We assigned dates to burns

using the date of the first burn observation in a sequence of at

least four burn observations. However, due to the low

temporal resolution of MSS data, the first observation of a

fire may occur in the year following the fire. For example,

Figure 9 shows a detail of a burn that, according to the

CNFDB, started on 1982-07-27. However, the first clear

observation of the fire in an MSS image occurred in 1983,

so the fire was excluded from our results due to it erroneously

being dated as starting outside of the study period. This issue

also occurs in other places in our results where the only

observation of a fire in a given year is partially cloudy, so

the fire in the final results is assigned a patchwork of two

different dates. We suspect that many of the new fires in our

results are assigned the wrong date, but due to the lack of

available data have no way to verify this accurately.

Of the fires detected in our methods but not listed in any

existing database, we could find only one where we could not

find evidence of a fire when visually inspecting the images.

Figure 13 shows this “burn”. Despite having spectral

characteristics that are somewhat similar to those of other

fires, due to the size of the fire, its proximity to inhabited

regions, and the fact that existing fire databases do not contain

FIGURE 11
Results Detail I. Every usable MSS image and UNet classification of a fire that started 1981–07-06 accordig to the CNFDB, but was only partially
detected by our methodology.
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it, we believe that the fire shown in Figure 13 is a false positive.

We believe the error occurred primarily due to a sequence of

relatively darker images in 1976 which caused the model to

mistake unburned land for burned land.

4.2 Future work

Potential future areas of work for this study include

expanding to map forest fires in other boreal regions and

expanding to map other forest disturbance types. Additionally,

this work points to the possibility of improved general land cover

classification of MSS imagery.

The method developed within this study presents a means to

augment the existing knowledge of historical fires in Quebec. By

retraining ourUNetmodel with an expanded dataset, thesemethods

can easily be reapplied to different geographical extents. For

example, with a training dataset containing images from all the

forest-dominated ecozones of Canada, our methods could augment

the CNFDB for the entire country, not just Quebec. Secondly, the

FIGURE 12
Results Detail J. Every usable MSS image and UNet classification of a fire that started 1981–07-13 according to the CNFDB but was not detected
by our methodology.

FIGURE 13
Results Detail K. False positive burn.
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success of deep learning at mapping forest fires in MSS imagery

suggests that deep learning may also be able to map other forest

disturbance types such as deforestation or forest die-off from

invasive insects in MSS imagery.

Moreover, this study develops a method that may be used to

generate high-quality maps of other land covers from historical

MSS images, allowing conservation and land management

practitioners to extend historical remote sensing analyses

back an additional decade. For example, as a by-product of

creating maps of forest fires, we also created relatively high-

quality maps of water, clouds, and cloud shadow. By refocusing

our methodology towards water, there is a possibility that our

methods could be used to extend the Joint Research Centre

(JRC) Global Surface Water dataset (Pekel et al., 2016), which

currently goes back only to 1984. Alternatively, by refocusing

our methodology toward clouds and cloud shadows, there may

be room to improve the MSS Clearview Mask, used for masking

clouds and cloud shadows in MSS images (Braaten et al., 2015).

Land cover maps based on MSS images would provide earlier

baselines and longer time series, thereby telling a more

complete story of how land cover has changed through time.

Finally, there may be potential to improve our maps of

fires by 1) replacing the deep learning model we used with a

more sophisticated architecture similar to that proposed by

Zhang et al. (2021), or 2) by retraining the model with an

expanded training dataset (>206 images). In both instances,

improving the model may allow us to lower the threshold of at

least four consecutive burn observations, in turn, possibly

reducing the number of false negatives. Although we believe

there are more fires in the study region than we are currently

able to detect, we suspect that due to the low temporal

resolution of MSS data, even a model with a 0% false-

positive rate (and therefore a model that needs no

postprocessing) would still miss some fires and assign the

wrong date to others. In other words, the lack of available MSS

images may mean some fires are not detected, or the actual

start date of the fire is missed.

5 Conclusion

While natural forest fires are an essential process in forest

ecosystems, the growing number and intensity of

anthropogenic fires have expanded beyond natural extents,

impacting global forest ecosystems long after they stop

burning. In this work, we demonstrate that neural networks

can overcome the challenges associated with Multispectral

Scanner (MSS) data and can be used to identify burned areas

previously not captured in the MSS era. In this project,

3503.95 ± 484.90 km2 of new fires were detected in the

forest-dominated regions of Quebec between 1973 and

1982. Mapping these new fires augments the existing record

of fires, thereby improving our understanding of how fire

regimes are changing in the anthropocene. Given the

extendability of our methodology, historic fire maps could

be extended by analyzing MSS images across Canada and even

the global boreal forest. Moreover, this work demonstrates

that neural networks applied to MSS imagery can improve our

baseline understanding of land cover and the length of time

series analysis we can perform on land cover change.
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